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Abstract
In this paper, we propose a convolutional neural network (CNN) based method that inspects non-patterned welding defects 
(craters, pores, foreign substances and fissures) on the surface of the engine transmission using a single RGB camera. The 
proposed method consists of two steps: first, extracting the welding area to be inspected from the captured image, and then 
determining whether the extracted area includes defects. In the first step, to extract the welding area from the captured 
image, a CNN based approach is proposed to detect a center of the engine transmission in the image. In the second stage, the 
extracted area is identified by another CNN as defective or non-defective. To train the second stage CNN stably, we propose 
a class-specific batch sampling method. With our sampling method, biased learning caused by data imbalance (number of 
collected defective images is much less than that of non-defective images) is effectively prevented. We evaluated our system 
with a large amount of samples (about 32,000 images) collected manually from the production line, and our system shows 
a remarkable performance in all experiments.

Keywords  Defect detection · Automatic inspection · Convolutional neural network · Machine vision · Image processing · 
Deep learning

List of symbols
i	� Input nodes of layer
o	� Output nodes of layer
w	� Learnable weights of layer
b	� Bias of layer
	� Activation function
c	� Estimated center of the engine transmission
ĉ	� Ground truth center of the engine transmission
N	� Number of training samples in a batch
r1	� Lower radius of the welding area
r2	� Upper radius of the welding area
θ1	� Lower angle of the welding area
θ2	� Upper angle of the welding area
p	� Probability distribution of the estimated class
p̂	� Probability distribution of the ground truth class

1  Introduction

Welding is a process of joining two metals by applying high 
temperature heat to the metal. This is a high-risk process 
for the worker because of the high temperature and high 
voltage working environment. Since the welding process 
is frequently required in the production of metal products, 
automation has been employed for a long time. However, 
various defects are frequently generated due to the character-
istics of welding. Certain defects, where the width or height 
of the welding bead deviates from a prescribed range, can be 
measured using a non-contact distance sensor such as a laser 
sensor. However, other defects such as craters, pores, foreign 
substances inflow, and fissures on the welding surface are 
cannot be inspected accurately by the distance sensor alone. 
These defects show various patterns of a visual texture on 
the welding surface. Therefore, it should be recognized (not 
measurement) through machine vision.

The machine vision process for detecting defects on the 
surface of material generally proceeds in two steps: feature 
extraction and defect detection. The feature extraction usu-
ally extracts features using general image processing tech-
niques such as smoothing, morphology, and edge detection 
[1–7]. Several methods [8–11] have been proposed a new 
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filter to extract a visual feature, or suggested a histogram-
based feature extraction method. Traditionally, defect detec-
tion methods [4–6, 9–11] have been used to analyze a defect 
pattern and set thresholds on defective images. Since 2010, 
a data-driven approach [2, 3, 8, 12, 13] has been rapidly 
developed to learn a visual feature extracted from defective 
and non-defective images. Since 2012, convolutional neu-
ral networks [14] (CNN) based methods have been widely 
researched [15–19]. Since CNN can perform end-to-end 
learning to directly learn the input image, it is capable of 
learning the decision boundary and the convolution filter 
that optimized for defect detection.

The goal of this paper is to detect non-patterned defects 
on the welding surface of the engine transmission using 
CNN. Figure 1 shows the welded engine transmission. To 
achieve this goal, we first collected approximately 32,000 
sample images from the production line, and manually 
labeled all samples for defective or non-defective. This 
large amount of samples allows CNN to learn various type 
of welding defects and ensure the reliability of the experi-
ments results. In order to train CNN stably with such a large 
number of samples, the data imbalance problem should be 
solved. Generally, non-defective images are collected more 
than defective images. Since CNN depends heavily on train-
ing data, this imbalance of training samples leads to biased 
learning. Existing methods [15–19] use mini batch sampling 
which assumes that the number of samples per class is uni-
formly distributed. Therefore, it is not suitable for the actual 
production line such as our problem. Another problem in our 
case (inspecting the surface of engine transmissions) is the 
position of the welding area in the image is not fixed due to 
the vibration of the image acquisition system. This problem 
occurs frequently, but most existing methods [15–19] do 
not consider this problem and commonly assume the entire 
region of the image as an inspection region. On the other 

hand, some methods [3, 12] deal with this problem. They 
detect a circular-shaped product in the image by using the 
edge-based image processing. However, in our case, the 
edges are blurred due to the rapid rotation of the engine 
transmission, and the edges are often occluded by foreign 
substances. Therefore, it is difficult to extract the welding 
area accurately by existing method.

