
Vol.:(0123456789)1 3

Annals of Telecommunications (2023) 78:209–220
https://doi.org/10.1007/s12243-022-00917-8

Finding gadgets in incremental code updates for return‑oriented
programming attacks on resource‑constrained devices

Kai Lehniger1 · Abdelaziz Saad1 · Peter Langendörfer1,2

Received: 9 January 2022 / Accepted: 16 June 2022 / Published online: 15 July 2022
© The Author(s) 2022

Abstract
Code-reuse attacks pose a threat to embedded devices since they are able to defeat common security defences such as non-
executable stacks. To succeed in his code-reuse attack, the attacker has to gain knowledge of some or all of the instructions
of the target firmware/software. In case of a bare metal firmware that is protected from being dumped out of a device, it is
hard to know the running instructions of the target firmware. This consequently makes code-reuse attacks more difficult to
achieve. This paper presents a novel approach how an attacker can gain knowledge of some of these instructions by sniffing
unencrypted incremental updates. These updates exist to reduce the radio reception power for resource-constrained devices.
It will be demonstrated how a return-oriented programming (ROP) attack can be accomplished on a MSP430 MCU using
only the passively sniffed incremental updates. The generated updates of the R3diff and Delta Generator (DG) differencing
algorithms will be under assessment. The evaluation reveals that both of them can be exploited by the attacker and how an
attacker can maximize his information gain when dealing with more than one update. It also shows that the DG generated
updates leak more information than the R3diff generated updates. This stresses the fact that even delta updates need to be
protected with encryption. To defend against this attack, different countermeasures that consider different power consump-
tion scenarios are proposed, but yet to be evaluated.

Keywords Return-oriented programming · IoT · Security · Incremental code update

1 Introduction

After the deployment of a network of IoT devices, a bug or
a security vulnerability can be found. Also, a feature could
be needed to be added or removed from such networks.
Therefore, it is very important to consider a secure, reliable
and convenient update technique. The devices in these net-
works are deployed scattered over the place such as Internet

of Things (IoT) devices in smart homes, smart cities, or a
Wireless Sensor Network (WSN). Furthermore, a WSN can
be deployed in harsh/scarce environment which makes col-
lecting the devices back to update them using cables a big
challenge. Therefore, a convenient way to deliver the update
is disseminating it Over the Air (OTA) using one of the Over
The Air Programming (OTAP) frameworks such as R3 [1]
or DG [2]. The devices in such IoT networks can be classi-
fied as high-end and low-end devices, with some challenges
in regard to the low-end devices for OTA updates. Low-
end devices are resource-constrained devices which usually
come in a form of low-power and low-cost Micro-Controller
Unit (MCU) or System-on-Chip (SoC). Also, these devices
are usually battery-powered where the power consump-
tion efficiency is very crucial. In many of these applica-
tion scenarios multihop networks are used. This means an
OTA update is sent hop-by-hop i.e. many devices need to
receive and send it even those that are currently not updated.
The OTA update can consume substantial radio reception
power from the device while receiving and sending it. For
this reason, it is not wise to send an entire new firmware

 * Kai Lehniger
 lehniger@ihp-microelectronics.com

 Abdelaziz Saad
 saad@ihp-microelectronics.com

 Peter Langendörfer
 langendoerfer@ihp-microelectronics.com

1 Wireless Systems, IHP - Leibniz-Institut für
innovative Mikroelektronik, Im Technologiepark 25,
Frankfurt (Oder) 15236, Brandenburg, Germany

2 Brandenburgische Technische Universität
Cottbus-Senftenberg, Platz der Deutschen Einheit 1,
Cottbus 03046, Brandenburg, Germany

http://orcid.org/0000-0002-3274-2469
http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-022-00917-8&domain=pdf

210 Annals of Telecommunications (2023) 78:209–220

1 3

as an update to the device. Since the early 2000s, there are
many proposed OTAPs frameworks which make use of the
so-called differencing algorithms to generate a differential
update that only contains the changes between the two firm-
ware versions. Consequently, the consumed power during
receiving a differential update will be much less than the
consumed power during receiving an entire new firmware.
Since IoT became a non-negligible part of our life, its secu-
rity became a crucial concern quickly. Therefore, the authen-
ticity and integrity of an update are intensively discussed in
the literature and even standardized in the Software Update
of IoT Devices (SUIT) IETF standard. Nevertheless, the
confidentiality of the update is left optional [3, 4]. This is
opening a chance for malicious attackers to compromise the
devices. Enforcing only authentication and integrity helps
to prevent attackers from injecting malicious code, but the
fact the confidentiality is optional provides the attackers a
chance to create a RoP attack by analysing the code update.

In this work, the risk of sending the differential updates
unencrypted will be emphasized. The evaluation demon-
strates that the generated differential updates of R3diff and
DG algorithms (for which their authors stated that they gen-
erate the smallest differential update sizes) can leak enough
ROP gadgets to compromise the updated device. This attack
does not imply a direct weakness in the differencing algo-
rithms, because their main concern is to generate a differen-
tial update as small as possible not to secure it during trans-
mission. It however emphasizes that differencing updates do
not hide enough information to be used to guarantee confi-
dentiality. In order to prevent the presented attack, different
scenarios for power-efficient countermeasures are proposed.

This is an extension of a paper that was already published
at CSNET 2021 conference [5]. The main contributions of
this work compared to the original paper are a more detailed
view on the differencing algorithms and their reconstruction
process for the attack, an updated section of related work, as

well as a new method to correlate multiple delta updates to
find even more gadgets.

The rest of this paper is categorized as follows: In Sec-
tion 2, the concepts of differencing algorithms and the return-
oriented programming (ROP) attack are discussed. Section 3
discusses related work. Section 4 demonstrates the concep-
tual steps of the attack against the R3diff and DG generated
updates. In Section 5, the exploitability of the updates from
the two algorithms is compared. Different countermeasures
that consider different power consumption scenarios are pro-
posed in Section 6. Finally, Section 7 concludes the paper.

