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Abstract
Code-reuse attacks pose a threat to embedded devices since they are able to defeat common security defences such as non-
executable stacks. To succeed in his code-reuse attack, the attacker has to gain knowledge of some or all of the instructions 
of the target firmware/software. In case of a bare metal firmware that is protected from being dumped out of a device, it is 
hard to know the running instructions of the target firmware. This consequently makes code-reuse attacks more difficult to 
achieve. This paper presents a novel approach how an attacker can gain knowledge of some of these instructions by sniffing 
unencrypted incremental updates. These updates exist to reduce the radio reception power for resource-constrained devices. 
It will be demonstrated how a return-oriented programming (ROP) attack can be accomplished on a MSP430 MCU using 
only the passively sniffed incremental updates. The generated updates of the R3diff and Delta Generator (DG) differencing 
algorithms will be under assessment. The evaluation reveals that both of them can be exploited by the attacker and how an 
attacker can maximize his information gain when dealing with more than one update. It also shows that the DG generated 
updates leak more information than the R3diff generated updates. This stresses the fact that even delta updates need to be 
protected with encryption. To defend against this attack, different countermeasures that consider different power consump-
tion scenarios are proposed, but yet to be evaluated.
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1 Introduction

After the deployment of a network of IoT devices, a bug or 
a security vulnerability can be found. Also, a feature could 
be needed to be added or removed from such networks. 
Therefore, it is very important to consider a secure, reliable 
and convenient update technique. The devices in these net-
works are deployed scattered over the place such as Internet 

of Things (IoT) devices in smart homes, smart cities, or a 
Wireless Sensor Network (WSN). Furthermore, a WSN can 
be deployed in harsh/scarce environment which makes col-
lecting the devices back to update them using cables a big 
challenge. Therefore, a convenient way to deliver the update 
is disseminating it Over the Air (OTA) using one of the Over 
The Air Programming (OTAP) frameworks such as R3 [1] 
or DG [2]. The devices in such IoT networks can be classi-
fied as high-end and low-end devices, with some challenges 
in regard to the low-end devices for OTA updates. Low-
end devices are resource-constrained devices which usually 
come in a form of low-power and low-cost Micro-Controller 
Unit (MCU) or System-on-Chip (SoC). Also, these devices 
are usually battery-powered where the power consump-
tion efficiency is very crucial. In many of these applica-
tion scenarios multihop networks are used. This means an 
OTA update is sent hop-by-hop i.e. many devices need to 
receive and send it even those that are currently not updated. 
The OTA update can consume substantial radio reception 
power from the device while receiving and sending it. For 
this reason, it is not wise to send an entire new firmware 
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as an update to the device. Since the early 2000s, there are 
many proposed OTAPs frameworks which make use of the 
so-called differencing algorithms to generate a differential 
update that only contains the changes between the two firm-
ware versions. Consequently, the consumed power during 
receiving a differential update will be much less than the 
consumed power during receiving an entire new firmware. 
Since IoT became a non-negligible part of our life, its secu-
rity became a crucial concern quickly. Therefore, the authen-
ticity and integrity of an update are intensively discussed in 
the literature and even standardized in the Software Update 
of IoT Devices (SUIT) IETF standard. Nevertheless, the 
confidentiality of the update is left optional [3, 4]. This is 
opening a chance for malicious attackers to compromise the 
devices. Enforcing only authentication and integrity helps 
to prevent attackers from injecting malicious code, but the 
fact the confidentiality is optional provides the attackers a 
chance to create a RoP attack by analysing the code update.

In this work, the risk of sending the differential updates 
unencrypted will be emphasized. The evaluation demon-
strates that the generated differential updates of R3diff and 
DG algorithms (for which their authors stated that they gen-
erate the smallest differential update sizes) can leak enough 
ROP gadgets to compromise the updated device. This attack 
does not imply a direct weakness in the differencing algo-
rithms, because their main concern is to generate a differen-
tial update as small as possible not to secure it during trans-
mission. It however emphasizes that differencing updates do 
not hide enough information to be used to guarantee confi-
dentiality. In order to prevent the presented attack, different 
scenarios for power-efficient countermeasures are proposed.

This is an extension of a paper that was already published 
at CSNET 2021 conference [5]. The main contributions of 
this work compared to the original paper are a more detailed 
view on the differencing algorithms and their reconstruction 
process for the attack, an updated section of related work, as 

well as a new method to correlate multiple delta updates to 
find even more gadgets.