To overcome these problems, we propose a CNN based 
method that detecting welding area. Unlike existing methods 
[15–19] that only use CNN for defect identification, we also 
use CNN to train the regression function to detect the center 
of the engine transmission. Since CNN extracts high-level 
features, the arc-shaped welding area can be detected well 
even if the edges are blurred or damaged or if the illumi-
nation changes are severe. Furthermore, to solve the data 
imbalance problem, we propose a class-specific batch sam-
pling method. Proposed sampling method keeps a proportion 
of defective and non-defective samples used in one step of 
learning constantly. Our sampling method is efficient and 
less complex than the hard negative mining technique of 
AdaBoost [13], which computes the weights of all training 
samples in every steps of learning.

2 � Related Works

Early vision-based welding defect inspection methods [1, 4] 
typically use the traditional image processing algorithms. 
These methods first blur the image using a Gaussian filter to 
remove a high frequency noise. Then, the image segmenta-
tion and morphological operations are used to enhance the 
features of the inspection target area and to suppress the 
features of the background area. The region of interest (RoI), 
which is the region to be inspected, is extracted from the 
preprocessed image. For defect detection, a threshold based 
heuristic method is used. The threshold is selected from the 
extracted RoI by analyzing a difference of the pixel intensity 
or a histogram. The selected threshold is used as a criterion 
for detecting a defect in the test image. Since these thresh-
old-based methods are sensitive to changes in the ambient 
environments such as illumination changes, the performance 
is frequently degraded. On the other hand, these threshold-
based methods can easily detect the characteristic defects 
even with a small number of samples.

Recently, the data-driven approach that collecting 
and learning a large number of samples has been widely 
researched. Especially, CNN based method [20] can learn 
a visual feature of the fine defects. This method models the 
defect inspection problem as an image classification prob-
lem. First, the sample images for training network are col-
lected and the collected images are classified according to 
the type of the defects. A CNN composed of multiple layers 
learns the weights in a gradient direction that minimizes 

welding area

Fig. 1   Top view of the welded engine transmission. The shape of the 
welding area is circular
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the loss of the cross-entropy objective function. This CNN-
based method is robust to illumination changes and shows 
a high performance even in complicated inspection prob-
lems. However, CNN-based method requires large number 
of training samples and takes a long time to tune a number 
of hyperparameters.

3 � Convolutional Neural Networks

In this section, we first briefly review CNN. CNN consists of 
one or more layers, and each layer has input nodes i and out-
put nodes o. Depending on the type of layer, the number of 
output nodes and the types of operations performed between 
nodes are different. There are layers that learn weights (con-
volution layer, fully-connected layer) and layers that only 
perform computation (max-pooling layer). Training is pro-
ceeded through a feed-forward and backward process. In for-
ward process, overall loss of CNN is computed. In backward 
process, loss is propagated backward by chain rules from the 
last layer to the front most layer. The weights of each layer 
are updated in the direction of the gradient.

3.1 � Convolution Layer

Convolution means a filtering operation between the input 
nodes and the mask. With a specific mask, convolution oper-
ations can blur an image, remove noises, and extract edges. 
Unlike normal filtering operations where the mask is pre-
defined, the mask of convolution layer is learnable weights.

In Eq. (1), * denotes a convolution operation,  denotes an 
activation function, w is a learnable mask, and b is a bias. 
Convolution layer extracts visual features from the input 
nodes and abstracts high-dimensional features by consecu-
tively placing the convolution layer.

