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Abstract
The problem of tracking moving ground targets using seismic sensors is considered in this paper. Noisy seismic data induced
from a moving ground vehicle is detected and collected by a single, fixed, and passive three-component seismic sensor. Two
Bayesian suboptimal estimator, namely the Extended Kalman filter (EKF) and the Unscented Kalman filter (UKF), and the
optimal Monte Carlo based particle filter (PF) were used in estimating and tracking the true angular behavior of the target. The
comparison between these estimators showed that they have almost the same accuracy in estimating the mean value of the noisy
target azimuth. In terms of filter consistency, EKF and PF with a number of particles (NP = 5000) are superior to the UKF
estimator.
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Bearing-only tracking (BOT)

Introduction

Estimation is the process of inferring the value of a quantity
(scalar or vector) of interest from inaccurate and uncertain
noisy measurements (observations). On the other hand, track-
ing is the estimation of the state of a moving object based on
remote measurements (Bar-Shalom et al. 2004). This is done
using one or more sensors at fixed locations or on moving
platforms. Tracking might be considered as a special case of
estimation.

The state-space approach is the most convenient for han-
dling tracking processes. In this approach, the target’s posi-
tion, velocity, and any other information that might be neces-
sary to describe its kinematic characteristics are contained in a
target’s state vector. The measurement vector contains the
noisy measurements that are related to the state vector. At least

two models are required in order to study the behavior of a
tracking system or any other dynamic system. The system
model describes the evolution of target’s state vector with time
when a new measurement is received, and the measurement
model relates the noisy measurements to the target’s state. In
almost all real applications, these two models are available in
probabilistic formulation. The probabilistic state-space formu-
lation and the requirement for estimating target’s state on re-
ceipt of new measurements are ideally suited for the Bayesian
approach (Rice 2014).

When estimating the state of a dynamic process, such as
tracking a moving target, the optimal estimate of the posterior
probability density function (pdf) of the state is that one which
is based on all the available information, including the set of
all received measurements.

If the estimate is required to be updated when receiving
a new measurement, a recursive filter based on the
Bayesian approach is the convenient solution. The recur-
sive nature of this filter means that there is no need to
store all received measurements in a memory of growing
size. Reprocessing all the old data when receiving new
measurement is also not needed.

The mechanism for updating knowledge about the target
state in the light of extra information from new data is usually
based on using Bayes theorem. In the Bayesian approach; as a
new measurement is received, it is used together with prior
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knowledge about the pdf of the physical phenomena and the
measuring devices, in order to sequentially produce statistical-
ly minimizes- error estimates of the desired posterior pdf of
the target’s dynamics parameters.

Related work

Bearings-only tracking (BOT) is an important branch of track-
ing systems. The basic problem with BOT tracking systems is
to estimate the state vector of a moving target, which includes
the target’s kinematics (position, velocity, acceleration) using
only a sequence of noise-corrupted angular measurements
provided by one or more passive sensors (observers) which
measure only the angle of the target with respect to the posi-
tions of the sensors. In the last decade, bearing-only tracking
has become a common tracking technique in many important
applications. Typical examples are submarine tracking using
only noisy measurements provided from one or more passive
sonar sensors, aircraft surveillance using radars in the passive
mode, and the two-dimensional tracking of moving ground
vehicles using passive seismic or acoustic sensors.

In the case of using a single sensor (observer), the problem
is difficult because an infinite number of targets moving at
different ranges with different velocities can generate the same
angular behavior. In such a case, the target range is unobserv-
able, and hence the target state is not fully observable. The
necessary observability condition using a single observer can
be satisfied only with using a movable observer (Reshma et al.
2013; Mušicki 2009).

The conventional Kalman filter (KF) developed by R.E.
Kalman in 1960 (Kalman 1960) is an optimal recursive
Bayesian estimator in the minimum mean square error
(MMSE) sense for a tracking problem in the environment
of linear dynamic and measurement models with additive
Gaussian noises. These restrictions make KF unsuitable for
almost all practical applications, including the nonlinear
bearing-only tracking applications. Many suboptimal
methods have been developed for such applications. One
of these methods is the most commonly used Extended
Kalman Filter (EKF) (Welch and Bishop 2006; Aidala
1979) which linearizes nonlinearities around the predicted
target position. However, EKF is known to lack robustness
and can diverge if the degree of nonlinearity of the system is
high or if the filter is poorly initialized. The Unscented
Kalman filters (UKF) (Julier and Uhlmann 2004; Julier
et al. 2000) sample and propagate the distribution probabil-
ity density function at sigma points and propagate these
samples through the system nonlinearity to an EKF for pre-
diction and updating. The second class is a numerical Monte
Carlo method such as particle filters (PF) (Arulampalam
et al. 2002, 2004), which samples nonlinear distributions
by a set of random hypothesized samples with their associ-
ated weights and calculates the posterior estimate at every

time step k as the expected value of these samples and their
weights. The above methods are presented in detail in the
BReview study of different filters^ section.