The rest of this paper is categorized as follows: In Sec-
tion 2, the concepts of differencing algorithms and the return-
oriented programming (ROP) attack are discussed. Section 3 
discusses related work. Section 4 demonstrates the concep-
tual steps of the attack against the R3diff and DG generated 
updates. In Section 5, the exploitability of the updates from 
the two algorithms is compared. Different countermeasures 
that consider different power consumption scenarios are pro-
posed in Section 6. Finally, Section 7 concludes the paper.

2  Background

2.1  Differencing algorithm

The differencing algorithm takes the old and new firmware 
images as input and correlates them to produce a differen-
tial delta update [6]. A delta update is a specific type of 
file, which encodes the differences between the two files 
as a sequence of commands. With the old file as a basis the 
commands are used to construct the new file. Figure 1 shows 
how this file is used during the update process.

To create these commands, the differencing algorithm 
identifies the matching and non-matching parts of the old and 
the new firmware. Then, it encodes the matching segments 
with COPY commands and the non-matching segments with 
ADD or INSERT commands in a so-called delta script. The 
COPY commands are used to tell the device to reuse already 
existing code snippets by coping them from the currently run-
ning firmware to same or new positions in the new firmware 
that is being constructed. Every ADD command consists of a 
header and payload. The header contains the address and the 
length of the payload. They are used to add the payload, which 
represents non-matching segments, to the new firmware.

Fig. 1  Over the Air differential update overview
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A differencing algorithm can be either in-place or out-of-
place [7] which sometimes are called single and dual-bank 
respectively [8]. This depends on the way its generated updates 
are executed on the resource-constraint devices. During an 
in-place update, the commands are used to directly modify 
the old firmware to create the new firmware image. Conse-
quently, some parts of the old firmware are overwritten during 
the update process on the device, making the old firmware 
unavailable during the update process. Moreover, in case of 
any update failure, the device cannot be reverted back to the 
old firmware. During an out-of-place update, the old firmware 
is only used as a source for COPY commands and the new 
firmware is constructed in a different memory bank without 
overwriting the old firmware. Therefore, in case of any update 
failure, the device can be reverted back to the old firmware. 
Table 1 shows several differencing algorithms which are sorted 
based on the year they have been proposed in. It also shows the 
execution type, and the runtime complexity of each algorithm. 
In this paper, the generated updates of the two algorithms 
R3diff that is a part of R3 OTAP and DG-Optimized, that are 
highlighted in Table 1, will be under assessment. We selected 
these two algorithms to have an example for in-place as well 
as an example for an out-of-place update mechanism, i.e. we 
cover all types of update means. While being the most novel 
approach, DASA-Improved is not considered for evaluation 
because it is not yet implemented or evaluated [9].

2.1.1  R3diff

R3 was presented by Wei Dong et  al. in 2013 [1]. R3 
consists of the following algorithms: R3sim, R3con, and 
R3diff. R3sim tries to maximize the similarity of the two 
images before the actual differencing algorithm is applied, 
and R3con is responsible for the construction of the image 
on the receiver side. R3diff itself was proven to create 
a minimal delta size for the chosen commands and its 
encoding. It is only using the following two commands

• COPY 〈N〉〈addr〉 to copy N bytes form the specified 
address addr, and

• ADD 〈N〉〈b1...bN〉 to add N bytes to the image.

There is no need for an explicit destination address since all 
the commands are executed in order to construct the image 
from the beginning to the end.

2.1.2  DG‑Optimized

By using an in-place update strategy DG (represented here 
by a later iteration DG-Optimized) showed a novel approach 
to create smaller delta updates, compared to the classical 
out-of-place strategy. Compared to R3diff and the original 
DG implementation, DG-Optimized uses more commands 
with a more complicated encoding.

• COPY 〈n〉〈N1〉〈addr1〉...〈Nn〉〈addrn〉 works similar to 
the COPY of R3diff but additionally encodes the number 
of consecutive COPY commands n inside the opcode of 
the command to save some additional opcode bytes in the 
delta update.

• ADD 〈N〉〈b1...bN〉 works exactly as in case of R3diff and 
adds N bytes to the image.

• INSERT 〈word〉 is a variant of the ADD command 
which only adds a single word. This is particularly use-
ful to change parameters or pointers, in case function 
positions have changed.

• SKIP 〈N〉 is used to skip unchanged parts of the image.

Similar to R3diff, there are no destination addresses, since 
the image is processed from the beginning to the end. It 
only differs in the fact that it operates directly on the cur-
rent image instead of creating a new one. Therefore the two 
additional commands are used to move over unchanged areas 
of the image, or only apply small changes. In general, DG is 
designed for small changes in the image and therefore works 
best for those. Since INSERT is just a special ADD command, 
whenever in this paper ADD commands are referred, INSERT 
commands are also implicitly included in the context of DG.

