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Abstract
Location semantics are important for the delivery of context-aware ubiquitous services to users, such as the contextually-
relevant handling of interruptions on mobile devices. For such purposes, user coordinates can be used to query global venue 
databases, to get back the likely venue (and its categories) where the user is located. This potentially compromises user 
privacy, allowing service providers to track users. We analyse data from a longitudinal study of 44 participants (university 
students and staff in Patras, Greece), including notification handling, device state and location information. Using semantic 
labels from the Google Places API as ground truth, we demonstrate that it is possible to semantically label a user’s location 
based on their notification handling behaviour, even when location coordinates are obfuscated so as not to precisely match 
known venue locations. On the other hand, the reliability of this ground truth is questioned through a crowdsourcing exercise. 
We demonstrate that Places API data can only be reliably used for some venue categories, and recommend best practices for 
using such data to establish ground truth in location context aware services.

Keywords Interruption management · Mobile notifications · Semantic location labelling · Location Services

1 Introduction

As users of mobile devices roam through urban environ-
ments, a wealth of data can be collected from their devices 
about their current whereabouts and activities. While it 
is relatively easy to obtain the location of a user, within a 
given accuracy estimate (e.g. through GPS, connection to 
Wi-Fi or 4G networks), a harder task is to assign semantics 
to the user’s location. The typical method of resolving this, 

is by comparing the user’s coordinates against a database 
of known locations, and there are several commercial ser-
vices that offer this type of information (e.g. Google Places 
API). Therefore, given a user’s location coordinates, it is 
relatively easy to obtain the venue and venue type that a 
user might currently be at, and therefore to infer their cur-
rent activity (e.g., they are at Cinema X, and thus quite likely 
watching a movie). More formally, from positioning data 
(coordinates), one could infer various abstractions of the 
location semantics (e.g. the venue name, the venue type, the 
venue’s function, the purpose of visitation, etc.). Naturally, 
it’s not always useful, or necessary, to obtain a complete 
picture of all semantic knowledge about a location, in order 
to offer a ubiquitous service. In fact, respect for the user’s 
privacy requires that only the knowledge which is necessary 
to deliver a service should be obtained, deduced or inferred 
by a provider.

To demonstrate, let’s consider the example of offering 
contextually relevant notification handling to users. Cur-
rently, users are left on their own in terms of how they 
might manage notifications under different contexts (Auda 
et al. 2018). However, automatic notification management 
can offer opportunities for a better and more socially aware 
mobile use experience (Anderson et al. 2018). Taking the 
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cinema example mentioned earlier, a device could auto-
matically suppress incoming notifications which are not 
relevant at the current location, as per Saikia and She 
(2017), or automatically set the device ringer mode to 
silent for the duration of the user’s stay at that location.

There are several confounding factors to being able to 
achieve this goal. First, user location coordinates might 
not be available, or accurate enough to provide a reason-
able estimate of venue (e.g. the user might be indoors, or 
the user might be connected to a sparse 4G network only). 
Even more, for services such as this to work, the user’s 
location needs to be sent to a remote server, potentially 
compromising user privacy. Finally, it’s not really neces-
sary for the service to know exactly which cinema the user 
is at—only the fact that the user is located at a cinema is 
enough for the service to fulfil its purpose.

As discussed in existing literature, users receive a sig-
nificant volume of notifications during the day, from on-
device events (e.g. network availability, battery status) 
and external services (e.g. instant messaging), which can 
reach several hundreds (Visuri et al. 2019). These events 
can become opportune moments for assessing the user’s 
location. The user behaviour in handling these notification 
events can vary significantly across time (Komninos et al. 
2018), and we can assume that the behavioural choices are 
influenced by the location context and semantics as well, 
even though there is no previous literature to investigate 
this. For example, while watching a movie at the cinema, 
the user might take longer to notice an incoming notifi-
cation since their device will probably be set to “silent 
mode” and tucked away, or even if they do, they might 
chose to ignore it until the show is over.

This paper is an extended version of our previous pub-
lication at AmI2019 (Komninos et al. 2019). In that paper, 
and also presented here in Sects. 3 and 4, we explore the 
use of notification handling behaviour and device state 
information, as an additional source of information for 
overcoming problems with user coordinate availability and 
accuracy. Using supervised machine learning algorithms 
on a dataset of notification and location samples from sev-
eral users, we predict user location semantics and demon-
strate that notification handling behaviour can overcome 
the problem of location accuracy. Additional contributions 
in this paper, on top of our previously reported findings, 
are presented in Sect. 5. They constitute additional work 
that address a major limitation of our previous publication, 
namely the reliance on Google Places API as a source 
for location semantic labels. Using a crowdsourcing tech-
nique, we find that a large number of venues are incor-
rectly labelled by the API. As a result, we are able to sig-
nificantly improve the reliability of our machine-learning 
approach, using the crowdsourced semantic labels.