All of the abovementioned approaches use a single filter to
estimate the target’s state. In (Mušicki 2009), an approach for
single-observer and bearing-only passive tracking is present-
ed. Gaussianmixture measurement presentation, together with
a track splitting algorithm, allows space-time integration of
the target position uncertainty with a simple algorithm. The
bearings-only measurements are incorporated into track as
they arrive using a dynamic bank of linear Kalman filters. In
(Peach 1995), a multiple-hypotheses approach of the target
range estimation is considered. A bank of independent and
parallel-operating filters is proposed. This bank of filters is
known as the Range-parameterized extended Kalman filter
(RP-EKF). An initial estimate of the minimum and the max-
imum distances between the sensor and the target is assumed.
This distance range is divided into a number of subintervals.
Each of these subintervals represents one of the hypotheses
regarding the true range of the target. Each hypothesis is treat-
ed by one of the independent filters. The final estimate is a
combination of the estimations of all the filters.

All the abovementioned tracking approaches of the target’s
dynamical model are defined in the Cartesian coordinate
frame, while the measurement model is nonlinear and defined
in the polar frame. Another class of trackers uses the modified
polar coordinate (MPC-EKF) (Aidala and Hammel 1983;
Jawahar and Koteswara Rao 2016). The MPC state vector is
nonlinear while the measurement model is linear. The advan-
tage of such trackers is that the unobservable and observable
components of the target’s state vector are decoupled. Such
decoupling prevents covariancematrix ill-conditioning, which
is the primary cause of filter instability. The use of this coor-
dinate basis improves the stability and robustness of an EKF-
based tracking filter.

This paper is organized as follows. The BReview study of
different filters^ section gives a review study of the basics of
the three filters under study: EKF, PF, and UKF. The
BPractical work^ section describes the work done in the field
including the preparation of the equipment used in collecting
the seismic data and the procedure of collecting the data.
Results and a comparison of the three filters are presented in
the BComparison results^ section. The concluding remarks are
given in the BConclusions^ section (5).

Review study of different filters

Extended Kalman filter (EKF)

The conventional Kalman filter (KF) is an optimal recursive
Bayesian estimator in the minimum mean square error
(MMSE) sense for a tracking problem in the environment of
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linear dynamic and measurement models with additive
Gaussian noises. Basically, the linear Kalman filter consists
of two stages:

& Prediction stage uses the dynamic model to predict the
target’s state and the state error covariance matrix forward
from one measurement time to the next.

& Updating (correction) stage uses the current measurement
to update (correct) the predicted target state and its error
covariance matrix.

Several improved versions of the conventional KF have
been developed to alleviate the problem of tracking in nonlin-
ear environment. The EKF is probably the most widely used
filter as a suboptimal estimator in tracking problems in the
environment of slightly nonlinear dynamic or/and measure-
ment Gaussian distributed models. EKF may get unstable
and even may diverge if the degree of nonlinearity of the
system is high or if the filter is poorly initialized. In BOT
tracking applications, the target dynamic model is commonly
defined in a 2D linear Cartesian frame, while the measurement
model is defined as a nonlinear model. In such applications,
the linear model of the target dynamics is described as (Welch
and Bishop 2006):

X kð Þ ¼ F:X k−1ð Þ þ Γ:w kð Þ ð1Þ

where X(k)≡ x kð Þ y kð Þ ẋ kð Þ ẏ kð Þ½ �T is the state vector of
the target at time step k, including the target’s position (x(-
k), y(k)) and its velocity ẋ kð Þ; ẏ kð Þð Þ; and the time-
invariant matrix F which controls the linear transition of
the target state from the previous time step X(k − 1) to the
current step X(k).

F ¼
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where T is the sampling period, and w(k) is a (2 × 1) pro-
cess noise vector (in acceleration units) which accounts
for deviation of the actual target’s motion from the as-
sumed dynamic model.

The nonlinear measurement model that relates the mea-
surement vector z (k) to the state vector is described by
(Welch and Bishop 2006):

z kð Þ ¼ tan−1 x kð Þ=y kð Þð Þ þ n kð Þ ð3Þ
where n(k) denotes the additive Gaussian measurement
noise in radians. It is assumed that both w(k) and n(k)
are white, temporally uncorrelated, and zero-mean
Gaussian random variables.