2 Background

2.1 Differencing algorithm

The differencing algorithm takes the old and new firmware
images as input and correlates them to produce a differen-
tial delta update [6]. A delta update is a specific type of
file, which encodes the differences between the two files
as a sequence of commands. With the old file as a basis the
commands are used to construct the new file. Figure 1 shows
how this file is used during the update process.

To create these commands, the differencing algorithm
identifies the matching and non-matching parts of the old and
the new firmware. Then, it encodes the matching segments
with COPY commands and the non-matching segments with
ADD or INSERT commands in a so-called delta script. The
COPY commands are used to tell the device to reuse already
existing code snippets by coping them from the currently run-
ning firmware to same or new positions in the new firmware
that is being constructed. Every ADD command consists of a
header and payload. The header contains the address and the
length of the payload. They are used to add the payload, which
represents non-matching segments, to the new firmware.

Fig. 1 Over the Air differential update overview

211Annals of Telecommunications (2023) 78:209–220

1 3

A differencing algorithm can be either in-place or out-of-
place [7] which sometimes are called single and dual-bank
respectively [8]. This depends on the way its generated updates
are executed on the resource-constraint devices. During an
in-place update, the commands are used to directly modify
the old firmware to create the new firmware image. Conse-
quently, some parts of the old firmware are overwritten during
the update process on the device, making the old firmware
unavailable during the update process. Moreover, in case of
any update failure, the device cannot be reverted back to the
old firmware. During an out-of-place update, the old firmware
is only used as a source for COPY commands and the new
firmware is constructed in a different memory bank without
overwriting the old firmware. Therefore, in case of any update
failure, the device can be reverted back to the old firmware.
Table 1 shows several differencing algorithms which are sorted
based on the year they have been proposed in. It also shows the
execution type, and the runtime complexity of each algorithm.
In this paper, the generated updates of the two algorithms
R3diff that is a part of R3 OTAP and DG-Optimized, that are
highlighted in Table 1, will be under assessment. We selected
these two algorithms to have an example for in-place as well
as an example for an out-of-place update mechanism, i.e. we
cover all types of update means. While being the most novel
approach, DASA-Improved is not considered for evaluation
because it is not yet implemented or evaluated [9].

2.1.1 R3diff

R3 was presented by Wei Dong et al. in 2013 [1]. R3
consists of the following algorithms: R3sim, R3con, and
R3diff. R3sim tries to maximize the similarity of the two
images before the actual differencing algorithm is applied,
and R3con is responsible for the construction of the image
on the receiver side. R3diff itself was proven to create
a minimal delta size for the chosen commands and its
encoding. It is only using the following two commands

• COPY 〈N〉〈addr〉 to copy N bytes form the specified
address addr, and

• ADD 〈N〉〈b1...bN〉 to add N bytes to the image.

There is no need for an explicit destination address since all
the commands are executed in order to construct the image
from the beginning to the end.

2.1.2 DG‑Optimized

By using an in-place update strategy DG (represented here
by a later iteration DG-Optimized) showed a novel approach
to create smaller delta updates, compared to the classical
out-of-place strategy. Compared to R3diff and the original
DG implementation, DG-Optimized uses more commands
with a more complicated encoding.

• COPY 〈n〉〈N1〉〈addr1〉...〈Nn〉〈addrn〉 works similar to
the COPY of R3diff but additionally encodes the number
of consecutive COPY commands n inside the opcode of
the command to save some additional opcode bytes in the
delta update.

• ADD 〈N〉〈b1...bN〉 works exactly as in case of R3diff and
adds N bytes to the image.

• INSERT 〈word〉 is a variant of the ADD command
which only adds a single word. This is particularly use-
ful to change parameters or pointers, in case function
positions have changed.

• SKIP 〈N〉 is used to skip unchanged parts of the image.

Similar to R3diff, there are no destination addresses, since
the image is processed from the beginning to the end. It
only differs in the fact that it operates directly on the cur-
rent image instead of creating a new one. Therefore the two
additional commands are used to move over unchanged areas
of the image, or only apply small changes. In general, DG is
designed for small changes in the image and therefore works
best for those. Since INSERT is just a special ADD command,
whenever in this paper ADD commands are referred, INSERT
commands are also implicitly included in the context of DG.

2.2 ROP attack

Return-oriented programming (ROP) attacks are classi-
fied as code-reuse attacks. The main motivation for these
attacks was the Non-Executable stack security hardening
for the Linux Kernel in June 1997 by Solar Designer [15,
16]. This patch stopped classical code injection attacks.
Shortly after its introduction a bypass was announced by
Solar Designer himself in the BugTraq mailing list [17],
which became known as return-into-libc attacks.

The ROP term was introduced first by Hovav Shacham
on his paper “The Geometry of Innocent Flesh on the

Table 1 Several differencing algorithms, their types, and their runt-
ime complexity

Algorithm First appeared Execution Time complexity

Rsync [10] 1999 Out-of-Place O(n2)
FBC [11] 2004 Out-of-Place O(n)
RMTD [12] 2009 Out-of-Place O(n3)
DASA [13] 2012 Out-of-Place O(nlog(n))
R3diff [1] 2013 Out-of-Place O(n3)
DG [2] 2016 In-Place O(n2)
DG-Optimized

[14]
2019 In-Place O(n2)

DASA-Improved
[9]

2020 Out-of-Place O(nlog(n))

212 Annals of Telecommunications (2023) 78:209–220

1 3

Bone: Return-into-libc without Function Calls (on the
x86)” in 2007 [18] as a generalization to classical return-
into-libc attacks. Later on, ROP attacks have proven to
be applicable to wide range of architectures. ROP is
classified as a code-reuse attack that is triggered using a
memory corruption attack vulnerability.