2  Related work

Discovering location semantics is the research effort 
directed towards assigning categorical labels (e.g. 
“Home”, “School”, “Shop”) to venues represented in a 
dataset with at least a set of coordinates (latitude, longi-
tude) and optionally a given name (e.g. “Mike’s cafe”). 
Location semantics are important for a range of location 
based services, such as point-of-interest (POI) search 
and recommendation. Commercial applications such as 
Google Maps, Foursquare and Tripadvisor maintain large 
databases of POIs, relying largely on users adding and/
or modifying these. One issue with this approach is that 
represented venues are not always correctly semantically 
labelled by the users, and also the reliance on user effort 
means that many real-world POIs may be often left out 
of the service. Previous research has frequently focused 
on the automatic semantic labelling of locations, with a 
variety of means. An overview of related work, including 
datasets used, classifier types, feature types and result-
ing performance is shown in Table 1. Researchers have 
examined features based on data “fingerprints” left by 
users, such as user behaviour (e.g. check-in locations and 
temporal patterns), linguistic behaviour (tweet content), 
relationship to other users also present at a location, which 
are easy to mine from publicly available datasets. Others 
have supplemented these with additional hardware-based 
features from users’ mobiles, such as application use, call-
ing and texting behaviour, battery status etc. These consti-
tute a more significant invasion of privacy and are hard to 
collect at a large scale for research use.

There are some common themes in the previous litera-
ture, which can be identified. First, where multiple clas-
sifiers have been used (e.g. decision trees, SVMs, random 
forests), the results do not seem to vary significantly. Most 
often, it is the type and number of features introduced to 
the model which have the most impact. Secondly, a larger 
number of categories makes the likelihood of misclassifi-
cations higher. Another issue is that in most papers, there 
is a significant class imbalance in the datasets used. This is 
somewhat problematic since in most reviewed works, the 
measure of accuracy is used, which is heavily influenced 
by the prevalence of certain categories (Akosa 2017). 
Hence, comparisons with the performance of these previ-
ous approaches is done with some hesitation.

To the best of our knowledge, the use of notification 
handling behaviour as a feature for semantic place label-
ling has not been investigated in the past. Hence the goal 
of our paper is to explore how this information can be used 
for the task of semantic place labelling. We also attempt 
classification at a more fine-grained level (24 categories). 
Further, rather than taking the root-level categories from 
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category hierarchies, or focusing only on the top-N most 
frequent categories in the dataset, as done in many papers, 
we adopt a more methodical approach to deriving the final 
categories to use.

3  Study methodology

3.1  Apparatus and participants

We developed a UI-less notification logging application for 
Android devices, which runs unobtrusively on the device as 
a background service. We collected features about incoming 
notifications and the user’s device state at the time of issue. 
For this, we used the Android NotificationListener 
service, which allows our application to be informed with 
the details of every notification, as soon as it is issued by 
any app or the operating system. The Notification-
Listener service returns a Notification object which 
contains all the necessary information, especially about pro-
grammed modality, in a consistent way across all API ver-
sions. We also employed a range of other Android APIs to 
capture device context from hardware states (e.g. Power-
Manager, DisplayManager).

We also exploited the Google Places API to retrieve 
details about the user’s presumed location at the time of 
notification issue. This API requests the user’s location coor-
dinates, and returns a list of likely places where the user is 
located, along with a confidence level. We logged the place 
which had the highest confidence value. The data features 
collected are discussed in detail in section 3.3. All data was 
uploaded to a remote server at frequent intervals during the 
day, provided the user had wi-fi connectivity.

A call for participation was issued to undergraduate stu-
dents at our local university. The application was installed 
on their device, a consent form was signed and participants 
were instructed that they could quit the study at any time. 
The study automatically ended after 3 months of use. They 
were requested to leave location services enabled on their 

device for the duration of the study, although we did not 
enforce this condition. In total, 44 participants took part 
in the study (26 female). From this set of participants, we 
excluded several participants who participated for fewer 
than 10 days and who provided fewer than 50 notification 
log entries, resulting in a subset of 31 participants. Partici-
pants provided data that spanned an average of 30.87 days 
(sd = 16.15, min = 13, max = 84).

3.2  Dataset preparation

In total we collected 204,074 notifications from the users. In 
the dataset, we noticed that a significant number of notifica-
tions (38,400) were issued by the system and immediately 
dismissed. This phenomenon was observed for all users, 
although for some users the proportion of such notifications 
was unusually large. We are not certain why this happens. 
Further investigation of the package name showed that some 
system applications might be issuing such notifications (per-
haps as a means of interprocess communication), although 
it might be the case that a user is also manually quickly 
dismissing some notifications (within the resolution of 1 s). 
We decided to exclude such notifications from the dataset. 
Further, we removed from the dataset all notifications for 
which the “flag” feature values indicated that they were 
ongoing events and not user-dismissable (e.g. an ongoing 
phonecall or download). These notifications are automati-
cally dismissed by the system and hence offer no value to our 
research goal. From the remaining notifications, a signifi-
cant number did not contain location information, since the 
user’s location services might have been switched off at the 
time, or the service might not have been available. We also 
excluded these from the dataset. After these exclusions, the 
dataset contained 59,221 user-dismissed notifications with 
location details.

Examining the pruned dataset, we observed that 
the average response time to notifications is 1366.93s 
(sd  =  11,255.82), with a maximum response time of 
562,302 s. A histogram of response time to notifications 

Fig. 1  Distribution of response time (in seconds) to notifications (100 bins)
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shows a power-law distribution (Fig. 1). Based on this obser-
vation, we limited the dataset to only notifications that were 
attended to within 3 h of issue, resulting in 57,737 notifica-
tions (97.5% of the original dataset). As can be seen, even 
after culling the dataset further, the distribution of response 
times to notifications maintains a power-law shape. This 
finding is consistent with previous works such as (Komni-
nos et al. 2018).