In EKF filters, the nonlinearity in the measurement model
is linearized about the predicted target state by applying
Taylor’s series and using the first-order term while all higher
terms are ignored. More details about EKF can be found in
(Welch and Bishop 2006).

Particle filters (PF)

Particle filter (PF) method is a Monte Carlo (MC) technique
for the solution of the state estimation problems. Particle filters
are considered to be a generalized approach in tracking appli-
cations. These filters are superior to other tracking filters in
tracking nonlinear models (e.g., maneuvering targets) with
non-Gaussian errors.

PF represents the distribution of the state vector by a set of
NP statistically independent samples (particles). At time step
k, each particle consists of a hypothesized state vector xi(k)
and an associated weight wi(k); i = 1 :NP.

As the number of the particles becomes very large, the
estimate obtained from the MC-based PF approaches the op-
timal Bayesian estimate.

However, it is impossible to draw particles directly from
the unknown posterior probability density function. The key
idea of the PF algorithms is to make use of a well-known
probability density function which is called the importance
(or proposed) density function, as a prior estimate, to generate
the initial statistically independent NP particles xi (k = 1), i =
1 :NP. In other words, the statistics of the initial set of particles
are not known in most of the tracking applications. One has to
use an initial set of particles with a proposed probability den-
sity function. This proposed function is known as the impor-
tance (or proposed) density function. As each measurement is
received, the particle filter updates recursively each particle
state and the weight associated with it.

The estimate of the expected value of the state vector x(k) at
step k is obtained by (Welch and Bishop 2006):

E x kð Þ½ �≈∑NP
i¼1x

i kð Þ:wi kð Þ ð4Þ

Unfortunately, after few recursions, the weights of most of
the particles become too weak to make any effective contri-
bution in the estimation process. This results in wasting most
of the computation time and effort in updating useless parti-
cles. This problem is known as the degeneracy phenomenon.
The direct solution to this problem is to increase the number of
particles. This solution will put a heavy burden of the compu-
tational resources. Another solution is to initialize the filter by
using well-selected importance density.

Particle resampling is the most commonly used technique
to avoid the degeneracy phenomenon. The resampling process
probabilistically replicates particles with large weights and
discards particles with small weights. However, using the re-
sampling technique may lead to another problem, which is

Arab J Geosci (2019) 12: 179 Page 3 of 9 179



known as sample impoverishment. This problem occurs when
many particles are repeated and the diversity of the particles is
lost. The particle filters have another drawback; it is based on
Monte Carlo which is very demanding in the computational
resources. This drawback may make unsuitable for complicat-
ed real-time applications. However, resampling can be per-
formed either at any time step or only if the weights of a
statistically defined number Neff of particles become lower
than a certain weight threshold. The number Neff is calculated
as (Aidala 1979)

Neff ¼ NP

1þ Var wi kð Þð Þ ð5Þ

The unscented Kalman filter UKF

The unscented Kalman filter (UKF) is one of the many ap-
proaches that have been developed to generalize the extended
Kalman filter to nonlinear systems (Julier and Uhlmann 2004;
Julier et al. 2000). It is based on the unscented transformation
(UT) (Julier 2002). The unscented transformation is a method
for calculating the statistics of a random variable which un-
dergoes a nonlinear transformation.

In UKF filter, the normally distributed N-dimensional state
vector is represented by (2N + 1) sigma points. Each of these
points represents a hypothesized state vector. These points are
carefully and deterministically chosen such that when propa-
gated through any true nonlinearity they capture the posterior
mean and covariance accurately up to the third order. This

gives an advantage of UKF over EKF in capturing the higher
order moments caused by the nonlinear transform, as
discussed in (Julier and Uhlmann 2004). Also, UKF does
not need to calculate the Jacobean matrices, so the estimation
procedure is in general easier and less error-prone. Table 1
summarizes the differences between the three filters

Practical work

Generally, seismic waves can be classified into body waves
which travel at a higher speed through the deep interior of the
Earth and propagate in three dimensions, and surface waves
which travel near the surface of the Earth and propagate in two
dimensions. Ground targets (such as cars or trucks) moving
over ground generate a succession of impacts generating hor-
izontal soil disturbances. These soil disturbances propagate
away from the source as induced horizontal seismic waves.
For this reason, in tracking ground targets, the wave of impor-
tance for us is the Rayleigh surface wave.