2.2  ROP attack

Return-oriented programming (ROP) attacks are classi-
fied as code-reuse attacks. The main motivation for these 
attacks was the Non-Executable stack security hardening 
for the Linux Kernel in June 1997 by Solar Designer [15, 
16]. This patch stopped classical code injection attacks. 
Shortly after its introduction a bypass was announced by 
Solar Designer himself in the BugTraq mailing list [17], 
which became known as return-into-libc attacks.

The ROP term was introduced first by Hovav Shacham 
on his paper “The Geometry of Innocent Flesh on the 

Table 1  Several differencing algorithms, their types, and their runt-
ime complexity

Algorithm First appeared Execution Time complexity

Rsync [10] 1999 Out-of-Place O(n2) 
FBC [11] 2004 Out-of-Place O(n) 
RMTD [12] 2009 Out-of-Place O(n3) 
DASA [13] 2012 Out-of-Place O(nlog(n)) 
R3diff [1] 2013 Out-of-Place O(n3) 
DG [2] 2016 In-Place O(n2) 
DG-Optimized 

[14]
2019 In-Place O(n2) 

DASA-Improved 
[9]

2020 Out-of-Place O(nlog(n)) 
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Bone: Return-into-libc without Function Calls (on the 
x86)” in 2007 [18] as a generalization to classical return-
into-libc attacks. Later on, ROP attacks have proven to 
be applicable to wide range of architectures. ROP is 
classified as a code-reuse attack that is triggered using a 
memory corruption attack vulnerability.

The attacker searches through the binary for sequences 
of instructions that end with a return (RET) instruction; 
every found sequence is called a ROP gadget. Gadgets 
can be chained together to divert the control flow of the 
running application and constructing a Turing-complete 
exploit. The idea is that, in almost every architecture, the 
RET instruction pops and jumps to the so-called return-
address which is saved in the stack when a function is 
called. Using this fact, the attacker overwrites a return-
address with the address of the first chosen ROP gadget. 
Thus, the processor will jump to execute that ROP gadget. 
When the processor reaches the end of that ROP gadget, 
it will find a RET instruction which again will pop and 
jump to the address in the stack that is pointed by the 
stack pointer. This address will also be controlled by the 
attacker to be the address of the second gadget, and so on.

Different mitigation techniques have been developed 
against code-reuse attacks in general and ROP attacks 
in particular. Stack Canaries or StackGuards [19] are 
supported by different compilers for a wide variety of 
platforms. These are means to protect the stack memory. 
However, the concept itself can be applied to any part of 
the memory. The main idea of stack canaries is that the 
compiler will add a random value just before the return-
address. Thus, in case the attacker tries to override the 
return-address by overflowing a buffer, the canary word 
will be overwritten too. Before returning from a function, 
the canary word is checked. The canary is a useful mitiga-
tion against ROP attacks as long as it cannot be predicted 
or brute-forced. However, it does not work against attacks 
that use function pointers instead of the return-address.

Address Space Layout Randomization (ASLR) [20] is 
another mitigation technique that is implemented in most mod-
ern desktop operating systems, but lacks support in lightweight 
OS’, or bare metal applications. During the start of a process, 
the memory locations of its segments are randomized, making 
it hard for the attacker to jump to specific gadgets.

3  Related work

Encryption for firmware updates itself has been recognized 
as important to prevent attackers from reverse engineering 
and identifying possible exploits [21]. However, to the best 
of our knowledge, this was not researched yet for incremen-
tal updates. Also, the presented attack approach can be cat-
egorized into two steps: leaking gadgets and running the 

attack itself. There are several different methods described 
in literature for leaking gadgets. When the application itself 
is known and only the positions of the gadgets are unknown 
due to ASLR, leaking a pointer into a shared library can 
be enough to reveal the position of all its gadgets [22, 23]. 
The most similar approach to our work was done by Good-
speed and Francillon in 2009 [24]. They also launched a 
ROP attack on a MSP430 with a similar assumption of not 
knowing the application code. They only assume to know 
the bootloader. Their approach of leaking gadgets is by 
brute-forcing gadget addresses and using system crashes as 
indication if the guess was correct. They aim only for a very 
short ROP attack to bypass the protection of the bootloader.

With a similar approach, but without any knowledge 
about the application [25] describes a method to brute-
force gadget positions of server applications by randomly 
guessing gadget positions and see if the process crashes. If 
the execution continues, they guessed correctly. The goal 
is to get enough gadgets to dump the entire binary to the 
attacker and continue with a normal ROP attack that rely 
on the knowledge of the binary. Recently, in 2022, this 
work was extended by Zhang et al. [26] to gather a more 
complete set of gadgets as dumping the binary can be pre-
vented, i.e. by execution only memory (XOM) [27] which 
makes the code segments unreadable.