3.2 � Max‑Pooling Layer

Pooling refers to a subsampling operation which reduces 
the input nodes. Max-pooling layer repeats the operation of 
computing the maximum value at some adjacent input nodes 
for the all input nodes.

In Eq. (2), k is the size of the pooling window. Max-pooling 
layer preserves meaningful features with high activation 
on the input nodes while eliminating unnecessary features. 
Therefore, max-pooling layer allows CNN to learn features 
that are invariant to positional changes and significantly 
reduces CNN’s learning complexity. In addition, since the 
layers placed after the max-pooling layer receive the reduced 

(1)o =  (i ∗ w + b)

(2)o = max(i0, i1,… , ik−1, ik)

nodes, the computation of CNN is considerably reduced. In 
general, max-pooling layer is located after the convolution 
layer to sample features that extracted by the convolution 
layer.

3.3 � Fully‑Connected Layer

Fully-connected layer completely connects the input nodes 
and the output nodes and performs the same operation as the 
multi-layer perceptron of the conventional neural network. 
The output node is represented by a weighted sum of all 
input nodes.

In Eq.  (3), · denotes a vector–matrix multiplication,  
denotes an activation function, w is a learnable weight, and 
b is a bias. Fully-connected layer can replace a classifier 
such as SVM [13] or Random Forest [8] and can be learned 
as a regression function. Typically, fully-connected layer is 
placed at the end of CNN after all convolution layers have 
extracted the features.

4 � Defect Inspection System for Welding 
Surface

In order to inspect the welding area of the engine transmis-
sion, we first construct an image acquisition system that cap-
tures the surface of the engine transmission. Figure 2 shows 
the configuration of our image acquisition system. In Fig. 3, 
the vision sensor continuously captures a partial portion of 
the rotating engine transmission to observe the entire weld-
ing area. Note that since a high-resolution image is required 
to detect a minute welding defect, it is impossible to capture 
the entire welding area at once.

The proposed defect inspection system consists of two 
steps: extracting the welding area from the collected image 

(3)o =  (i ⋅ w + b)

Vision Sensor

Illuminator

Shaft

Field of View

Welding Bead

Transmission

Fig. 2   Configuration of our image acquisition system
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and detecting the defect in the extracted welding area. Fig-
ure 4 shows the flow diagram of the overall system. In 
the first stage, the center of the engine transmission is 
estimated from the collected sample image. In the second 
stage, the Polar to Cartesian (P2C) transformation is per-
formed with the estimated center position and the radius of 
the engine transmission to extract the welding area. Then, 
the rectified welding area is identified as defective or non-
defective by CNN. The rest of this chapter describes each 
stage in more detail.

4.1 � Center Estimation

In the sample images collected from the production line, a 
positional error occurs due to the various types of mechani-
cal vibration. As shown in Fig. 5, the arc-shaped welding 
area, which is the region to be inspected, vibrates in x and y 
directions. To extract the welding area accurately from the 
collected images it is necessary to estimate the center of the 
engine transmission in the collected images. This section 
describes how to select the region of interest (RoI) from 
the input image and the structure of CNN for estimating the 
center of engine transmission.

4.1.1 � RoI Selection

To estimate the center of the circular transmission in the 
image, a circle or an arc must be included in the image. An 
arc that is long and not damaged by foreign substances or 
soot is a good clue for estimating the center of the transmis-
sion. In Fig. 6a, all four arcs with the same center are clearly 
visible. Thus, these arcs are good clues for estimating the 
center of the transmission. On the other hand, in Fig. 6b, l1 
and l4 are missing due to the change of transmission model. 
In Fig. 6c, l2, l3 and l4 are damaged due to foreign substances 
inflow, and in Fig. 6d, l1, l2 and l4 are occluded due to the 
soot. Based on these observations, l4 is often missed or dam-
aged. Also, if l4 is included in RoI, the size of the RoI region 
increases. Therefore, the region containing l1, l2 and l3 is 
selected as RoI for estimating the center, as shown in Fig. 6a.