This study used a single three-component seismic sensor.
The vertical component detects and provides noisy measure-
ment of the vertical component velocity of the ground parti-
cles in the sensor location; the other two components detect
and provide noisy measurements of the horizontal compo-
nents of these velocities.

The relation between the output of each component
expressed in volts and its input ground velocity expressed
in m/s is defined as the sensitivity of this component.
The sensitivity of the used sensor is 750 V·s/m. We are

Table 1 Comparison study
between the different filters Linear/nonlinear Errors nature Analytical/Monte Carlo Optimality

EKF Simple nonlinearity Only additive Gaussian Analytical Suboptimal

UKF Nonlinear Only additive Gaussian MC+ EKF Suboptimal

PF Nonlinear Gaussian/non-Gaussian MC Optimal with infinite
number of particles
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Fig. 1 Target route
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interested only in the two horizontal East-West and the
North-South components.

The analog output signal from the sensor is digitized and
stored in a seismic digitizer at a sampling rate of 500 s/s and a
resolution of 24 bits. The sensitivity of the digitizer defined as
the number of digital bits generated at the digitizer output at a
change of one volt at its input (the output of the seismic sen-
sor). The total system sensitivity defined in bits·s/m is the
product of the sensor and digitizer sensitivities.

Since the expected seismic wave magnitudes from a
ground moving target are much weaker than that expected
fromEarthquakes or chemical explosions, we have configured
the digitizer parameters to provide, with the sensor, a total
system sensitivity of 60 bits·s/nm, which is 60 times larger
than that used in the national seismic network and large
enough to sense the weak magnitudes of the seismic waves
generated by the ground target motion. To avoid the effects of
wind and the changes in atmospheric temperature and

Fig. 2 Measured velocity of
ground particles in EW (red) and
in NS (blue) directions in μm/s

Fig. 3 Noisy azimuth angles
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pressure, the system was installed at a depth of about 1 m
under the ground surface.

Figure 1 shows the target route that we used in this study. It
consists of an east-west almost straight 100-m route followed
by a first turn at the point (155,152) to the south-east direction
and then to a second sharper turn at the point (280,− 45) to the
south-west direction. The sensor is located at the point (0, 0).
The moving target was a heavy water tank.

Figure 2 shows the noisy measurements of the horizon-
tal velocities of ground particles in μm/s extracted from
the sensor. Unfortunately, the data collected from the two
horizontal components of the sensor does not provide any

information about the target’s range or velocity. The only
information that could be obtained from these noisy mea-
surements is the changes in the target azimuth while mov-
ing along the route. This is the first step in the data pro-
cessing. For every time sample (k) of the received mea-
surements, the noisy azimuth angle θ(k) is calculated as
(Mušicki 2009):

θ kð Þ ¼ tan−1 ew kð Þ=ns kð Þð Þ ; for k ¼ 1; 2; ::::;M ð6Þ

where ew(k) and ns(k) are the measured particle velocities in
East-West and North-South directions respectively, while M is

Fig. 5 Zoomed interval of the
estimated azimuth angle

Fig. 4 Mean values of the
estimated azimuth angle
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the number of measured noisy samples. Figure 3 shows the
calculated noisy azimuth angles (degrees) of the target.

Comparison results

Filter initialization is a necessary computational step when
performing state estimate on dynamical systems. In the initial
formulation of any estimating filter it is assumed that the ini-
tial value of the state has a known mean value and covariance
matrix. If no such data is available, the estimate will have a
transient in the initial phase of the estimation process. Poor
initialization may lead to filter instability or even a complete
filter divergence. In our study, we used a commonly used
probabilistic initialization algorithm taken from (Julier et al.
2000). In this initialization algorithm, each of the initial range
(r_ini), initial speed (s_ini), and course (c_ini) of the tracked
target are assumed to be a random variable with a Gaussian
distribution defined as (Julier et al. 2000):

r�ini ¼ r þ N 0;σrð Þ; s�ini ¼ sþ N 0;σsð Þ; c�ini ¼ cþ N 0;σcð Þ ð7Þ

where the mean values r; s, and c are assumed according to
a prior knowledge of the field under surveillance, while σr,
σs, and σc are the root mean square (RMS) of these distribu-
tions. The initial estimate of the covariance matrix is derived

from the assumed distributions after the first azimuth measure-
ment is received.

Performance evaluation metric parameters

As a metric parameter, the mean values of the estimates are
calculated to compare between the accuracy of the filters,
while the RMS values are used to compare between the con-
sistencies of the filters.