The attack described in [28] uses multiple steps to attack 
a vulnerable software that is protected with Intel’s Software 
Guard Extensions (SGX) and is running in an enclave, com-
pletely isolated from the rest of the system. First page faults 
are used to find gadgets that pop contents from the stack, 
second an EEXIT leaf function call is used to identify the 
registers to which the content was popped into and third 
a gadget with a memcpy is searched. These gadgets are 
enough to leak encryption keys and the hidden binary, which 
allows to take complete control of the attacked process.

All these attacks use leakage sources on the attacked 
device as they assume the vulnerable software has already 
been distributed or has been distributed in a way that does 
not allow an attacker to gain information, i.e. encryption. 
They also have in common that they are actively prob-
ing/brute-forcing for gadgets which makes this part of 
the attack detectable due to the high amount of crashes or 
messages.

If the update authenticity, integrity, and freshness are 
not strongly checked, this opens a wide variety of firm-
ware modification attacks. Well-known examples of these 
attacks have been discussed in the “Firmware Update 
Attacks and Security for IoT Devices” survey by Meriem 
Bettayeb et al. [29] in 2019. These attacks are considered 
to be active attacks and they are out of the scope of this 
thesis. Regarding the incremental update passive attacks, 
to the best of our knowledge, there is no passive attack 
similar to the one that has been discussed in the paper.
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4  Incremental code updates as a basis 
for return‑oriented programming

A possible way to know some of the instructions of a tar-
get firmware to collect ROP gadgets is to passively sniff 
the firmware OTA updates while being disseminated to the 
devices in the network. The ADD commands are very valu-
able to the attacker as they contain the raw bytes that will be 
used to patch the current running firmware. The main chal-
lenge is that the number of the collected ROP gadgets from 
the updates is usually less than the number of gadgets that 
can be collected while having access to the complete firm-
ware image. For example, based on our analysis, the delta 
script with a size 26KB that was generated by the R3diff dif-
ferencing algorithm between images with sizes 177KB and 
180KB respectively leaked only 17 ROP gadgets compared 
to 300 ROP gadgets in the scenario of having full access to 
the new firmware image. However, in this paper, there will 
be a detailed explanation of how to use only 2 of the 17 ROP 
gadgets to compromise a MCU device.

Attack model The attacker will be in the middle between the 
base station/firmware server and the devices in the network 
to sniff the traffic of the firmware update. The target device is 
assumed to have a buffer overflow vulnerability in the stack 
that could be used to overwrite a return-address or a function 
pointer since all the defences are either not applicable in the 
resource-constraint world, as they incur large runtime over-
head or can be overcome. According to the Common Weak-
ness Enumeration (CWE), memory buffer overflow comes 
at the 1st place of the list of the 2019 critical weaknesses 
[30] that led to severe vulnerabilities and the 2nd in the 2020 
report [31]. Thus, it is very likely to assume the existence of 
that vulnerability and confirming it using techniques such as 
Fuzzing. The running firmware is assumed to be protected 
against firmware dumping attacks that enable the attacker to 
readout the firmware from the device. Also, the target device 
is assumed to have a Memory Protection Unit (MPU) that 
enforces the stack to be non-executable which prevents the 
attacker from executing injected code from the stack, but it 
does not have special hardware such as Trusted Execution 
Environment (TEE). Also, we assume that the updates are 
sent unencrypted.

Exploitation steps As shown in Fig. 2, an attacker executes 
the following steps to extract the ROP gadgets from the 
sniffed OTA updates.

1. The attacker scans the radio range to know at which 
frequency the wireless communication occurs using an 
SDR device such as HackRF and BladeRF devices and 
signal processing software such as GNURadio. After 

determining the frequency, the attacker starts sniffing 
the traffic, converting it to raw bytes and storing them in 
a hex file format. These raw bytes, if they were received 
without packet losses, should represent a complete delta 
file which consists mainly of ADD, COPY commands, 
and checksum of the generated updates.

2. While assuming that the attacker does not know the 
used differencing algorithm that has been used to gen-
erate these updates, he detects it by a plausibility check 
against different delta encodings of the widely used 
algorithms and sees which encoding of which algo-
rithm matches the sniffed delta update binary. It is very 
unlikely that two different delta formats can produce the 
same delta file byte string with different meanings.