3.3  Dataset features

To address the problem at hand, we used raw and synthetic 
features obtained from the user’s device. To begin, the raw 
data features collected from users are shown in Table 2. 
Something to note here is that while all devices support 
sound and vibration for notifications, not all devices incor-
porate the status LED. All except two of our participants 
had phones incorporating a status LED, hence we maintain 
this feature.

From these raw features we synthesized a further set of 
features, to create the final dataset to be used for prediction, 
as shown in Table 3. First, we used the current device ringer 
mode and programmed notification modalities (custom or 
default) to determine the true modalities used to deliver the 

notification, as per (Komninos et al. 2018). An illustration 
of how the combination of the raw features for modality 
and ringer mode result into the synthetic modality features 
is shown in Table 4. Further, a place can belong to multi-
ple categories. These are reported in a non-ordered list by 
Google, ostensibly therefore the order of appearance shows 
the prevalence of a category type (e.g. “Bar, Restaurant, 
Cafe” shows that a place is primarily of type “Bar”, but also 
functions as a restaurant and cafe). We therefore extract the 
primary category of a venue. In doing so, we observed that 
many places included the vague category “Point of Interest”. 
Hence, where this was the primary category, it was replaced 
by the immediately subsequent category type.

Another note here relates to Google’s list of categories, 
where 127 different categories are listed. Predicting on 
127 category classes is possible, but presents an unneces-
sary complexity to the problem, as many venue catego-
ries are quite similar in nature and it can be expected that 
a user will exhibit similar behavioural patterns in these. 
For example, “Church” and “Mosque” are both places of 
worship, where devices are typically kept on silent, and 
users do not readily engage in notification handling. We 
therefore attempted to group the individual categories into 
larger sets, as per Table 5. Ultimately, we assigned to each 

Table 2  Raw data features collected

Notification details

Time posted Unix timestamp of notification issue
Time dismissed Unix timestamp of notification dismissal
Package name Application that created the notification
Sound Whether the notification was programmed to issue a custom sound alert
LED Whether the notification was programmed to issue a custom status LED blink pattern
Vibration Whether the notification was programmed to issue a custom vibration pattern
DefaultSound Whether the notification was programmed to use the default sound alert
DefaultLED Whether the notification was programmed to use the default status LED blink pattern
DefaultVibration Whether the notification was programmed to use the default vibration pattern
Priority The notification priority category
Notification flags Additional information about the notification

Device state

Ringer mode The current device ringer mode (normal, vibrate, silent)
Idle state Whether the device is in an idle state
Interactive state Whether the device is in a state ready to interact with the user (screen on, processor 

awake)
Lockscreen notifications allowed Whether notifications are visible from the user’s lock screen

Location details

Place name Name of the most likely current place
Place categories The categories assigned to the most likely current place
Confidence Confidence of reporting the most likely current place
Latitude Decimal coordinates of the most likely current place
Longitude Decimal coordinates of the most likely current place
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place the super-category to which it belongs, based on its 
primary category type. Ultimately, we assigned to each 
place the super-category to which it belongs, based on 
its primary category type. An exception to this were the 
“Miscellaneous” and “Entertainment areas” categories, 
since for these the user behaviour might be quite different 
depending on conditions (e.g. a user probably can’t notice 
a notification in a night club as easily as in a cafe), hence 
for these we used the primary categories ungrouped. As a 
result, we find that the user notifications were issued at 24 
distinct place categories and distributed unevenly (Table 5, 
non-grouped primary categories capitalised). Finally, it’s 
important to note that the location coordinates collected by 
our app, are not the user’s actual coordinates, but the coor-
dinates of the venue that is the user’s most likely current 

place, as reported back by Google’s API. We do not store 
the user’s actual location coordinates for privacy reasons.

As can be seen in Fig. 2a, users receive a varying amount 
of notifications throughout the day. The distribution is simi-
lar to that reported in previous literature, such as (Celik and 
Incel 2018). More importantly, we note that the diurnal dis-
tribution varies distinctly across categories, as exemplified 
in Fig. 2b. This is an expected result, since different venue 
types exhibit different diurnal visitation patterns (Falcone 
et al. 2014). Further, we note the distribution of response 
times to various notifications on a hourly basis (Fig. 3a). The 
pattern is similar to the findings in (Komninos et al. 2018), 
showing the distinct user behaviour in handling notifications 
throughout the day. Distinct response time averages are also 
noted across the categories (Fig. 3b shows three category 

Table 3  Final feature set

Notification details

Response time Time dismissed – time posted Synthetic
Hour issued Hour of day at notification issue [0–23] Synthetic
Day of week issued Day of week at notification issue [1–7] Synthetic
Had Sound Whether the notification was issued with a sound Synthetic
Had LED Whether the notification was issued with a LED blinking pattern Synthetic
Had Vibration Whether the notification was issued with a vibration pattern Synthetic
Priority The notification priority category Raw

Device state

Idle state Whether the device is in an idle state Raw
Interactive state Whether the device is in a state ready to interact with the user (screen on, processor 

awake)
Raw

Lockscreen notifications allowed Whether notifications are visible from the user’s lock screen Raw