The attacker searches through the binary for sequences
of instructions that end with a return (RET) instruction;
every found sequence is called a ROP gadget. Gadgets
can be chained together to divert the control flow of the
running application and constructing a Turing-complete
exploit. The idea is that, in almost every architecture, the
RET instruction pops and jumps to the so-called return-
address which is saved in the stack when a function is
called. Using this fact, the attacker overwrites a return-
address with the address of the first chosen ROP gadget.
Thus, the processor will jump to execute that ROP gadget.
When the processor reaches the end of that ROP gadget,
it will find a RET instruction which again will pop and
jump to the address in the stack that is pointed by the
stack pointer. This address will also be controlled by the
attacker to be the address of the second gadget, and so on.

Different mitigation techniques have been developed
against code-reuse attacks in general and ROP attacks
in particular. Stack Canaries or StackGuards [19] are
supported by different compilers for a wide variety of
platforms. These are means to protect the stack memory.
However, the concept itself can be applied to any part of
the memory. The main idea of stack canaries is that the
compiler will add a random value just before the return-
address. Thus, in case the attacker tries to override the
return-address by overflowing a buffer, the canary word
will be overwritten too. Before returning from a function,
the canary word is checked. The canary is a useful mitiga-
tion against ROP attacks as long as it cannot be predicted
or brute-forced. However, it does not work against attacks
that use function pointers instead of the return-address.

Address Space Layout Randomization (ASLR) [20] is
another mitigation technique that is implemented in most mod-
ern desktop operating systems, but lacks support in lightweight
OS’, or bare metal applications. During the start of a process,
the memory locations of its segments are randomized, making
it hard for the attacker to jump to specific gadgets.

3 Related work

Encryption for firmware updates itself has been recognized
as important to prevent attackers from reverse engineering
and identifying possible exploits [21]. However, to the best
of our knowledge, this was not researched yet for incremen-
tal updates. Also, the presented attack approach can be cat-
egorized into two steps: leaking gadgets and running the

attack itself. There are several different methods described
in literature for leaking gadgets. When the application itself
is known and only the positions of the gadgets are unknown
due to ASLR, leaking a pointer into a shared library can
be enough to reveal the position of all its gadgets [22, 23].
The most similar approach to our work was done by Good-
speed and Francillon in 2009 [24]. They also launched a
ROP attack on a MSP430 with a similar assumption of not
knowing the application code. They only assume to know
the bootloader. Their approach of leaking gadgets is by
brute-forcing gadget addresses and using system crashes as
indication if the guess was correct. They aim only for a very
short ROP attack to bypass the protection of the bootloader.

With a similar approach, but without any knowledge
about the application [25] describes a method to brute-
force gadget positions of server applications by randomly
guessing gadget positions and see if the process crashes. If
the execution continues, they guessed correctly. The goal
is to get enough gadgets to dump the entire binary to the
attacker and continue with a normal ROP attack that rely
on the knowledge of the binary. Recently, in 2022, this
work was extended by Zhang et al. [26] to gather a more
complete set of gadgets as dumping the binary can be pre-
vented, i.e. by execution only memory (XOM) [27] which
makes the code segments unreadable.

The attack described in [28] uses multiple steps to attack
a vulnerable software that is protected with Intel’s Software
Guard Extensions (SGX) and is running in an enclave, com-
pletely isolated from the rest of the system. First page faults
are used to find gadgets that pop contents from the stack,
second an EEXIT leaf function call is used to identify the
registers to which the content was popped into and third
a gadget with a memcpy is searched. These gadgets are
enough to leak encryption keys and the hidden binary, which
allows to take complete control of the attacked process.

All these attacks use leakage sources on the attacked
device as they assume the vulnerable software has already
been distributed or has been distributed in a way that does
not allow an attacker to gain information, i.e. encryption.
They also have in common that they are actively prob-
ing/brute-forcing for gadgets which makes this part of
the attack detectable due to the high amount of crashes or
messages.

If the update authenticity, integrity, and freshness are
not strongly checked, this opens a wide variety of firm-
ware modification attacks. Well-known examples of these
attacks have been discussed in the “Firmware Update
Attacks and Security for IoT Devices” survey by Meriem
Bettayeb et al. [29] in 2019. These attacks are considered
to be active attacks and they are out of the scope of this
thesis. Regarding the incremental update passive attacks,
to the best of our knowledge, there is no passive attack
similar to the one that has been discussed in the paper.

213Annals of Telecommunications (2023) 78:209–220

1 3

4 Incremental code updates as a basis
for return‑oriented programming

A possible way to know some of the instructions of a tar-
get firmware to collect ROP gadgets is to passively sniff
the firmware OTA updates while being disseminated to the
devices in the network. The ADD commands are very valu-
able to the attacker as they contain the raw bytes that will be
used to patch the current running firmware. The main chal-
lenge is that the number of the collected ROP gadgets from
the updates is usually less than the number of gadgets that
can be collected while having access to the complete firm-
ware image. For example, based on our analysis, the delta
script with a size 26KB that was generated by the R3diff dif-
ferencing algorithm between images with sizes 177KB and
180KB respectively leaked only 17 ROP gadgets compared
to 300 ROP gadgets in the scenario of having full access to
the new firmware image. However, in this paper, there will
be a detailed explanation of how to use only 2 of the 17 ROP
gadgets to compromise a MCU device.

Attack model The attacker will be in the middle between the
base station/firmware server and the devices in the network
to sniff the traffic of the firmware update. The target device is
assumed to have a buffer overflow vulnerability in the stack
that could be used to overwrite a return-address or a function
pointer since all the defences are either not applicable in the
resource-constraint world, as they incur large runtime over-
head or can be overcome. According to the Common Weak-
ness Enumeration (CWE), memory buffer overflow comes
at the 1st place of the list of the 2019 critical weaknesses
[30] that led to severe vulnerabilities and the 2nd in the 2020
report [31]. Thus, it is very likely to assume the existence of
that vulnerability and confirming it using techniques such as
Fuzzing. The running firmware is assumed to be protected
against firmware dumping attacks that enable the attacker to
readout the firmware from the device. Also, the target device
is assumed to have a Memory Protection Unit (MPU) that
enforces the stack to be non-executable which prevents the
attacker from executing injected code from the stack, but it
does not have special hardware such as Trusted Execution
Environment (TEE). Also, we assume that the updates are
sent unencrypted.