3. The attacker decodes the update based on the detected 
differencing algorithm above and identifies the desti-
nation addresses of the COPY and ADD commands 
based on the detected differencing algorithm in step 2. 
In Fig. 2, the grey color represents the identified COPY 
commands. Green represents the payload of an ADD 
command, together with its destination address in red.

4. Generally, a delta update needs the firmware image to 
be executed to completely construct the new firmware 
version. Since this image is unknown to the attacker by 
definition, the full reconstruction is not possible. The 
process of partially reconstructing the image works in 
the same way for R3diff and DG and only differs in the 
way the commands need to be evaluated.

  Since the source for COPY commands is unknown, 
they contain no valuable information that could be 
restored. Only ADD commands (marked green) contain 
a payload that represent parts of the actual image. How-
ever, to find the destination address for an ADD com-
mand, which is necessary to insert the found instructions 
at their correct addresses, all commands must be tracked. 
This is important for the gadget localization later. This 
is due to the fact that the destination addresses are only 
implicitly given, for the selected algorithms. When all 
the destination addresses for the ADD commands have 
been calculated, the image can partially be reconstructed 
by locating the payload at the given destination address 
for each ADD command. Alternatively, the partial image 
reconstruction can be seen as a normal delta execution, 
but without the necessary input file.

  The result is an image which only contains the instructions 
of the ADD commands. All the regions that are constructed 
with COPY commands (marked grey) are left blank.

5. In the last step, the reconstructed parts of the images 
are searched for gadgets. There exists a number of tools 
such as mona [32], Ropper and ROPgadget [33, 34] that 
can automate this process. However, until the time of 
writing this paper, there were no off-the shell tools for 
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the MSP430 MCU architecture, that was used during the 
evaluation.

5  Evaluation

The evaluation of the attack focuses on the analysis of the 
R3diff and DG generated updates for firmwares that are 
running on a MSP430X MCU and the amount of informa-
tion leakage that could be used to collect ROP gadgets to 
construct a ROP attack. In the evaluation, two evaluation 
examples have been considered. In the first example, it is 
assumed a firmware that has been updated to a new version 
and later on has been reverted back. This firmware is a proof-
of-concept cross platform LED blinking application that has 
updated the blinking frequency and some bugs have been 
fixed. In the second example, an environment measurement 
firmware has been tracked while it is being updated 3 times.

5.1  First evaluation example

The results of the first example are depicted in Tables 2 
and 3. In Table 2, firmware with size 180KB has been 
upgraded to a new firmware with size 177KB that con-
tains 380 ROP gadgets. In Table 3, it is assumed that the 

developers reverted back to the old firmware. Thus the old 
firmware image size is now 177KB and the new firmware 
image size is 180KB.

As it is clear from the two Tables 2 and 3, the DG algo-
rithm produces a delta script which is bigger in size than the 
delta script generated by the R3diff algorithm. Also, the aver-
age payload length of the ADD instructions in the case of 
the DG algorithm is much bigger than the one in case of the 
R3diff algorithm. This consequently results in a higher pos-
sibility of finding ROP gadgets in DG updates compared to 
R3diff updates. Thus DG is more vulnerable to ROP attack 
than R3diff. It is worth to mention that, although the number 
of different bytes between the firmwares is 44KB, the R3diff 
generated updates leaked 17 gadgets in the first update as it is 
shown in Table 2 and leaked 18 gadgets in the second update 
as it is shown in Table 3. However, the attack is still depending 
on the type of collected gadgets not only the numbers of the 
collected gadgets. The two gadgets in the code Listings 1 and 
2 were found. Using these two gadgets, it was still possible to 
attack the device with the “write anything, anywhere” power.

5.1.1  The first ROP gadget outcomes

The first line in the ROP gadget in the code Listing 1 pops 
three consequent values from the top of the stack to the 

Fig. 2  Steps to extract gadgets 
out of an incremental update: 
(1) eavesdropping messages, 
(2) identifying the differenc-
ing algorithm, (3) decode delta 
update information, (4) partly 
reconstructing the image, (5) 
finding ROP gadgets
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registers r8, r9 and r10 respectively and increment the stack 
pointer by 3 words. What is important is the value that will 
be assigned to r8 since this register will be used by the first 
instruction in the second ROP gadget in the code Listing 2.