Location details

Place category The primary place category Synthetic
Latitude Decimal coordinates of the most likely current place Raw
Longitude Decimal coordinates of the most likely current place Raw

Table 4  An example of synthesis of the true modality feature val-
ues, based on raw feature values at the time of notification issue. The 
example assumes that the app developer specified that a notification 

should be issued with a sound clip, vibration pattern and LED blink 
pattern, using programmer-specified or system default options for 
each

Raw feature values example

Sound Vibration LED

Programmed modality 1 1 1

Synthetic feature values based on ringer mode

Had_Sound Had_Vibration Had_LED

Ringer mode “Normal” 1 1 1
Ringer mode “Vibrate” 0 1 1
Ringer mode “Silent” 0 0 1
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Table 5  Grouped place categories

Category group Categories Samples

Accomodation Campground, Lodging, Room, Rv Park 1,350
Address Administrative Area Level 1, Administrative Area Level 2, Administrative Area Level 3, Country, Geocode, 

Locality, Political, Post Box, Postal Code, Postal Code Prefix, Postal Town, Street Address, Sublocality, Sub-
locality Level 1, Sublocality Level 2, Sublocality Level 3, Sublocality Level 4, Sublocality Level 5, Synthetic 
Geocode

86

Civil Services City Hall, Courthouse, Embassy, Fire Station, Local Government Office, Police, Post Office 89
Contractors Electrician, General Contractor, Moving Company, Painter, Plumber, Roofing Contractor 76
Education Library, School, University 11,996
Entertainment Areas Amusement Park, Aquarium, Bar, Bowling Alley, Cafe, Casino, Gym, Movie Theater, Museum, Night Club, 

Restaurant, Stadium, Zoo
11,157

Financial Services Bank, Atm, Finance 93
Healthcare Dentist, Doctor, Health, Hospital, Physiotherapist 617
Miscellaneous Establishment, Floor, Other, Point Of Interest, Premise, Subpremise 18,347
Outdoor Areas Colloquial Area, Natural Feature, Neighborhood, Park, Parking, Route 516
Personal Care Beauty Salon, Hair Care, Spa 1104
Place Of Worship Cemetery, Church, Hindu Temple, Mosque, Place Of Worship, Synagogue 758
Professional Services Lawyer, Accounting, Car Dealer, Car Rental, Car Repair, Car Wash, Funeral Home, Insurance Agency, Laun-

dry, Locksmith, Real Estate Agency, Storage, Travel Agency, Veterinary Care
659

Public Transport Airport, Bus Station, Intersection, Subway Station, Taxi Stand, Train Station, Transit Station 580
Shopping Art Gallery, Bakery, Bicycle Store, Book Store, Clothing Store, Convenience Store, Department Store, 

Electronics Store, Florist, Food, Furniture Store, Gas Station, Grocery Or Supermarket, Hardware Store, 
Home Goods Store, Jewelry Store, Liquor Store, Meal Delivery, Meal Takeaway, Movie Rental, Pet Store, 
Pharmacy, Shoe Store, Shopping Mall, Store

10,309

Fig. 2  Diurnal distribution of notifications
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examples). Furthermore, while it could be intuitively 
assumed that a “Normal” ringer mode might lead to shorter 
reactions to notifications, we note that the mean response 
time is not drastically different (Fig. 4a). The examples in 
Fig. 4b demonstrate that attentiveness to the device is not 

simply dependent on device ringer mode, but is mediated by 
other factors, such as time of day, current user activity and/or 
social norms. For example, while response times are largely 
similar at cafes with any ringer mode, we can see that it is 
much longer with the ringer mode on Silent when the users 

Fig. 3  Distribution of response time to notifications

Fig. 4  Average response time to notifications per ringer mode
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are at an education venue. The placement of the device on 
Silent and the long response time demonstrate high engage-
ment with the task context at hand (learning).

4  Study 1: Predicting user location category

In this section, we attempt to predict the category of the 
user’s current location based on notification handling fea-
tures in Table 3. This is, in essence, a multinomial classifica-
tion task using Place Category as the target. Implementa-
tion of the analysis process was done with the RapidMinder 
software platform.

4.1  Classifier and parameter selection

We used decision tree classifiers, since they have been 
shown to demonstrate comparable performance to other 
methods (Falcone et al. 2014). To tune the classifier hyper-
parameters, we employed RapidMiner’s evolutionary param-
eter tuning process on a small hold-out dataset. The final 
parameters used for the decision tree are Maximal depth: 23, 
Minimal gain: 0.013, Minimal leaf size: 2, Minimal split 
size: 4. Throughout the analysis reported in the following 
sections, we used a tenfold cross-validation approach. We 
note that there is an imbalance in the frequency of location 
categories (Table 5), hence for performance we adopt the 
F-score (macro-averaged), which is more appropriate for 
imbalanced datasets (He and Ma 2013), compared to the 
accuracy measure usually encountered in previous literature.

4.2  Decision tree modelling performance

As a starting point, we apply the decision tree classification 
algorithm to the entire dataset. To clarify the process further, 
the classifier is fed with all features as shown in Table 3, and 
returns the predicted place category. We assume the user’s 
location is the same as each venue’s reported coordinates. 