Exploitation steps As shown in Fig. 2, an attacker executes
the following steps to extract the ROP gadgets from the
sniffed OTA updates.

1. The attacker scans the radio range to know at which
frequency the wireless communication occurs using an
SDR device such as HackRF and BladeRF devices and
signal processing software such as GNURadio. After

determining the frequency, the attacker starts sniffing
the traffic, converting it to raw bytes and storing them in
a hex file format. These raw bytes, if they were received
without packet losses, should represent a complete delta
file which consists mainly of ADD, COPY commands,
and checksum of the generated updates.

2. While assuming that the attacker does not know the
used differencing algorithm that has been used to gen-
erate these updates, he detects it by a plausibility check
against different delta encodings of the widely used
algorithms and sees which encoding of which algo-
rithm matches the sniffed delta update binary. It is very
unlikely that two different delta formats can produce the
same delta file byte string with different meanings.

3. The attacker decodes the update based on the detected
differencing algorithm above and identifies the desti-
nation addresses of the COPY and ADD commands
based on the detected differencing algorithm in step 2.
In Fig. 2, the grey color represents the identified COPY
commands. Green represents the payload of an ADD
command, together with its destination address in red.

4. Generally, a delta update needs the firmware image to
be executed to completely construct the new firmware
version. Since this image is unknown to the attacker by
definition, the full reconstruction is not possible. The
process of partially reconstructing the image works in
the same way for R3diff and DG and only differs in the
way the commands need to be evaluated.

 Since the source for COPY commands is unknown,
they contain no valuable information that could be
restored. Only ADD commands (marked green) contain
a payload that represent parts of the actual image. How-
ever, to find the destination address for an ADD com-
mand, which is necessary to insert the found instructions
at their correct addresses, all commands must be tracked.
This is important for the gadget localization later. This
is due to the fact that the destination addresses are only
implicitly given, for the selected algorithms. When all
the destination addresses for the ADD commands have
been calculated, the image can partially be reconstructed
by locating the payload at the given destination address
for each ADD command. Alternatively, the partial image
reconstruction can be seen as a normal delta execution,
but without the necessary input file.

 The result is an image which only contains the instructions
of the ADD commands. All the regions that are constructed
with COPY commands (marked grey) are left blank.

5. In the last step, the reconstructed parts of the images
are searched for gadgets. There exists a number of tools
such as mona [32], Ropper and ROPgadget [33, 34] that
can automate this process. However, until the time of
writing this paper, there were no off-the shell tools for

214 Annals of Telecommunications (2023) 78:209–220

1 3

the MSP430 MCU architecture, that was used during the
evaluation.

5 Evaluation

The evaluation of the attack focuses on the analysis of the
R3diff and DG generated updates for firmwares that are
running on a MSP430X MCU and the amount of informa-
tion leakage that could be used to collect ROP gadgets to
construct a ROP attack. In the evaluation, two evaluation
examples have been considered. In the first example, it is
assumed a firmware that has been updated to a new version
and later on has been reverted back. This firmware is a proof-
of-concept cross platform LED blinking application that has
updated the blinking frequency and some bugs have been
fixed. In the second example, an environment measurement
firmware has been tracked while it is being updated 3 times.

5.1 First evaluation example

The results of the first example are depicted in Tables 2
and 3. In Table 2, firmware with size 180KB has been
upgraded to a new firmware with size 177KB that con-
tains 380 ROP gadgets. In Table 3, it is assumed that the

developers reverted back to the old firmware. Thus the old
firmware image size is now 177KB and the new firmware
image size is 180KB.

As it is clear from the two Tables 2 and 3, the DG algo-
rithm produces a delta script which is bigger in size than the
delta script generated by the R3diff algorithm. Also, the aver-
age payload length of the ADD instructions in the case of
the DG algorithm is much bigger than the one in case of the
R3diff algorithm. This consequently results in a higher pos-
sibility of finding ROP gadgets in DG updates compared to
R3diff updates. Thus DG is more vulnerable to ROP attack
than R3diff. It is worth to mention that, although the number
of different bytes between the firmwares is 44KB, the R3diff
generated updates leaked 17 gadgets in the first update as it is
shown in Table 2 and leaked 18 gadgets in the second update
as it is shown in Table 3. However, the attack is still depending
on the type of collected gadgets not only the numbers of the
collected gadgets. The two gadgets in the code Listings 1 and
2 were found. Using these two gadgets, it was still possible to
attack the device with the “write anything, anywhere” power.

5.1.1 The first ROP gadget outcomes

The first line in the ROP gadget in the code Listing 1 pops
three consequent values from the top of the stack to the

Fig. 2 Steps to extract gadgets
out of an incremental update:
(1) eavesdropping messages,
(2) identifying the differenc-
ing algorithm, (3) decode delta
update information, (4) partly
reconstructing the image, (5)
finding ROP gadgets

215Annals of Telecommunications (2023) 78:209–220

1 3

registers r8, r9 and r10 respectively and increment the stack
pointer by 3 words. What is important is the value that will
be assigned to r8 since this register will be used by the first
instruction in the second ROP gadget in the code Listing 2.