5.1.2  The second ROP gadget outcomes

The first line in the ROP gadget in the code Listing 2 is 
very dangerous as it pops whatever exist on top of the stack 

Listing 1  A ROP gadget that assigns an arbitrary value from the stack to the r8, r9, and r10 registers

Listing 2  A ROP gadget that pops one byte from the top of the stack into the memory location that is computed by 17164(r8) = 17164+r8

Table 2  The analysis of 
updating a firmware with size 
180k to a firmware with 177k, 
the tables concludes that the 
number of collected gadgets in 
case of DG is much higher than 
the ones in case of R3diff

Firmware version Firmware size No. of ROP gadgets

Old 177KB -
New 180KB 380
NO. of different bytes 44KB
Algorithm DG R3diff
NO. of ADDs 1432 1935
NO. of COPYs 392 1984
% of ADDs 78% 49%
Update Size 44KB 26KB
Total ADD payloads lengths 37KB 10KB
Average of ADDs payloads length 27 6
NO. of ROP gadgets in the update 297 17
% of update ROP gadgets %(297/380) = 87% %(17/380) = 4%

Table 3  The analysis of 
updating a firmware with size 
177k to a firmware with 180k, 
the tables also concludes that 
the number of collected gadgets 
in case of DG is much Higher 
then the ones in case of R3diff

Firmware version Firmware size No.of ROP gadgets

Old 180KB -
New 177KB 390
NO. of different bytes 44KB
Algorithm DG R3diff
NO. of ADDs 1418 1975
NO. of COPYs 406 2016
% of ADDs 77% 49%
Delta Script Size 44KB 27KB
Total ADD payloads lengths 36KB 11KB
Average of ADDs payloads length 27 6
NO.of ROP gadgets in the update 321 18
% of update ROP gadgets %(321/390) = 82% %(18/390) = 4%
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(controlled by the attacker) and stores it into the given 
argument location which is resolved as follows 17164(r8) 
= 17164 + r8. Since the value of the r8 register can be con-
trolled using the first ROP gadget in the code Listing 1, 
the memory location 17164 + r8 can be controlled by the 
attacker. Thus, the attacker arbitrarily writes to any memory 
locations.

5.2  Second evaluation example

In the second example, we traced the evolution of a firmware 
that is used as an environment measurement application. The 
firmware was updated multiple times to add more features 
and to correct bugs that had been discovered. The results are 
shown in Table 4.

In this example, the attacker could be looking at the find-
ings of each update separately or he could be correlating 
every finding with the previous ones to collect more ROP 
gadgets. In this case, the attacker correlates his current 
findings from the newly constructed image with the previ-
ous findings from the previously constructed image. If the 
attacker just started his sniffing process and collected small 
number of gadgets that could be used to construct a success-
ful ROP attack, he waits until he sniffs another update and 
correlates it with the previous update.

In the evaluation that is presented in Table 4, the tracking 
of the multiple versions of the firmware binary is checked 
separately (no correlation with the previous updates 
because every update already leaked enough useful ROP 
gadgets) so that the update between each subsequent ver-
sions was calculated and tested against ROP attack. The test 
showed that all the updates whether generated by R3diff or 
DG are vulnerable to a ROP attack so correlating the updates 
was not necessary.

From Table 4, it is still clear that DG is more vulner-
able than R3diff as the number of collected ROP gadgets 
in case of DG is higher by an order of magnitude than the 
one in the case of R3diff. The useful gadgets column is 
indicating gadgets that either have a pop instruction or any 
instruction that could be writing to the memory. The useful 
gadgets do not work alone, the other collected gadgets can 
also be helpful. The “useful” word here indicates that those 
gadgets are worth to be investigated by the attacker before 
the other ones.

Two main reasons explain why DG generated updates 
leak more ROP gadgets than R3diff. The first one is that 
the DG algorithm assumes small changes between different 
firmware images. The second one is due to the difference in 
the update execution mechanism between R3diff and DG. 
Since the new software image in the DG is being constructed 
in the same memory bank where the previous software 
image exists, there are many cases where a previous COPY 
command could overwrite some potential bytes that could be 
used in other COPY commands. Consequently, those parts 
of the firmware that could have been copied using a COPY 
instruction, due to the in-place construction nature of DG, 
they will be reconstructed using an ADD instruction. Thus, 
giving the attacker better opportunity to collect more ROP 
gadgets.

With R3diff and DG we analysed the vulnerability of the 
two types of differential code update means, i.e. in-place 
and out-of-place. The latter shows by far less vulnerability, 
which may lead to the assumption that selecting the proper 
mechanism is sufficient to prevent attackers from being suc-
cessful. But the fact that each update is providing sufficient 
gadgets to construct a ROP attack it becomes clear that addi-
tional protection means are essentially needed.

5.3  Correlating updates

When the number of gadgets is relatively low, as for the 
results with the R3diff algorithm and the number of gadgets 
of an update is not sufficient, the attacker can always wait 
for the next update. However, if an attacker fails to gather 
enough gadgets in a single update, it is possible to increase 
the number of overall gadgets by correlating the results.