welding area

field of view
captured image

Fig. 3   Field of view of the vision sensor and the captured image. 
Since the shaft and the vision sensor are fixed, the welding area in 
the captured image always appears in the horizontal direction and 
shows only a portion of the entire welding area. To capture the entire 
welding area, we continuously rotate the transmission and capture the 
transmission several times

sample image

RoI Extraction CNN

Polar to Cartesian
Transform

Center Estimation
Network

center point

RoI image

lower and upper radiuses
(static inputs)

Center Estimation Stage

Defect Inspection Stage

CNN
Defect Inspection

Network

OK
NGrectified welding area

welding area

Fig. 4   Overview of the proposed system. First, the sample image is 
input to the center estimation stage to find the center of the transmis-
sion. In the next defect inspection stage, the welding area is extracted 

from the sample image and classified whether the extracted welding 
area is defective or non-defective
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4.1.2 � CNN for Center Estimation

A CNN for estimating the center of the engine transmis-
sion (CE-CNN) consists of a convolution layer for fea-
ture extraction and a fully-connected layer for learning 
the regression function. Figure 7 shows the structure of 
the CE-CNN that receives RoI image and outputs c (x 
and y coordinates) the center of the transmission. Max-
pooling layers are placed after the convolution layers. To 
reduce the computational complexity and the number of 

learnable weights, the fully-connected layers that output 
x and y coordinates are constructed separately as in Park 
et al. [21]. In our case, the separation of x and y coordi-
nates increases the accuracy by 0.11% and reduces the 
number of trainable weights by about 35%. The activation 
function of all convolution and fully-connected layers is 
ReLU [22] except for the last fully-connected layer. Since 
CE-CNN should be learned to output the center c closest 
to the ground truth center ĉ of the transmission, the loss 
function is defined as Euclidean loss.

In Eq. (4), N is the number of training samples, and ĉ is the 
manually labeled ground truth center of the transmission. 
All the learnable weights in the network compute the gradi-
ent for losses and update the weights in the direction of loss 
reduction.

4.2 � Defect Inspection

Prior to inspecting the defect, the region other than the 
welding area (background) should be removed because it is 
not related to the defect detection and it interrupts the sta-
ble learning. In our system, the defect is detected through 
CNN, and CNN requires a rectified input image. In this 
section, to extract the arc-shaped welding area from the 
input image, we describe the process of P2C transforma-
tion and the structure of CNN for detecting the defects.

(4)L =
1

N

N∑

j=1

‖‖‖
ĉj − cj

‖‖‖

2

2

Fig. 5   Collected sample images. The arc-shaped red area represents 
the welding area to be inspected. Note that the position of the weld-
ing area in each sample is not fixed due to the vibration of the image 
acquisition system

(a) (b)

(c) (d)

RoI

Fig. 6   a A sample whose center of the engine transmission can be 
easily detected. All arcs (l1, l2, l3 and l4) are clearly visible. b–d Some 
arcs are missing, invisible or corrupted

Level 1~2
Input size 80 256 1
Type K S C
Conv 7 7 2 32
Conv 3 3 1 64
Conv 3 3 1 64
Pool 2 2 2 -

Level 3
Input size 20 64 64
Type K S C
Conv 3 3 1 128
Conv 3 3 1 128
Conv 3 3 1 128
Pool 2 2 2 -

Level 4
Input size 10 32 128
Type K S C
Conv 3 3 1 128
Conv 3 3 1 128
Conv 3 3 1 128
Pool 2 2 2 -

Input size 5 16 128
Type K S C
Conv 5 1 1 64
FC - - 1

Input size 5 16 128
Type K S C
Conv 1 16 1 64
FC - - 1

RoI image

center point

Notation
• size:
• : height
• : width
• : channel
• K: kernel size
• S: stride
• C: output channel

Fig. 7   Detailed structure of the center estimation network (CE-CNN)
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4.2.1 � P2C Transform

Polar coordinate system is a two-dimensional coordinate 
system that represents a point on a plane in terms of a radius 
and an angle axis. Since the engine transmission does not 
move in the z direction during the image acquisition (see 
Fig. 2), r1 and r2 in Fig. 8 are constants. θ1 is a angle between 
the x-axis and the point where the circle of radius r1 inter-
sects the right boundary of the image, and θ2 is the angle 
between the x-axis and the point where the circle of radius 
r1 intersects the left boundary of the image. P2C transform 
function that using the estimated center in the previous stage 
is as follows.