5.1.2 The second ROP gadget outcomes

The first line in the ROP gadget in the code Listing 2 is
very dangerous as it pops whatever exist on top of the stack

Listing 1 A ROP gadget that assigns an arbitrary value from the stack to the r8, r9, and r10 registers

Listing 2 A ROP gadget that pops one byte from the top of the stack into the memory location that is computed by 17164(r8) = 17164+r8

Table 2 The analysis of
updating a firmware with size
180k to a firmware with 177k,
the tables concludes that the
number of collected gadgets in
case of DG is much higher than
the ones in case of R3diff

Firmware version Firmware size No. of ROP gadgets

Old 177KB -
New 180KB 380
NO. of different bytes 44KB
Algorithm DG R3diff
NO. of ADDs 1432 1935
NO. of COPYs 392 1984
% of ADDs 78% 49%
Update Size 44KB 26KB
Total ADD payloads lengths 37KB 10KB
Average of ADDs payloads length 27 6
NO. of ROP gadgets in the update 297 17
% of update ROP gadgets %(297/380) = 87% %(17/380) = 4%

Table 3 The analysis of
updating a firmware with size
177k to a firmware with 180k,
the tables also concludes that
the number of collected gadgets
in case of DG is much Higher
then the ones in case of R3diff

Firmware version Firmware size No.of ROP gadgets

Old 180KB -
New 177KB 390
NO. of different bytes 44KB
Algorithm DG R3diff
NO. of ADDs 1418 1975
NO. of COPYs 406 2016
% of ADDs 77% 49%
Delta Script Size 44KB 27KB
Total ADD payloads lengths 36KB 11KB
Average of ADDs payloads length 27 6
NO.of ROP gadgets in the update 321 18
% of update ROP gadgets %(321/390) = 82% %(18/390) = 4%

216 Annals of Telecommunications (2023) 78:209–220

1 3

(controlled by the attacker) and stores it into the given
argument location which is resolved as follows 17164(r8)
= 17164 + r8. Since the value of the r8 register can be con-
trolled using the first ROP gadget in the code Listing 1,
the memory location 17164 + r8 can be controlled by the
attacker. Thus, the attacker arbitrarily writes to any memory
locations.

5.2 Second evaluation example

In the second example, we traced the evolution of a firmware
that is used as an environment measurement application. The
firmware was updated multiple times to add more features
and to correct bugs that had been discovered. The results are
shown in Table 4.

In this example, the attacker could be looking at the find-
ings of each update separately or he could be correlating
every finding with the previous ones to collect more ROP
gadgets. In this case, the attacker correlates his current
findings from the newly constructed image with the previ-
ous findings from the previously constructed image. If the
attacker just started his sniffing process and collected small
number of gadgets that could be used to construct a success-
ful ROP attack, he waits until he sniffs another update and
correlates it with the previous update.

In the evaluation that is presented in Table 4, the tracking
of the multiple versions of the firmware binary is checked
separately (no correlation with the previous updates
because every update already leaked enough useful ROP
gadgets) so that the update between each subsequent ver-
sions was calculated and tested against ROP attack. The test
showed that all the updates whether generated by R3diff or
DG are vulnerable to a ROP attack so correlating the updates
was not necessary.

From Table 4, it is still clear that DG is more vulner-
able than R3diff as the number of collected ROP gadgets
in case of DG is higher by an order of magnitude than the
one in the case of R3diff. The useful gadgets column is
indicating gadgets that either have a pop instruction or any
instruction that could be writing to the memory. The useful
gadgets do not work alone, the other collected gadgets can
also be helpful. The “useful” word here indicates that those
gadgets are worth to be investigated by the attacker before
the other ones.

Two main reasons explain why DG generated updates
leak more ROP gadgets than R3diff. The first one is that
the DG algorithm assumes small changes between different
firmware images. The second one is due to the difference in
the update execution mechanism between R3diff and DG.
Since the new software image in the DG is being constructed
in the same memory bank where the previous software
image exists, there are many cases where a previous COPY
command could overwrite some potential bytes that could be
used in other COPY commands. Consequently, those parts
of the firmware that could have been copied using a COPY
instruction, due to the in-place construction nature of DG,
they will be reconstructed using an ADD instruction. Thus,
giving the attacker better opportunity to collect more ROP
gadgets.

With R3diff and DG we analysed the vulnerability of the
two types of differential code update means, i.e. in-place
and out-of-place. The latter shows by far less vulnerability,
which may lead to the assumption that selecting the proper
mechanism is sufficient to prevent attackers from being suc-
cessful. But the fact that each update is providing sufficient
gadgets to construct a ROP attack it becomes clear that addi-
tional protection means are essentially needed.

5.3 Correlating updates

When the number of gadgets is relatively low, as for the
results with the R3diff algorithm and the number of gadgets
of an update is not sufficient, the attacker can always wait
for the next update. However, if an attacker fails to gather
enough gadgets in a single update, it is possible to increase
the number of overall gadgets by correlating the results.

While for a single delta only the ADD commands contain
valuable information, with multiple delta files the COPY
commands also gain importance as this allows us to track if
a gadget we already discovered is moved to a new position.
We therefore extended our analysis for the second evaluation
example by also tracking the COPY commands. The results
are presented in Fig. 3. It shows the number of gadgets plot-
ted for the same firmware versions as in Table 4, with the
number of gadgets in the original binary in blue and for the
deltas in red. Additionally it also contains the number of
gadgets when the information of the deltas is correlated,
represented by the brown plot. With the correlation we were

Table 4 Tracking an
environment measurement
firmware evolution and
calculating the number of ROP
gadgets from the complete
firmware images, R3diff and
DG updates

MSP430 Firmware R3dif f DG

Firmware Size Diff Gadgets Useful Delta Gadg. Useful Delta Gadg. Useful

Base 99KB - - - - - - - - -
1 122KB 35KB 368 203 20KB 61 17 28KB 280 140
2 186KB 75KB 405 254 35KB 66 31 48KB 357 215
3 181KB 54KB 485 332 32KB 110 54 32KB 313 202

217Annals of Telecommunications (2023) 78:209–220

1 3

able to increase the number of found gadgets from the previ-
ously 110 to now 179.

It is also important to track COPY commands that do not
move gadgets directly, as they can still overwrite gadgets of
the previous version. This can also mean that even with cor-
relation the number of found gadgets can decrease with more
updates. To illustrate this we included an additional version
1.5 in Fig. 3 with a lot of new code, resulting in very large
deltas between this new version and version 1, as well as a
lot of gadgets that can be found. With the update to version
2, most of these found gadgets are then being overwritten
by COPY commands. Of course a lot has to do with the fact
that version 1.5 overall has more gadgets than version 2.
However, with version 1.5 included in the correlation it can
also be noted that for versions 2 and 3 the overall number of
gadgets is slightly higher than without.