While for a single delta only the ADD commands contain 
valuable information, with multiple delta files the COPY 
commands also gain importance as this allows us to track if 
a gadget we already discovered is moved to a new position. 
We therefore extended our analysis for the second evaluation 
example by also tracking the COPY commands. The results 
are presented in Fig. 3. It shows the number of gadgets plot-
ted for the same firmware versions as in Table 4, with the 
number of gadgets in the original binary in blue and for the 
deltas in red. Additionally it also contains the number of 
gadgets when the information of the deltas is correlated, 
represented by the brown plot. With the correlation we were 

Table 4  Tracking an 
environment measurement 
firmware evolution and 
calculating the number of ROP 
gadgets from the complete 
firmware images, R3diff and 
DG updates

MSP430 Firmware R3dif f DG

Firmware Size Diff Gadgets Useful Delta Gadg. Useful Delta Gadg. Useful

Base 99KB - - - - - - - - -
1 122KB 35KB 368 203 20KB 61 17 28KB 280 140
2 186KB 75KB 405 254 35KB 66 31 48KB 357 215
3 181KB 54KB 485 332 32KB 110 54 32KB 313 202
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able to increase the number of found gadgets from the previ-
ously 110 to now 179.

It is also important to track COPY commands that do not 
move gadgets directly, as they can still overwrite gadgets of 
the previous version. This can also mean that even with cor-
relation the number of found gadgets can decrease with more 
updates. To illustrate this we included an additional version 
1.5 in Fig. 3 with a lot of new code, resulting in very large 
deltas between this new version and version 1, as well as a 
lot of gadgets that can be found. With the update to version 
2, most of these found gadgets are then being overwritten 
by COPY commands. Of course a lot has to do with the fact 
that version 1.5 overall has more gadgets than version 2. 
However, with version 1.5 included in the correlation it can 
also be noted that for versions 2 and 3 the overall number of 
gadgets is slightly higher than without.

In conclusion we think correlating multiple deltas can be 
greatly beneficial for the overall number of found gadgets. 
The more deltas can be acquired the more information about 
the firmware can be gathered; however, there is no guarantee 
that the number of gadgets will always increase.

6  Countermeasures

In this paper we showed experimentally that incremental 
code updates sent unencrypted provide sufficient gadgets to 
construct a ROP Attack. Even more although out-of-place 
update mechanisms are less vulnerable when it comes to the 
number of gadgets they still leak a sufficient set of gadgets 
so that using a different update scheme is not solving the 
issue. In order to reliably prevent an attacker from getting 
gadgets, ensuring confidentiality of the incremental updates 
is key. The tricky thing with this is the power consumption 
of this process. As the devices are mostly battery driven 
energy-efficiency is of utmost importance and needs to be 
considered when designing and/or applying an encryption 
scenario. Here we are discussing multiple scenarios consid-
ering the limited power available in the devices. They range 

from already existing encryption schemes (with their already 
shared keys) to using built-in encryption of Over The Air 
Programming (OTAP) schemes. The following scenarios can 
be used if full encryption is not feasible.

6.1  Partial encryption of incremental updates

If the encryption is expensive or the update frequency is 
high, we propose a more efficient technique than encrypting 
the full incremental update. The general idea is encrypting 
some parts of it that make it difficult for the attacker to col-
lect ROP gadgets.

As it was mentioned earlier, delta scripts (incremental 
updates) mainly consist of COPY command headers, ADD 
command headers, ADD payloads, and checksum. The more 
valuable parts to the attacker are the payloads of the ADD 
commands, as they can be reverse-engineered and ROP 
gadgets are collected from them. Consequently, encrypting 
the payloads of the ADD commands will prevent the attacker 
from collecting gadgets from them. This approach is better 
suited for R3diff than for DG due to the COPY-ADD ratio. 
For example, in Table 2 the DG delta (44KB) consists of 
37KB payload while the R3diff delta (26KB) only consists 
of 10KB payload.

However, encrypting every ADD payload separately 
could increase the overall size of the delta script and would 
also interfere directly with the algorithm itself, so it is better 
to append all the ADD payload together and separate them 
from the COPY and ADD commands headers as it is shown 
in Fig. 4. The delta script encoding and decoding need also 
to be modified to adopt this separation between the headers 
and the encrypted ADD payloads. This way it is possible to 
transmit them separately and apply encryption only to the 
packets containing the payload, see Fig. 5. On the receiving 
device side, the update execution mechanism should be mod-
ified to decrypt and use the ADD payloads on the fly when 
it finds an ADD header. This countermeasure is strong and 
more power efficient than encrypting the full OTA update. 
However, the attacker can still sneak some information about 
what changed in the new version of the firmware by looking 
at the ADD commands headers which are sent unencrypted. 
This information could help him in other attack styles.