In Eq. (5), (r, θ) is the point on the Polar coordinate system 
and (x, y) is the point on the Cartesian coordinate system. 
After P2C transform, width and height of the transformed 
image are θ2–θ1 and r2–r1 respectively.

4.2.2 � CNN for Defect Inspection

A CNN for inspecting the defect (DI-CNN) consists of con-
volution layers for feature extraction and fully-connected lay-
ers for learning a classification function. Figure 9 shows the 
structure of the DI-CNN that receives the P2C transformed 

(5)
{

x = r cos 𝜃

y = r sin 𝜃
(r1 < r ≤ r2, 𝜃1 < 𝜃 ≤ 𝜃2)

image and outputs probability distribution p for the presence 
of the defect. Max-pooling layers are placed after the con-
volution layers. Activation function of all convolution and 
fully-connected layers is ReLU except for the last fully-con-
nected layer. The output node o of the last fully-connected 
layer forms a probability distribution p through the softmax 
function of Eq. (7). Since it is a probability distribution of 
two classes of defective or non-defective, p is a vector of size 
2 (p ϵ R2). The objective value p̂ is the probability distribu-
tion in the form of a one-hot vector, with a value of 1 for the 
element that corresponding to the ground truth class of the 
input image, and 0 for the other. The loss function is defined 
as a cross-entropy function that represents the distance of 
two probability distributions.

In Eq. (6), N is the number of training samples. All the learn-
able weights in the network compute the gradient for losses 
and update the weights in the direction of loss reduction.

4.3 � Implementation Details

4.3.1 � Class‑Specific Batch Sampling

CNN finds weights that minimize the loss of the training 
sample through the gradient descent method. The pro-
cess of computing the loss of training samples is called 

(6)L = −
1

N

N∑

j=1

[
p̂j log pj + (1 − p̂j) log(1 − pj)

]

(7)p =
eo

∑
k e

ok

Polar to Cartesian
Transform

Fig. 8   The arc-shaped welding area is rectified through Polar to Car-
tesian (P2C) transform. Note that the center c comes from the center 
estimation stage, and both the inner radius r1 and the outer radius r2 
are constant

Level 1~2
Input size 32 352 1
Type K S C
Conv 7 7 2 32
Conv 3 3 1 48
Conv 3 3 1 48
Pool 2 2 2 -

Level 3
Input size 8 88 48
Type K S C
Conv 3 3 1 64
Conv 3 3 1 64
Conv 3 3 1 64
Pool 2 2 2 -

Level 4
Input size 4 44 64
Type K S C
Conv 3 3 1 64
Conv 3 3 1 64
Conv 3 3 1 64
Pool 2 2 2 -

Input size 2 22 64
Type K S C
FC - - 256
FC - - 256
FC - - 2

P2C image

defect
probability distribution

Notation
• size:
• : height
• : width
• : channel
• K: kernel size
• S: stride
• C: output channel

Fig. 9   Detailed structure of the defect inspection network (DI-CNN)
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feed-forward, while the process of updating weights in the 
direction of decreasing loss is called feed-backward, and 
the gradient descent method repeats this forward–back-
ward process until CNN is converged. In this process, the 
increase in the number of training samples also increases 
the amount of computation (see Eqs. 4, 6). Thus, the mini-
batch gradient descent method is generally utilized. Mini-
batch gradient descent method uses a batch of the ran-
domly selected training sample, rather than using all the 
training samples in a single forward–backward procedure. 
Mini-batch gradient descent method is established when 
the distribution of the number of training samples per class 
is similar to the uniform distribution. If the number of 
training samples per class is unbalanced, the learning may 
be biased or fail, as shown in Fig. 10b.