In conclusion we think correlating multiple deltas can be
greatly beneficial for the overall number of found gadgets.
The more deltas can be acquired the more information about
the firmware can be gathered; however, there is no guarantee
that the number of gadgets will always increase.

6 Countermeasures

In this paper we showed experimentally that incremental
code updates sent unencrypted provide sufficient gadgets to
construct a ROP Attack. Even more although out-of-place
update mechanisms are less vulnerable when it comes to the
number of gadgets they still leak a sufficient set of gadgets
so that using a different update scheme is not solving the
issue. In order to reliably prevent an attacker from getting
gadgets, ensuring confidentiality of the incremental updates
is key. The tricky thing with this is the power consumption
of this process. As the devices are mostly battery driven
energy-efficiency is of utmost importance and needs to be
considered when designing and/or applying an encryption
scenario. Here we are discussing multiple scenarios consid-
ering the limited power available in the devices. They range

from already existing encryption schemes (with their already
shared keys) to using built-in encryption of Over The Air
Programming (OTAP) schemes. The following scenarios can
be used if full encryption is not feasible.

6.1 Partial encryption of incremental updates

If the encryption is expensive or the update frequency is
high, we propose a more efficient technique than encrypting
the full incremental update. The general idea is encrypting
some parts of it that make it difficult for the attacker to col-
lect ROP gadgets.

As it was mentioned earlier, delta scripts (incremental
updates) mainly consist of COPY command headers, ADD
command headers, ADD payloads, and checksum. The more
valuable parts to the attacker are the payloads of the ADD
commands, as they can be reverse-engineered and ROP
gadgets are collected from them. Consequently, encrypting
the payloads of the ADD commands will prevent the attacker
from collecting gadgets from them. This approach is better
suited for R3diff than for DG due to the COPY-ADD ratio.
For example, in Table 2 the DG delta (44KB) consists of
37KB payload while the R3diff delta (26KB) only consists
of 10KB payload.

However, encrypting every ADD payload separately
could increase the overall size of the delta script and would
also interfere directly with the algorithm itself, so it is better
to append all the ADD payload together and separate them
from the COPY and ADD commands headers as it is shown
in Fig. 4. The delta script encoding and decoding need also
to be modified to adopt this separation between the headers
and the encrypted ADD payloads. This way it is possible to
transmit them separately and apply encryption only to the
packets containing the payload, see Fig. 5. On the receiving
device side, the update execution mechanism should be mod-
ified to decrypt and use the ADD payloads on the fly when
it finds an ADD header. This countermeasure is strong and
more power efficient than encrypting the full OTA update.
However, the attacker can still sneak some information about
what changed in the new version of the firmware by looking
at the ADD commands headers which are sent unencrypted.
This information could help him in other attack styles.

6.2 OTAP built‑in encryption

In this scenario, based on the assumption that the attacker
does not have access to the currently deployed firmware on
the resource-constraint device, we do not have to tackle the
challenge of exchanging encryption keys. This is because
parts of the old firmware that is currently deployed in the
device will be used as a pre-shared key. The reason we are
introducing this countermeasure is to encrypt the update
once using the deployed image as a pre-shared key and

1 1.5 2 3

100

200

300

400

500

Firmware Version

N
um

be
r
of

G
ad
ge
ts

binary
single delta
correlated deltas
correlated deltas
with extra version

Fig. 3 Number of gadgets for R3diff delta correlation

218 Annals of Telecommunications (2023) 78:209–220

1 3

send it to all the devices in need of the update. This tech-
nique is generally easy to be implemented. It only differs
slightly depending on the update strategy.

6.2.1 Out‑of‑place algorithm

In the case of the out-of-place algorithm, the built-in encryp-
tion will be very straightforward to implement. The reason
is that the old deployed image, which we consider it as the

pre-shared key, is not changed during the update execution.
As it was previously mentioned, the new image is being
constructed in a second memory bank while leaving the old
image unmodified. An iterator will begin at the beginning of
the old image (the key) and increment by one while XORing
the byte value pointed to by this iterator with the values from
the incremental updates to get encrypted. If it happened that
the iterator reached the end of the old image, its value will
be rewound to start again at the beginning of the old image.

Fig. 4 Separating the ADD
command payloads from the
rest of the delta update for
encryption

Fig. 5 Changes in the delta script transmission and reception processes in the firmware server side and the resource-constrained device side

219Annals of Telecommunications (2023) 78:209–220

1 3

This approach comes with the extra benefit that each
update implicitly also updates the “built in key”. This limits
the time interval an attacker has to reveal that key to get
access to the unencrypted data. But once the attacker man-
ages to reveal a key he needs only to track the updates in
order to always have the currently valid key.

6.2.2 In‑place algorithm

In case of an in-place algorithm, the implementation will differ
slightly. The reason is that during the in-place update the old
image (the key) values could be changed by a previous ADD
or COPY command since the update execution reconstructs
the new image right in the same location of the old image. A
workaround is to not encrypt with an old image directly, but to
take the changes of previous commands into account. By doing
so, we make sure that the key values are synchronized between
the firmware server and the device that is receiving the update.

6.2.3 Embedding an encryption key in the base image

Since the presented solution is using the old image as a pre-
shared key for encryption and decryption, a question arises
about the randomness of this key with each update. If every
update introduces small changes to the deployed old image, this
will directly imply that most of the key bytes will stay the same
across multiple updates. Consequently, the key randomization
will not be strong. Further, the randomization is not the only
problem, the attacker can also guess some parts of the deployed
image (key) based on his knowledge of the architecture of the
device and the application that this device is used for.