Therefore, given the user’s notification handling behaviour, 
their location, and the device state, we attempt to predict the 
type of venue that they are currently at. Overall, we obtained 
a macro F-score � . 88.96%, � = 11.05% ). Examining the 
results, we wondered whether the broader categories “Mis-
cellaneous” and “Entertainment areas” categories might be 
best split up, since for these the user behaviour might be 
quite different depending on conditions (e.g. a user prob-
ably can’t notice a notification in a night club as easily as in 
a cafe), hence for the rest of the analysis, we used these two 
categories ungrouped.

As seen in Fig. 5, the classification performance remains 
quite good for most categories (F-score macro � . 82.9%, 
� = 12.6% ). During analysis, we noted that there is some 
discrepancy in the confidence reported for the most likely 
current user place, across the place categories (Fig. 6). 
For this reason, we decided to repeat the analysis in mul-
tiple steps, each time limiting the dataset to contain only 
notifications reported where the most likely current user 
place was reported above a certain confidence threshold 
T ∈ [0, 0.1, ...0.9] . The results are shown in Fig. 7. We note 
that the average F-score is not majorly affected by the reduc-
tion of the dataset, however the best nominal performance 
is achieved when considering venues reported with a con-
fidence threshold T ≥ 0.7 ( � = 84.6% , � = 13.51% , dataset 
size = 13,558 entries).

4.3  Modelling with inaccurate user coordinates

In the preceding analysis, we assumed that a user’s current 
coordinates are the same as those corresponding to places 
reported by Google’s API. Of course, it would be rare that 
the user’s actual coordinates would be precisely the same as 
those that match a specific venue, especially for venues that 
cover a large area (e.g. outdoor parks). To overcome this 
limitation, we proceeded to modify the user’s coordinates 
by adding random noise to the known place coordinates 
(latitude and longitude). This noise was applied to each 

Fig. 5  Average F-score using decision trees, all notifications
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coordinate component individually, following a Gaussian 
distribution with a standard deviation set by us. The noise 
standard deviation was calculated using the formula n × 10−x 
and was applied to each coordinate component (latitude and 
longitude), therefore the resulting random coordinates would 
fall within a certain circular range of a specific venue. An 
example of how this process generates the random user coor-
dinates within a gaussian distance distribution of a specific 
venue is shown in Table 6. Distance is calculated using the 
Haversine formula.

To assess the effect of imprecise user coordinates, we 
repeated the analysis for each value of n ∈ [1, 2, .., 9] , lim-
iting the dataset to locations with a confidence threshold 

Fig. 6  Average confidence of most likely user place, all notifications, error band at 95% c.i

Fig. 7  Average F-score using 
decision trees (error bars at 95% 
c.i.)

Table 6  Sample random coordinate range generation

Noise � Lat Lng Dist. at 1 � (m)

0 (Place coords.) 38.2836678 21.7889705 0
1.0 × 10−6 38.28370608 21.78899229 4.7
2.0 × 10−6 38.28374437 21.78901408 9.3
3.0 × 10−6 38.28378265 21.78903587 14.0
4.0 × 10−6 38.28382093 21.78905766 18.6
5.0 × 10−6 38.28385922 21.78907944 23.3

Fig. 8  Average F-score using 
decision trees, under random 
coordinate input noise (error 
band at 95% c.i.)



15697Where am I? Predicting user location semantics from engagement with smartphone notifications  

1 3

T ≥ 0.7 , since this achieved the best nominal performance 
in the preceding analysis. As can be seen in Fig. 8, the algo-
rithm remains quite robust when adding noise to the decimal 
coordinates with a � ≤ 9 × 10−6 ( ≈42m), after which, per-
formance begins to deteriorate.

At this point, it becomes interesting to observe which 
categories suffer the heaviest penalty then the user coor-
dinates are further away from the actual place coordinates. 
Taking the largest noise � distance (233.1m), we note that 
the categories Place of worship, Outdoor areas, Profes-
sional services, Stadium and Civil services take the worst 
hit between – 35.46 and – 55.45% reduction of their F-score, 
compared to the smallest � (4.7m). On the other hand, some 
categories like Shopping and Cafe only take a small penalty 
(– 7.56% and – 7.20%) respectively. The explanation for this 
possibly rests in the spatial clustering of these venue types 
(e.g. see Fig. 9). In Fig. 9, we see that cafes are mostly clus-
tered together, hence we may not be able to accurately guess 
exactly which cafe a user is at, but we can be quite certain 
that they might be at some cafe, as long as their location and 
notification response behaviour is proximal to that captured 
at a nearby cafes. Although this might suggest that spatial 
distribution may have a significant effect on the accuracy 
of the classifier, it must be borne in mind that this is a very 
extreme scenario. Most users’ location data is obtained via 

A-GPS, which, in an urban environment, has been shown to 
have an accuracy of about 9m (Zandbergen 2009). In any 
case, we might expect similar results to be generalisable 
to many similar-sized cities, since it has been shown that a 
representation of cities as m-dimensional vectors based on 
their venue categories can uncover the similarities between 
them (Preoţiuc-Pietro et al. 2013).

