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Abstract
A multi-server queueing system with two types of customers is analyzed. Both types of customers have own reserved serv-
ers and also there is a pool of servers that can be used by both types of customers. Type 1 customers have almost preemp-
tive priority with flexible use of a priority depending on the current number of customers of this type in an infinite buffer. 
Type 2 customers do not have an input buffer and are lost in cases of absence of available servers upon arrival or expelling 
(forced termination) from service by Type 1 customers. A multi-dimensional Markov chain, which defines the dynamics 
of the considered system under the fixed total number of servers, numbers of reserved servers, a pattern of the correlated 
arriving processes, service rates, and the thresholds defining the mechanism of expelling Type 2 customers from service, 
is analyzed. A numerical example of solving an optimization problem based on the obtained results is considered. Results 
can be used for the elaboration of enhanced protocols of servers scheduling in many real-world systems including cognitive 
radio networks with channels leasing.
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1 Introduction

Queueing theory is a well-recognized mathematical tool 
for the optimization of restricted resource scheduling in 
many real-world systems. One of the important branches of 

queueing theory is the theory of priority systems. In such 
systems, customers are classified into different categories, 
depending on the urgency of their service and importance, 
and service is provided according to a certain fixed priority 
scheme. E.g., various priority schemes are used in hospi-
tal emergency departments during the triage, i.e., sorting 
incoming patients according to the severity of the injury 
or disease, see, e.g. He et al. (2012), Alipour-Vaezi et al. 
(2022), Elalouf and Wachtel (2022).

They are used for medical packet transmission schedul-
ing system in e-health networks, see Raj and Chinnadurai 
(2021), for ambulances scheduling, etc.

It is well-known that priority queueing models are effec-
tively used in various applications in telecommunication net-
works, where traffic prioritization is usually required. E.g., 
they are required when using the IEEE 1588 synchronization 
protocol in cellular networks, DVB-T2 video transmission 
for synchronizing TV transmitters, unmanned vehicle sys-
tems, telemedicine applications, etc, for references see, e.g., 
Klimenok et al. (2020b). In communication systems, the 
users can sign agreements with different service levels (and 
different fees) and need a distinct treatment. The ultra-reli-
able low-latency communication (URLLC) applications in 
5G networks have higher priority than the enhanced mobile 
broadband (eMBB) applications, etc. A proper choice of 
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the priorities can significantly increase the economic profit 
gained from the operation of a corresponding system and 
revenue-generating businesses.

In particular, a popular subject of applications of the the-
ory of priority queueing systems are the systems of cognitive 
radio in which the licensed (primary) users (PU) have a pri-
ority over the cognitive (or secondary) users (SU). Note that 
there is a great variety of the analyzed schemes for providing 
a priority to PUs. The most frequent scenario assumes that 
PUs have the preemptive priority. There is no queue for stor-
ing PUs and they are lost at an arrival moment when all serv-
ers are busy by providing service to PUs. If all servers are 
busy but a part of users obtaining service at the PU arrival 
epoch are SUs, the service of one of SUs is terminated. This 
phenomenon may lead to very frequent interruption of ser-
vice of SUs and their dissatisfaction and permanent depar-
ture from the system. To mitigate this effect, the mechanism 
of reservation of channels is sometimes suggested which 
assumes temporal termination of admission of new SUs 
when the number of free channels is still not equal to zero 
but is less than some preassigned threshold value. Also, dif-
ferent other mechanisms for providing more fairness to SUs 
are used. One of these new mechanisms suggests the so-
called subleasing of channels, see, e.g., Huang et al. (2019) 
and Zhao et al. (2022). The system can obtain profit from 
allowing SUs to temporarily use the free channels without 
(or almost without) the harsh interruption of the ongoing 
service of SU. Therefore, to earn more profit, PUs should 
be ready to partially sacrifice their strict priority over SUs.

In this paper, we propose and analyze a scheme that may 
be suitable for providing a more tolerant attitude to SUs than 
the majority of existing schemes assumes. To this end, we 
exclude mandatory immediate forced termination of service 
of a SU in case of the lack of channels at the moment of a PU 
arrival. Instead, we suppose that there is a buffer for storing 
PUs (while such a buffer is not suggested in the majority of 
existing papers) and the service of SUs is sequentially ter-
minated according to a threshold strategy when the number 
of PUs in the system increases. Situations when not all avail-
able servers are busy by PUs but some PUs wait in the queue 
are possible. To the best of our knowledge, this reasonable 
scheme is novel in the literature.

The literature devoted to the application of queueing the-
ory for modeling cognitive radio systems is really huge. The 
search in Google Scholar implemented at the end of Janu-
ary 2022, by keywords “queueing theory, cognitive radio” 
resulted in more than 2370 links to works published only 
during the years 2021 and 2022. So, we do not aim to give 
any more or less comprehensive survey of the state of the 
art in this field. The reader can look, e.g., at the recent book 
(Maharaj and Awoyemi 2021) and papers (Palunčić et al. 
2018; Okegbile et al. 2021; Kumar and Kumar 2020; Piran 
et al. 2020; Hu et al. 2018; Arikatla et al. 2022; Dasari and 