Therefore, another possible way that works also indepen-
dently of the existing data encryption is to embed a secret
pre-shared key in the base image (version zero). This key
will be known only to the firmware server and the devices
that use or used this base image. Every time an update needs
to be distributed, the full or parts of update will be encrypted
with that key, and on the device side the decryption will
occur using the pre-embedded key in that old image. Here
a single key for all devices may be used which is normally
considered to weaken the security of the network. The rea-
son is that if an attacker reveals ROP gadgets for one device
these gadgets work with other devices as well, independent
of whether updates of the other devices are encrypted with
the same or a different key. It is also possible that an update
can change the pre-embedded key to another fresh key.

7 Conclusion

In this paper, we analysed the risk that arises from unen-
crypted incremental code updates with respect to building
ROP attacks. In order to provide a comprehensive study

we analysed both types of incremental code updates, i.e.
in-place and out-of-place, investigating two representative
approach DG and R3diff respectively. Our analysis clearly
revealed that despite DG provides by far more gadgets to the
attacker, also the gadgets to be extracted from R3diff updates
are sufficient to generate a ROP attack. We also showed
that an attacker can gather more gadgets, e.g. to build more
sophisticated attacks or to reduce his effort in designing the
attack, by just recording more updates.

As both types of update mechanisms are leaking sufficient
gadget to construct ROP attacks, adapting the type of update
approach is not preventing any ROP attack and additional
means are needed. We addressed this point by discussing
different power-efficient means to ensure confidentiality of
the incremental update messages. All of them apply encryp-
tion based on pre-shared key, in one of them the old image
is used as pre-shared key which avoids any issues with key
distribution but requires to keep the original code image
confidential.

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was supported by the Federal Ministry of Educa-
tion and Research (BMBF) under research grant number 01IS18065E.

Declarations

Consent to participate Not applicable

Ethics approval Not applicable.

Consent for publication Not applicable.

Competing interests Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Dong W, Mo B, Huang C, Liu Y, Chen C (2013) R3: Optimizing
relocatable code for efficient reprogramming in networked embed-
ded systems. In: 2013 Proceedings IEEE INFOCOM, pp 315–319.
https:// doi. org/ 10. 1109/ INFCOM. 2013. 65667 86

 2. Kachman O, Balaz M (2016) Optimized differencing algorithm for firm-
ware updates of low-power devices. In: 2016 IEEE 19Th international

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/INFCOM.2013.6566786

220 Annals of Telecommunications (2023) 78:209–220

1 3

symposium on design and diagnostics of electronic circuits systems
(DDECS), pp 1–4. https:// doi. org/ 10. 1109/ DDECS. 2016. 74824 73

 3. Zandberg K, Schleiser K, Acosta F, Tschofenig H, Baccelli E
(2019) Secure firmware updates for constrained iot devices using
open standards: a reality check. IEEE Access 7:71907–71920

 4. A Firmware Update Architecture for Internet of Things. https://
tools. ietf. org/ html/ draft- ietf- suit- archi tectu re- 16. Accessed 14
July 2022

 5. AbdElaal ASA, Lehniger K, Langendörfer P (2021) Incremental
code updates exploitation as a basis for return oriented program-
ming attacks on resource-constrained devices. In: 2021 5Th cyber
security in networking conference (CSNet), pp 55–62. https:// doi.
org/ 10. 1109/ CSNet 52717. 2021. 96142 75

 6. Arakadakis K, Charalampidis P, Makrogiannakis A, Fragkiadakis
A (2020) Firmware over-the-air programming techniques for IoT
networks – A survey. In ACM Computing Surveys (CSUR), pp
1–36

 7. Lehniger K, Weidling S (2019) The impact of diverse execu-
tion strategies on incremental code updates for wireless sensor
networks. In: Benavente-Peces C, Ahrens A, Camp O (eds) Pro-
ceedings of the 8th international conference on sensor networks,
SENSORNETS 2019, Prague, Czech Republic, February 26-27,
2019, pp 30–39. https:// doi. org/ 10. 5220/ 00073 83400 300039

 8. Kachman O, Balaz M (2020) Efficient patch module for single-
bank or dual-bank firmware updates for embedded devices. In:
2020 23Rd international symposium on design and diagnostics
of electronic circuits systems (DDECS), pp 1–6. https:// doi. org/
10. 1109/ DDECS 50862. 2020. 90957 44

 9. Arakadakis K, Fragkiadakis A (2020) Incremental firmware
update using an efficient differencing algorithm: poster abstract.
In: Proceedings of the 18th Conference on Embedded Networked
Sensor Systems. SenSys 2020. J Assoc Comput Mach pp 691–
692. https:// doi. org/ 10. 1145/ 33844 19. 34304 71

 10. Tridgell A (1999) Efficient algorithms for sorting and synchroni-
zation. Doctoral dissertation. The Australian National University

 11. Jaein J, Culler D. (2004) Incremental network programming for
wireless sensors. In: 2004 First annual IEEE communications
society conference on sensor and ad hoc communications and
networks, 2004. IEEE SECON 2004., pp 25–33. https:// doi. org/
10. 1109/ SAHCN. 2004. 13818 99

 12. Hu J, Xue CJ, He Y, Sha EH (2009) Reprogramming with minimal
transferred data on wireless sensor network. In: 2009 IEEE 6Th
international conference on mobile adhoc and sensor systems, pp
160–167. https:// doi. org/ 10. 1109/ MOBHOC. 2009. 53370 00

 13. Mo B, Dong W, Chen C, Bu J, Wang Q (2012) An efficient dif-
ferencing algorithm based on suffix array for reprogramming wire-
less sensor networks. In: 2012 IEEE international conference on
communications (ICC), pp 773–777. https:// doi. org/ 10. 1109/ ICC.
2012. 63642 14

 14. Kachman O, Baláz M, Malík P (2019) Universal framework for
remote firmware updates of low-power devices. Comput Commun
139:91–102

 15. Linux kernel patch from the Openwall Project (1997) https:// www.
openw all. com/ linux/ README. shtml

 16. Non-Executable Stack Patch (1997) http:// lkml. iu. edu/ hyper mail/
linux/ kernel/ 9706.0/ 0341. html. Accessed 14 July 2022