4.4  Effect of user location coordinates

In the preceding analysis, one of the input features is the 
user’s location. This feature is certainly obtainable from 
the user, but its availability depends on whether a user has 
enabled positioning on their device, their surroundings 
(indoors or outdoors) and connectivity (wi-fi, 4G, off). So 
far we have demonstrated that guessing the user’s current 
location type is possible based on their notification behav-
iour, device state and geographic location, even if the latter 
is not precisely correspondent to a known place. For the next 
step, we wanted to experiment without taking user position 
coordinates into account. The same process as in the previ-
ous analysis was repeated, limiting the dataset iteratively to 
contain notifications at locations above a confidence thresh-
old T. As shown in Fig. 10 the results are much worse than 
in our previous analysis, showing that the prediction model 

Fig. 9  Spatial distribution of 
places in our dataset

Fig. 10  Average F-score using 
decision trees (error bands at 
95% c.i.)
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depends heavily on the knowledge of the user’s coordinates, 
even though these do not necessarily need to correspond 
with great precision to the true location’s coordinates. The 
reduction of the dataset size has no major impact on the 
performance of the classification.

5  Study 2: Obtaining reliable ground truth

In Study 1, we used the location semantic labels as reported 
by the Google Places API, in order to train our machine 
learning algorithm and validate its results. This means that 
we treated the Places API results as the “ground truth” for 
the entire study. However, this assumption does not neces-
sarily hold. Previous work by Hochmair et al. (2018) has 
highlighted the lack of actual “ground truth” POI datasets, 
and that various POI databases (e.g. by Google, OSM, Face-
book, Yelp and others) provide varying degrees of quality in 
terms of coverage, position and classification accuracy. In 
this work, the Google dataset is found to be one of the most 
reliable, even though the researchers assessed the dataset 
quality for a single European city only (Salzburg). Since 
the population target from which we collected data refers to 
another country (Greece), we cannot be certain regarding 
the quality of Google Places data for the regions covered 
by our participants. Therefore, in Study 2, we attempted to 
establish a more reliable ground truth for locations covered 
in our dataset, and to repeat the analysis as in Study 1, this 
time using these more reliable location semantics to train 
and validate the machine-learning algorithms.

5.1  Region of interest

Since we recruited students from our university, located 
in Patras, Greece, as can be expected, the majority of the 
notification data were gathered at POIs located in that city, 
although a number of notifications were collected in nearby 
cities or even far away countries, due to participant mobil-
ity through the experiment. Our original dataset contained 
2210 unique POIs and though the vast majority were located 
in Greece, it also included POIs in some in three countries 
(Bulgaria, Cyprus and Russia). To narrow down the prob-
lem, we chose to focus on POIs located in Patras and, more 
specifically, excluded from the dataset any notifications and 
associated locations outside a bounding box that includes 
the city center and its surrounding neighbourhoods, as well 
as the university campus that is located approximately 8km 
from the city center. Furthermore, we removed POIs that had 
fewer than five notifications, in order to focus on locations 
that were systematically visited, and therefore would not 
artificially dilute the quality of available data. As a result 
of this pruning, the resulting dataset contained 419 unique 
POIs (Fig. 11).

5.2  Crowdsourcing the ground truth

In order to obtain a more reliable ground truth for the classi-
fication of these 419 POIs, we decided to engage in a crowd-
sourcing experiment. To this end, we developed a simple 
web application in responsive HTML5 (Fig. 12), which 
queried users about the semantic classification of 20 semi-
randomly chosen POIs from the pool of 419. Our goal was 
to obtain multiple user classifications for each venue, so that 
we could determine the best label for each POI by selecting 
the its most frequently selected label. Since a completely 
random selection could result in some POIs gathering many 
more responses than others, we prioritised the selection of 
POIs which had received the fewest responses, so that they 
would be more likely to be chosen to be presented to a user.

In the web app, we showed participants the POI name 
(Fig. 12a), its location on the map (Fig. 12b), and presented 
them with some options. At first, a participant had to indi-
cate whether they were familiar with that POI (Fig. 12c). 
If they were not, the rest of the options were disabled and 
the participant could move to the next one. Otherwise, we 
asked participants to select the Category Group (cf. Table 5) 
to which they believe this POI belonged to (Fig. 12d), giv-
ing them a free choice between the 14 category groups, and 
adding “Other” as a further option. Additionally, we asked 
participants to indicate the believed primary (Fig. 12e) and 
secondary category of the POI (Fig. 12f), however, for these, 
the options were limited to the categories reported by the 
Places API only, (or “Other”). Participants could also select 
the level of confidence for each of these choices on a scale 
between 1 (not confident at all) and 5 (very confident), using 
the sliders (Fig. 12d*, e*, f*).

We publicised the crowdsourcing app to a range of Face-
book groups relating to students and residents in Patras, over 
a period of 2 weeks. Overall, we received valid responses 
(completed questionnaires) from 133 participants (male: 62; 
female: 71; other: 0). Basic demographics were collected by 
allowing participants to select between value ranges for age 
and years living in Patras. Participant ages varied, with the 
majority being relatively young adults, as can be expected 
due to recruitment from social media (18-25: 57; 26–30: 
38; 31–40: 20; 40+: 18). The majority of participants lived 
in Patras for quite a number of years (0–3 years: 12; 4–9 
years: 33; 10–15 years: 9; 16+ years: 79) and hence can 
be considered to be reasonably familiar with the city. We 
also asked them about their education level, with the major-
ity being university or masters degree holders (high-school 
graduate: 42, university graduate: 55; masters graduate: 31; 
PhD graduate: 5).