In the samples collected from the production line, the 
number of defective samples is very small compared to 
the number of non-defective samples, thus conventional 
mini-batch sampling results in a biased learning. In order 
to solve this problem, we sample batches from each class 
individually as shown in Fig. 10c. With this class-spe-
cific sampling method, the number of samples per class 
included in the batch is always maintained uniformly, so 
that the biased learning can be effectively prevented.

4.3.2 � Data Augmentation

In the training of CNN, a large amount of training samples 
and various patterns of training samples are improve CNN’s 
generalization performance. However, the number of sam-
ples collected in the production line is limited (especially in 
the case of defective images). To overcome the lack of train-
ing samples, we used a data augmentation technique. Data 
augmentation generates additional fictitious training sam-
ples by randomly transforming and distorting a raw image 
sample. Random image transformation consists of rotation, 
translation, and scaling of an image. Random image dis-
tortion consists of adjusting brightness and contrast of an 
image.

In training of CNN, we first sample a batch from the train-
ing samples, and then the image augmentation methods are 
applied to the sampled batch. Therefore, newly generated 
samples are always used for each step of training. Through 
this data augmentation strategy, we supplemented insuffi-
cient defective samples and achieved high generalization 
performance.

4.3.3 � Parameters for Training

We used the gradient descent method to optimize our net-
work. Initial learning rate was set to 0.01 and continuously 
decreased by multiplying it by 0.1 when the current iteration 
reached 50% and 83% of the total 6000 iterations. Class-
specific batch sampling was used to form a batch. One batch 
has 128 samples consisting of 32 defective samples and 96 
non-defective samples. Momentum is set to 0.9 and a weight 
decay is set to 0.0005, which were the same as AlexNet [14].

5 � Experiments

5.1 � Dataset

In the experiment, 32,014 transmission images that collected 
directly from the production line were used. The collected 
images were manually labeled as OK (indicating non-defec-
tive) or NG (indicating defective). The number of labeled 
OK samples is 30,937 and the number of NG samples is 
1077. Due to the nature of the high temperature welding 
process for metals, some of the collected images contain a 
severe noise, such as soot and light reflection. Figure 11 (a) 
shows a normal OK, (b) shows a sooty OK, and (c) shows 
an OK where light is reflected in the welding area. Figure 11 
(d) is an NG with a missing welding, (e) is an NG where a 
foreign substance is located on the welding area, and (f) is 
NG where a crater was generated.
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Fig. 10   Comparison of three types of sampling methods. a Sampling 
all samples always results in a biased learning. b Mini-batch sampling 
sometimes causes a biased learning or training fail. c Proposed class-
specific batch sampling keeps the number of samples per class con-
tained in the batch uniformly to prevent the biased learning
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5.2 � Evaluation of Center Estimation

We conducted a comparative experiment with an existing 
method to evaluate the center estimation performance of our 
CE-CNN. First, in order to train the CE-CNN, we selected 
1000 images from the 32,014 transmission images and man-
ually labeled the center position. The selected 1000 images 
have various illumination conditions and consist of 341 NG 
images and 659 OK images. The labeling criteria for the 
center position are l1, l2 and l3 arcs in Fig. 6. A point closest 
to the center of the three arcs was labeled as the center of 
the engine transmission. We randomly selected 900 images 
for the training and 100 images for the validation for tenfold 
cross validation. For all training images, data augmentation 
techniques that randomly translating an image and distorting 
brightness and contrast were applied. The evaluation metric 
was the root mean squared error of Eq. (8).

In Eq. (8), ĉ is the ground truth center and c is the estimated 
center of the engine transmission. Note that since the obser-
vation distance between the vision sensor and the surface of 

(8)error = ‖‖ĉ − c2
‖‖

the engine transmission is always fixed in the image acquisi-
tion system, the scale of the engine transmission in the all 
images is also fixed. Thus, we do not use the normalization 
term in Eq. (8).