 17. Solar’s Clearification of the possible bypasses. https:// www. openw
all. com/ linux/ README. shtml. Accessed 14 July 2022

 18. Shacham H (2007) The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). CCS ’07.
Association for Computing Machinery, 552–561. https:// doi. org/
10. 1145/ 13152 45. 13153 13

 19. Cowan C, Pu C, Maier D, Walpole J, Bakke P, Beattie S, Grier
A, Wagle P, Zhang Q, Hinton H (1998) Stackguard: automatic
adaptive detection and prevention of buffer-overflow attacks. In:
USENIX Security Symposium, vol 98, San Antonio, TX. 63–78

 20. Team P (2003) Pax address space layout randomization
(ASLR). http:// pax. grsec urity. net/ docs/ aslr. txt. Accessed 14 July
2022

 21. Falas S, Konstantinou C, Michael MK (2021) A modular end-to-
end framework for secure firmware updates on embedded systems.
ACM J Emerg Technol Comput Syst 18(1):1–19

 22. Serna FJ (2012) Cve-2012-0769, the case of the perfect info leak.
In: Blackhat conference, feb

 23. Snow KZ, Monrose F, Davi L, Dmitrienko A, Liebchen C, Sad-
eghi A-R (2013) Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization. In: 2013 IEEE
symposium on security and privacy. IEEE, pp 574–588

 24. Goodspeed T, Francillon A (2009) Half-blind attacks: mask rom
bootloaders are dangerous. In: Proceedings of the 3rd USENIX
conference on offensive technologies. USENIX Association, pp
6–6

 25. Bittau A, Belay A, Mashtizadeh A, Mazières D, Boneh D (2014)
Hacking blind. In: 2014 IEEE Symposium on security and pri-
vacy, pp 227–242. https:// doi. org/ 10. 1109/ SP. 2014. 22

 26. Zhang T, Cai M, Zhang D, Huang H (2022) Sebrop: blind rop
attacks without returns. Front Comp Sci 16(4):1–18

 27. Lie D, Thekkath C, Mitchell M, Lincoln P, Boneh D, Mitchell J,
Horowitz M (2000) Architectural support for copy and tamper
resistant software. Acm Sigplan Notices 35(11):168–177

 28. Lee J, Jang J, Jang Y, Kwak N, Choi Y, Choi C, Kim T, Peinado
M, Kang BB (2017) Hacking in darkness: Return-oriented pro-
gramming against secure enclaves. In: 26Th USENIX security
symposium (USENIX security 17), pp 523–539

 29. Bettayeb M, Nasir Q, Talib MA (2019) Firmware update attacks
and security for iot devices: Survey. In: Proceedings of the Arab-
WIC 6th annual international conference research track. ArabWIC
2019. J Assoc Comput Mach https:// doi. org/ 10. 1145/ 33331 65.
33331 69

 30. CWE Top 25 Most Dangerous Software Errors (2019) Common
Weakness Enumeration. https:// cwe. mitre. org/ top25/ archi ve/ 2019/
2019_ cwe_ top25. html (accessed 14 July 2022)

 31. CWE Top 25 Most Dangerous Software Weaknesses (2020) Com-
mon Weakness Enumeration. https:// cwe. mitre. org/ top25/ archi ve/
2022/ 2020_ cwe_ top25. html (accessed 14 July 2022)

 32. Inventory RC (2020) Mona. https:// github. com/ corel an/ mona
 33. Schirra S (2020) Ropper. https:// github. com/ sashs/ Ropper
 34. Salwan J (2020) ROPgadget. https:// github. com/ Jonat hanSa lwan/

ROPga dget

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/DDECS.2016.7482473
https://tools.ietf.org/html/draft-ietf-suit-architecture-16
https://tools.ietf.org/html/draft-ietf-suit-architecture-16
https://doi.org/10.1109/CSNet52717.2021.9614275
https://doi.org/10.1109/CSNet52717.2021.9614275
https://doi.org/10.5220/0007383400300039
https://doi.org/10.1109/DDECS50862.2020.9095744
https://doi.org/10.1109/DDECS50862.2020.9095744
https://doi.org/10.1145/3384419.3430471
https://doi.org/10.1109/SAHCN.2004.1381899
https://doi.org/10.1109/SAHCN.2004.1381899
https://doi.org/10.1109/MOBHOC.2009.5337000
https://doi.org/10.1109/ICC.2012.6364214
https://doi.org/10.1109/ICC.2012.6364214
https://www.openwall.com/linux/README.shtml
https://www.openwall.com/linux/README.shtml
http://lkml.iu.edu/hypermail/linux/kernel/9706.0/0341.html
http://lkml.iu.edu/hypermail/linux/kernel/9706.0/0341.html
https://www.openwall.com/linux/README.shtml
https://www.openwall.com/linux/README.shtml
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
http://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.1109/SP.2014.22
https://doi.org/10.1145/3333165.3333169
https://doi.org/10.1145/3333165.3333169
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2020_cwe_top25.html
https://github.com/corelan/mona
https://github.com/sashs/Ropper
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget

	Finding gadgets in incremental code updates for return-oriented programming attacks on resource-constrained devices
	Abstract
	1 Introduction
	2 Background
	2.1 Differencing algorithm
	2.1.1 R3diff
	2.1.2 DG-Optimized

	2.2 ROP attack

	3 Related work
	4 Incremental code updates as a basis for return-oriented programming
	5 Evaluation
	5.1 First evaluation example
	5.1.1 The first ROP gadget outcomes
	5.1.2 The second ROP gadget outcomes

	5.2 Second evaluation example
	5.3 Correlating updates

	6 Countermeasures
	6.1 Partial encryption of incremental updates
	6.2 OTAP built-in encryption
	6.2.1 Out-of-place algorithm
	6.2.2 In-place algorithm
	6.2.3 Embedding an encryption key in the base image

	7 Conclusion
	References