We also captured the time it took participants to com-
plete the questionnaire, in order to ensure that they were 
spending at least some time to reflect on their choices 
and thus to provide valid responses, and not simply 
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clicking through the presented POIs. On average, par-
ticipants spent 11 min 58  s to complete the questions 
( � = 6min10s,min = 3min15s;max = 37min08s ). As such 
we consider all responses to be valid and included them in 
the ensuing analysis.

5.3  Crowdsourcing results

Due to an unexpected logging error, ten venues ended up 
being excluded from the dataset, hence we present results for 
the remaining 409 POIs. From the 133 participants, only 5 
indicated that they did not know any of the 20 places shown 
to them. For the rest of the participants, on average, they indi-
cated being familiar with 11 of the 20 POIs shown to them 
on average ( � = 3.454,min = 3,max = 20 ). For these POIs, 
the average confidence in reporting the general category 
was quite high ( � = 4.580, � = 0.459,min = 3,max = 5 ). 
As expected, not every POI gathered the same amount of 

responses, owing to the semi-random selection of POIs for 
presentation, and the varying familiarity of participants 
with the POIs presented to them. To determine the final cat-
egory group of each POI, we selected the majority choice 
as reported by participants. In cases where the choices were 
tied, we selected one at random. As can be seen in Fig. 13, 
all POIs received at least one response, with the majority of 
POIs receiving up to five responses.

Overall, we found 204 POIs (49.89%) where the partici-
pant classification differed from the original classification 
derived from the Places API results. This is a significant 
finding that indicates that the quality of the data offered by 
Google for our region of interest is not as high as expected. 
In Table 7 we present an outline of the issues encoun-
tered in this analysis. As can be seen, the largest problem 
appears in the Miscellaneous, Professional Services and 
Shopping categories. Other categories such as Contractors 
show a large proportion of mismatches but are generally 

Fig. 11  Venues in the target 
area (Patras, Greece) present 
in our dataset. The spread of 
venues in a wider geographic 
area is shown in the inset
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under-represented in our dataset. Notably, the Miscellane-
ous category is probably the place where the crowdsourcing 
exercise offers the most value, since it has allowed for a 
more specific classification of POIs instead of this generic 
description.

5.4  Predictions using crowdsourced POI labels

Following these results, we continued to repeat the analysis 
in Sects. 4.2 and 4.3, this time using the crowdsourced cat-
egory group labels instead of those derived from the Places 
API. The algorithm used and the parameters are the same as 
in described in Sect. 4.1. As a result of limiting our dataset 
to notifications received in the region of Patras, the dataset 
used includes 30,240 notifications (51.06% of the original 
dataset as reported in Sect. 3.2).

As a note, before the results are reported, it should be 
stated that the predictive algorithm trains and predicts on 

Fig. 12  Crowdsourcing web app UI. The various UI elements are marked in orange font with a black background

Fig. 13  Distribution of crowd-
sourced response frequency for 
POIs

Table 7  Mismatch between places API-derived and crowdsourcing-
derived group categories

Category group Matches with 
places API

Mismatches 
with places 
API

Mismatch %

Contractors 0 2 100.00
Miscellaneous 3 102 97.14
Outdoor areas 2 3 60.00
Professional services 7 10 58.82
Personal care 2 2 50.00
Shopping 59 53 47.32
Civil services 3 1 25.00
Entertainment areas 99 28 22.05
Education 14 3 17.65
Accomodation 9 0 0.00
Financial services 5 0 0.00
Healthcare 7 0 0.00
Place of worship 2 0 0.00
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the data it is given. Hence, when training and testing with 
Places-API derived labels, it will attempt to predict what the 
Places API would return for each case. Conversely, when 
training and testing with crowdsourced labels it will attempt 
to predict what our participants would return for each case. 
Therefore to compare the classification performance directly 
between these two cases is not appropriate. Instead, to obtain 
a better idea about the effect of the discrepancy of classifi-
cations between real users and the Places API, we can train 
the algorithm using data received from the Places API, and 
attempt to predict on the actual ground truth, as reported by 
real users. This effectively becomes equivalent to using one 
dataset to train an algorithm, and performing tests on an 
entirely different dataset, a technique common in machine 
learning literature. We can expect here that the performance 
should drop considerably, since we already know that users 
have a different opinion on the proper classification of a 
POI compared to the Places API (49.89% of labels differed). 
Next, we report results for all these cases, without obfuscat-
ing the coordinates.

Using the crowdsourced labels for training and testing, we 
achieved a macro average F-score of 92.06% ( � = 2.70% ). 
Using the Places API-derived labels for training and testing, 
the performance is slightly increased to a macro average 
F-score of 95.75% ( � = 2.43% ). To compare the effect of 
training and predicting with crowdsourced labels, we per-
formed again a k-fold cross validation (k = 10), but this 
time, we used the Places API-derived categories as train-
ing labels, and attempted to predict the POI categories in 
each fold, examining the predicted labels against the crowd-
sourced labels (i.e. the ground truth). It’s worth noting here 
that the k-fold splits are stratified based on the distribution 
of the Places API label, which is used for the training set. 
As expected, the macro average F-score achieved dropped 
to 44.39% ( � = 1.92% , excluding categories for which the 
F-score is undefined, i.e. no correct predictions at all), rep-
resenting a considerable departure from the scores achieved 

using the crowdsourced labels, or the Places API-derived 
labels for both training and testing. As can be seen in Fig. 14, 
while F-score performance is comparable in several catego-
ries, there exist several categories for which the performance 
is down to zero.