The comparative experiment was performed with Hough 
circle detection method [23]. Hough circle is a method of 
accumulating the edges that extracted from the image in the 
Hough space and detecting N circles with the most votes. 
For fair comparison with the proposed method using train-
ing data, among the circles detected by the Hough circle, 
a circle nearest to the mean center of the training data was 
finally selected.

The mean error and the processing speed of each method 
are shown in Table 1, and the center estimation results are 
shown in Figs. 12 and 13. In Fig. 12a, Hough circle does not 
detect the exact center position because the edge was not 
extracted correctly due to the dark illumination. On the other 
hand, since the CE-CNN have learned with the distorted 
samples (brightness and contrast), CE-CNN estimated the 
center accurately, even in the blurry image. In Fig. 12b, there 
are dense circular patterns on the surface of the transmission 
between the arc l2 and the arc l3. Since the space between the 
dense circular patterns are too narrow, shifted center is esti-
mated as a result. In the training of the CE-CNN, there were 
many samples like the one shown in Fig. 12b, and consecu-
tive circular patterns can be used as good texture features. 
Thus, CE-CNN estimated the accurate center position.

We have further tested CE-CNN with several sample 
images of various illumination. Figure 13 shows the center 
estimation results. CE-CNN shows good estimation results 
in all images. Since randomly augmented samples of differ-
ent brightness are used in the training of CE-CNN, CE-CNN 
shows good performance even in the samples of dynamic 
illumination. Note that the brightness change is not severe 
in the test images in Fig. 13 because the illuminator has 
installed on our image acquisition system.

Regarding the processing time, CE-CNN was very fast 
due to GPU parallelism. Hough circle was relatively slow 
because all operations should be processed sequentially 
within the CPU due to the voting operation, which is dif-
ficult to parallelize.

Hough transform has one important advantage. Hough 
transform is easy to apply because it does not require a 

NG

NGNG

OK

OK OK

(b)(a)

(d)(c)

(f)(e)

Fig. 11   Various patterns of OK (non-defective) and NG (defective) 
sample images. a normal OK, b sooty OK, c bright OK, d NG with 
a missing welding, e NG where a foreign substance is located on the 
welding area, f NG where a crater was generated

Table 1   Comparative evaluation results of center estimation

Resolution of the test image is 2584 × 1944. Note that reported results 
are average performance of tenfold cross validation

Error (pixel) Time (s/image)

Hough circle [23]—CPU 26.02 0.3509
Ours—CPU 5.41 0.0214
Ours—GPU 5.41 0.0073
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large number of training samples. On the other hand, pro-
posed CE-CNN has higher accuracy and faster processing 
time. Thus, which method to use is a trade-off problem. In 
the inspection problem of the defective automobile engine 
transmission, accuracy is very important because the risk 
for safety accident is high when the defective product is 
predicted as a non-defective product. Therefore, even if it 
takes some time to collect the training samples, it is right 
to use the proposed CE-CNN because the CE-CNN shows 
better detection performance than the Hough transform. 

CE-CNN requires only 1000 sample images for training and 
this amount of sample images can be collected in half a day.

5.3 � Evaluation of Defect Inspection

We conducted a comparative experiment with existing meth-
ods to verify the defect inspection performance of DI-CNN. 
All 32,014 images were used for the training and valida-
tion of DI-CNN. For tenfold cross validation, we randomly 
selected 28,809 images for the training and 3201 images for 
the validation. In order to extract the welding area from the 
image, the center estimation process of CE-CNN and P2C 
transformation were performed on all images. All data aug-
mentation techniques were applied to the training images. 
Some of the training images are shown in Fig. 14. The evalu-
ation metrics we used were true positive rate (TPR) and true 
negative rate (TNR). TPR is a ratio of the case where the 
image predicted as OK is actually OK, and TNR is a ratio 
of the case where the image predicted as NG is actually NG.