6.2  OTAP built‑in encryption

In this scenario, based on the assumption that the attacker 
does not have access to the currently deployed firmware on 
the resource-constraint device, we do not have to tackle the 
challenge of exchanging encryption keys. This is because 
parts of the old firmware that is currently deployed in the 
device will be used as a pre-shared key. The reason we are 
introducing this countermeasure is to encrypt the update 
once using the deployed image as a pre-shared key and 
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send it to all the devices in need of the update. This tech-
nique is generally easy to be implemented. It only differs 
slightly depending on the update strategy.

6.2.1  Out‑of‑place algorithm

In the case of the out-of-place algorithm, the built-in encryp-
tion will be very straightforward to implement. The reason 
is that the old deployed image, which we consider it as the 

pre-shared key, is not changed during the update execution. 
As it was previously mentioned, the new image is being 
constructed in a second memory bank while leaving the old 
image unmodified. An iterator will begin at the beginning of 
the old image (the key) and increment by one while XORing 
the byte value pointed to by this iterator with the values from 
the incremental updates to get encrypted. If it happened that 
the iterator reached the end of the old image, its value will 
be rewound to start again at the beginning of the old image.

Fig. 4  Separating the ADD 
command payloads from the 
rest of the delta update for 
encryption

Fig. 5  Changes in the delta script transmission and reception processes in the firmware server side and the resource-constrained device side
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This approach comes with the extra benefit that each 
update implicitly also updates the “built in key”. This limits 
the time interval an attacker has to reveal that key to get 
access to the unencrypted data. But once the attacker man-
ages to reveal a key he needs only to track the updates in 
order to always have the currently valid key.

6.2.2  In‑place algorithm

In case of an in-place algorithm, the implementation will differ 
slightly. The reason is that during the in-place update the old 
image (the key) values could be changed by a previous ADD 
or COPY command since the update execution reconstructs 
the new image right in the same location of the old image. A 
workaround is to not encrypt with an old image directly, but to 
take the changes of previous commands into account. By doing 
so, we make sure that the key values are synchronized between 
the firmware server and the device that is receiving the update.

6.2.3  Embedding an encryption key in the base image

Since the presented solution is using the old image as a pre-
shared key for encryption and decryption, a question arises 
about the randomness of this key with each update. If every 
update introduces small changes to the deployed old image, this 
will directly imply that most of the key bytes will stay the same 
across multiple updates. Consequently, the key randomization 
will not be strong. Further, the randomization is not the only 
problem, the attacker can also guess some parts of the deployed 
image (key) based on his knowledge of the architecture of the 
device and the application that this device is used for.

Therefore, another possible way that works also indepen-
dently of the existing data encryption is to embed a secret 
pre-shared key in the base image (version zero). This key 
will be known only to the firmware server and the devices 
that use or used this base image. Every time an update needs 
to be distributed, the full or parts of update will be encrypted 
with that key, and on the device side the decryption will 
occur using the pre-embedded key in that old image. Here 
a single key for all devices may be used which is normally 
considered to weaken the security of the network. The rea-
son is that if an attacker reveals ROP gadgets for one device 
these gadgets work with other devices as well, independent 
of whether updates of the other devices are encrypted with 
the same or a different key. It is also possible that an update 
can change the pre-embedded key to another fresh key.

7  Conclusion

In this paper, we analysed the risk that arises from unen-
crypted incremental code updates with respect to building 
ROP attacks. In order to provide a comprehensive study 

we analysed both types of incremental code updates, i.e. 
in-place and out-of-place, investigating two representative 
approach DG and R3diff respectively. Our analysis clearly 
revealed that despite DG provides by far more gadgets to the 
attacker, also the gadgets to be extracted from R3diff updates 
are sufficient to generate a ROP attack. We also showed 
that an attacker can gather more gadgets, e.g. to build more 
sophisticated attacks or to reduce his effort in designing the 
attack, by just recording more updates.

As both types of update mechanisms are leaking sufficient 
gadget to construct ROP attacks, adapting the type of update 
approach is not preventing any ROP attack and additional 
means are needed. We addressed this point by discussing 
different power-efficient means to ensure confidentiality of 
the incremental update messages. All of them apply encryp-
tion based on pre-shared key, in one of them the old image 
is used as pre-shared key which avoids any issues with key 
distribution but requires to keep the original code image 
confidential.
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