Since we noted that there exist several categories for 
which the mismatch between Places API and crowdsourced 
labels is large (Table 7), we attempted the same predictive 
process, this time removing the cases belonging to the cat-
egories with large discrepancies from the dataset (miscel-
laneous, outdoor areas, personal care, professional services, 
shopping). The rationale here is that these mis-aligned labels 
could be overly affecting the result. Removing these cases 
(and associated labels) maintains a level of mismatch, but 
at more reasonable levels. As a result, the predictive perfor-
mance increased to � = 71.62%, � = 2.09%.

Finally, we repeat the analysis using the noise addition 
process (Fig. 15), obtaining results for: (a) training and test-
ing with Places API labels only (red line); (b) training and 
testing with crowdsourced labels only (blue line); (c) train-
ing with Places API labels and predicting on crowdsourced 
labels (grey line), and; (d) removing high-mismatch catego-
ries before training with Places API labels and predicting on 
crowdsourced labels (yellow line). Here, we note that adding 
coordinate noise has a much less pronounced detrimental 
effect in all cases of using training/test label settings, com-
pared to our original analysis. This is explainable since the 
composition and spatial distribution of POIs in this reduced 
dataset is different to the original (entire) dataset.

6  Discussion

In this paper, we examined the use of notification handling 
behaviour as a cue for semantically labelling the user’s cur-
rent location. We found that, when paired with location coor-
dinates, the resulting models can yield useful results with 

Fig. 14  F-scores per category during training and testing with crowdsourced labels only, vs. training with Places API-derived labels and testing 
with crowdsourced labels (tenfold cross validation)
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high classification accuracy. Such models can be pre-trained 
on the cloud and then stored and ran locally on the user’s 
device, as part of an application or service framework, with-
out the need for an internet connection. Further, we demon-
strated that such models are robust to small deviations of 
user coordinates from the actual place coordinates, thereby 
allowing for positioning errors, or even, the obfuscation of 
precise user coordinates, in order to maintain privacy.

In Study 1, reported in our original paper (Komninos 
et al. 2019), we assumed that Google’s labelling of the place 
categories could be used as the ground truth. As with other 
studies that leverage social network data, e.g. Falcone et al. 
(2014), the algorithms are tuned to predict the ground truth 
as reported by the location identification services, there-
fore introducing an inherent element of inaccuracy. In this 
extended paper, we addressed the issue of reliable ground 
truth by obtaining semantic labels through crowdsourcing. 
We found that for the region of interest we focused on, there 
was significant discrepancy between the labels reported 
by Google, and the labels reported by city residents. As a 
result, we note that the training of algorithms using labels 
provided by the Places API yields unacceptably bad results, 
and therefore should highlight the need for better consid-
eration of data quality prior to use in such predictive tools 
and services. On the positive side, we demonstrate that the 
technique we used can still provide excellent results, when 
trained on accurate data. Performance might be improved 
through better hyperparameter optimisation (we kept the 
same for both studies) or choice of different classification 
algorithms (e.g. SVM, neural networks).

Therefore, for future studies, we recommend that, where 
possible, relevant labelling information should be crowd-
sourced from local experts, or at the very least, cross-val-
idated against other datasets (e.g. Facebook, Foursquare), 
if and where available. In our study, we were able to obtain 

crowdsourced labels with relative ease, since the scale of 
the covered area is not very large. Scaling this approach to 
a planetary scale would be unrealistic. However, since we 
were able to obtain reasonably good results by excluding 
the categories where high levels of mismatch were identi-
fied, we could recommend that as a practical approach to 
cover much larger geographical areas (e.g. a country), it 
could be enough to obtain a small sample of labels through 
crowdsourcing for the whole area, and to limit predic-
tions for those categories only where a reasonable level 
of matching is found.

A further underlying assumption in our analysis is that 
the user is currently positioned and has a certain non-
trivial stay time at the location where the notification 
was received. This is likely true for most cases—users 
spend more time stationary at various places, than being 
mobile. However, further work here could include filtering 
of notification events during transit times, which in our 
case could not be done (since we did not keep GPS logs 
for privacy).

Finally, as we note different behaviours across venue 
categories, it would be of value to learn the reasons lead-
ing to these variances in user behaviour. However, this 
would be the subject of a further qualitative study. The 
generalisability of the findings presented here is limited to 
the body of the participants (students), hence the varying 
distribution of sample across categories. The models can 
be improved by mining information from other popula-
tions, to build up the number of samples across as many 
categories as possible. Personalised models depending on 
user type can then also be applied to better improve clas-
sification performance.

Data Availability Statement The data used in this paper are openly 
accessible at https ://githu b.com/komis 1/ami20 19-notifi cati ons

Fig. 15  Effect of coordinate 
noise addition on F-score per-
formance

https://github.com/komis1/ami2019-notifications
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