In Eq. (9), nTP is the number of correctly classified OK sam-
ples, and nFN is the number of misclassified OK samples. 
nTN is the number of correctly classified NG samples, and 
nFP is the number of misclassified NG samples. Since TPR 
and TNR are mutually complementary, adjustment of the 
threshold that classifies OK and NG sample changes TPR 

(9)
TPR =

nTP

nTP+nFN

TNR =
nTN

nTN+nFP

Hough circle20 oursground truth

(a)

(b)

Fig. 12   Center estimation results of Hough circle and CE-CNN. The 
two red lines represent the inner arc and the outer arc of the welding 
area. If the center is correctly estimated, the welding area is located 
between the two arcs, like the ground truth image (2nd column). Con-

ventional Hough circle (3th column) does not detect the center cor-
rectly for cases of a if the RoI (1st column) is too dark or b if dense 
circular patterns are observed in the RoI. On the other hand, our CE-
CNN (4th column) estimates the center accurately in all cases

Fig. 13   Some center estimation results of CE-CNN. Note that the 
brightness of RoI (green box) varies in the sample images. CE-CNN 
estimates the center well even for the sample images under various 
and dynamic illumination
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and TNR. In a general classification problem, the threshold 
is selected to make TPR and TNR are balanced. However, 
in our case (production line), the threshold for maximizing 
TNR should be selected since nFP should be minimized.

In the comparative experiment, CNN based methods 
[15–17] and the classic feature based methods [13] were 
used. The classic feature based method [13] extracts the 
HOG feature from the image and learns a SVM classifier. 
We also added an experiment using the LBP feature that 

describes the texture patterns well. Differences between 
the CNN based methods are their network structure and 
the types of defects. The process for preparing the training 
samples and the optimization process of the networks are 
the same with the experiments of CE-CNN. For fair com-
parison with the proposed method, the P2C transformed 
training images were used and the same data augmentation 
techniques were used for all methods. We also conducted a 
comparative experiment between the mini-batch sampling 
method and our class-specific batch sampling method.

The results of the comparative experiments are shown 
in Table 2. The HOG feature based method [13] showed 
the lowest performance. HOG feature is not suitable for the 
defect inspection because it is mainly used for detecting the 
upright objects such as humans. LBP feature is suitable for 
pattern inspection, so it provides higher performance than 
the HOG feature, but it showed a not sufficient performance 
for using production line. On the other hand, all CNN based 
methods [15–17] showed an outstanding performance. Since 
the binary classification problem does not require a large 
network, all CNN based methods showed little variation in 
performance. In the comparison of the sampling methods, 
TPR was increased in all cases of using the class-specific 
batch sampling method. Our class-specific batch sampling 
method improved the performance in all CNN-based meth-
ods by preventing the network from being biased toward the 
large amount of OK samples.

6 � Conclusions

In this paper, we proposed the CNN based method for the 
automatic inspection of the welding defects. To remove the 
background region from the collected images and to rectify 
the welding area, the center of the engine transmission was 
estimated by CE-CNN, and P2C transformation was per-
formed. Then, the CNN based classifier is learned to inspect 
the welding defects in the extracted area. The imbalance 

(a) OK images

(b) NG images

Fig. 14   Sample images used to train DI-CNN. All images are gener-
ated through P2C transformation based on the estimated center. Note 
that the samples images contain only the welding area

Table 2   Results of comparative 
evaluation of defect inspection

Note that reported results are the average performance of tenfold cross validation
The results shown in bold indicate the highest performance in that column

Number of weights Mini-batch sampling Class-specific batch 
sampling

TPR (%) TNR (%) TPR (%) TNR (%)

HOG + SVM [13] – 73.52 96.23 – –
LBP + SVM – 78.23 97.84 – –
CNN [15] 546,578 96.87 99.73 98.21 100.00
CNN [16] 711,652 97.55 99.64 98.64 100.00
CNN [17] 653,522 97.79 99.73 98.77 100.00
Ours 1,036,066 98.83 99.73 99.34 100.00
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problem in the collection of the defective and the non-defec-
tive samples was successfully solved using a class-specific 
sampling method. The proposed system shows a remarkable 
performance in all experiments.
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