Each of the three filters is initialized with the same param-
eters: r_ini = 200 m, s_ini = 20 km/h, and c_ini = pi/2 radians.
A unified root mean square (RMS) of 0.5 is assumed for each
of the three random variables. The RMS value of the measure-
ment errors n(k) was assumed to be 0.5 radians, while the
RMS of the uncertainty w(k) of the target trajectory was as-
sumed to be 0.5 m/s/s. The particle filter formulation was
considered twice, once with a number of particles NP = 1000
particles and again with NP = 5000. Initialization of the parti-
cle filter was carried out by sampling NP times from the dis-
tribution used to initialize both EKF and UKF filters.

After initializing each of the three filters, the calculated
noisy azimuth angles are applied sequentially to an algorithm
consists of a numberM = 35,000 of iterations. The ith iteration
gives an estimate of the target true azimuth at the sampling
time (i. ∂t), where δt = 0.002 s is the sampling period. After
completing the total M iterations, we get an estimate of the
target true azimuth angels for a period of 70 s.

In the comparison between the performances of the three
filters, the performance of each filter is evaluated by running
the totalM iterations a number of n_run = 20 runs. In each run,
the filter is initialized by a different realization of the initializ-
ing scheme. Thus, we obtain 20 different estimates at every
sampling time (i · ∂t).

Fig. 6 RMS about the mean
values of the estimated azimuth

Table 2 Execution time
(s) Filter Execution time (s)

EKF 1.53

UKF 8.41

PF(NP = 5000) 940
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The mean values θ i � ∂tð Þ� �
and the RMS values (θrms(i ·

∂t)) about the means at each sampling time (i · ∂t) are comput-
ed as follows in equations (8) and (9) and taken as measures of
the filter accuracy and consistency.

θ i:∂tð Þ ¼ 1

n run
∑n run

1 θ i:∂tð Þ; ::i ¼ 1; 2; ::: ::::M ð8Þ

θrms i:∂tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n run
∑n run

1 θ i:∂tð Þ−θ i:∂tð Þ
� �r 2

::i ¼ 1; 2; ::M ð9Þ

Result analysis and discussion

The estimated mean values of the target azimuth obtained
from the three filters are shown on Fig. 4. The time segment
between 30 and 50 s is zoomed and illustrated in Fig. 5. These
figures show that the estimated mean value of the three filters
appears to be almost the same. This means that the three filters
have almost the same accuracy in the mean sense.

The RMS values obtained from the three filters are
shown on Fig. 6. Both EKF and PF (NP = 5000) provided
almost the same RMS along the target track, while both

Fig. 8 Divergence of UKF

Fig. 7 Divergence of EKF
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UKF and PF (NP = 1000) showed an RMS peak at the
second turn after 40 s from the start. This means that
EKF and PF (NP = 5000) filters are more consistent than
UKF and PF (NP = 1000) filters. The peak in the RMS of
PF (NP = 1000) is significantly larger than that of the
other filters, which means that this filter formulation is
not a good choice. The peak in the RMS value of the
particle PF (NP = 1000) is more than three times larger
than that of UKF. It needed a larger number of particles
to obtain similar performance to the other filters, which
reflects passively on its computational load.

In terms of computational load, Table 2 shows the time
needed for every one of the three filters to execute one run.
The absolute value of the execution time needed for every
filter was given directly by Matalab-R2016a.

In order to test the sensitivity of each filter to the initializa-
tion parameters, we modified the initial range to be 100 m
instead of 200 m while keeping all the other initialization
parameters without change. Upon repeating the 20 computa-
tional runs again, we found that EKF has lost the target five
times, as shown on Fig. 7, with a loss probability of 25%,
while UKF has lost the target three times, as shown on
Fig. 8, with a loss probability of 15%.

Conclusions

This paper compared between the performances of three
estimating filters, namely EKF, UKF, and PF when track-
ing the azimuth of a real ground target, using a single
seismic sensor. The comparison showed that if the filters
were properly initialized, the three filters have similar perfor-
mances in estimating the mean value of the target azimuth. In
terms of filter consistency, EKF and PF (NP = 5000) showed
the same RMS levels. PF (NP = 1000) showed significantly
higher RMS value than the other filters, meaning that it is less
consistent than the others. Regarding the computational time,
EKF is superior to the other filters. The PF filter (NP = 5000)

is most demanding of computational time. This is the cost of
its improved performance.

Regarding the sensitivity of the filters to the initialization
parameters, EKF showed a larger probability in losing the
target than UKF if the filters were poorly initialized.
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