Venkatram 2021). To essentially reduce the number of rele-
vant references, it is worth mentioning that in the vast major-
ity of the papers authors assume that arrival flows of PUs 
and SUs are defined by the stationary Poisson processes. 
This assumption drastically simplifies the analysis of the 
queueing system (due to smaller dimension of the stochastic 
process under study and much easier operation with scalars 
than with vectors and matrices) but is rarely true in modern 
telecommunication networks providing service to the ver-
satile and highly bursty traffic. The set of papers devoted to 
priority queues where the arrival flows are assumed to be 
more realistic MAP (Markov arrival process), see Lucantoni 
(1991), Chakravarthy et al. (2001), Dudin et al. (2020a), 
Vishnevskii and Dudin (2017), or MMAP (Marked Markov 
arrival process), see He (1996), is essentially narrower. For 
references see, e.g., (He et al. 2012; Klimenok et al. 2020a, 
b; Bocharov et al. 2004; Choi and Hwang 1997; Machihara 
1995; Takine and Sengupta 1997; Choi et al. 1998; Krishna-
moorthy and Divya 2018; Sun et al. 2014a, b; Dudin et al. 
2016, 2015, 2020b; Horváth 2012; Krishnamoorthy et al. 
2008; Brandwajn and Begin 2017; Raj and Jain 2021; Vish-
nevsky et al. 2021). Some of these works, namely (Klime-
nok et al. 2020a; Bocharov et al. 2004; Choi and Hwang 
1997; Machihara 1995; Takine and Sengupta 1997; Choi 
et al. 1998; Krishnamoorthy and Divya 2018; Dudin et al. 
2020b; Horváth 2012) are devoted to single server queues 
which are simpler for analysis and hardly may be good mod-
els of cognitive radio.

A short overview of the relevant papers devoted to multi-
server queues is as follows. In He et al. (2012), the model 
with an arbitrary number of types of customers, MMAP 
and PH (phase-type) distribution of service times and the 
preemptive priority is considered. Priorities can increase 
during the customer waiting in a queue. The ergodicity con-
dition is obtained in terms of parameters that characterize the 
arrivals and service of the customers of the highest priority. 
Due to the high generality of the model, the distribution of 
the system states is not derived, but some bounds are given. 
In Klimenok et al. (2020b), a partial case where the number 
of types of customers is equal to two of the model consid-
ered in He et al. (2012) is under study. This allows obtaining 
not only bounds but the distribution of the number of cus-
tomers in the system. In Sun et al. (2014a), it is assumed that 
the arrival process of PUs and SUs is defined by the MMAP,  
there is an infinite buffer for arriving SUs and a finite buffer 
for SUs, service of which is forcedly terminated. In Sun et al. 
(2014b), it is assumed that the arrival process of PUs and 
SUs is defined by two independent MAPs. There is no buffer 
and arriving or forcedly terminated SUs go to the so-called 
orbit of an infinite capacity and repeat attempts to enter the 
service after the exponentially distributed intervals of time. 
In both papers Sun et al. (2014a) and (b), the preemptive 
priority of PUs over SUs is assumed and R of all N servers 
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are reserved for service of only PUs. The goal of the reser-
vation is to reduce the probability of the forced termination 
of service of SUs via their rejection at the entrance to the 
system when the number of free servers is small and termi-
nation occurrence, due to a new PU arrival, is anticipated. 
Stability conditions of the models are derived, stationary 
probabilities of the system states are computed. Examples 
of solutions to the problem of computing the optimal value 
of R are given. The high importance of account of correla-
tion in the arrival process for the correct choice of value R is 
demonstrated. In Dudin et al. (2016), essential generalization 
of the model from Sun et al. (2014b) is considered. It is sup-
posed that there are several types of PUs having the same 
priority, but their services times have a phase-type (PH) dis-
tribution with distinct parameters. Additionally, the realistic 
feature of many real systems of cognitive radio is taken into 
account. This feature consists of a possibility of division 
of the server (channel, frequency band) to a finite number 
of sub-servers for providing service to SUs while the ser-
vice of a PU requires a whole server. Again, as in Sun et al. 
(2014a) and  (b), the problem of optimal choice of the num-
ber of reserved servers is numerically solved via analysis of 
a multi-dimensional Markov chain describing the dynamics 
of the system. In Dudin et al. (2015), the extension of the 
model from Sun et al. (2014b) to the case when the priority 
queueing system operates under the influence of the external 
random environment is analyzed. The change of the state 
of the random environment implies an immediate change 
in the numbers of available servers and reserved servers. In 
Krishnamoorthy et al. (2008), the considered model assumes 
self-generation of non-preemptive priority during the stay 
of non-priority customers in the system. Service times have 
distinct PH distribution for priority and non-priority custom-
ers. The problem of optimal choice of the number of neces-
sary servers is numerically solved. The paper Brandwajn 
and Begin (2017) is devoted to the analysis of the M/PH/N 
system with many types of customers and preemptive pri-
orities. One of the sections of this paper considers a more 
general PH/PH/N type queueing system (PH arrival flow is 
the particular case of the MAP). An approximate solution to 
the problem of computation of stationary probabilities of the 
system states is given. In recent paper Raj and Jain (2021), 
the MMAP/PH/N type queue with two kinds of customers, 
retrials and both, non-preemptive and preemptive, priori-
ties is analyzed. One type customers are handoff customers 
having high priority. The another type customers are new 
customers having a low priority. Retrials of non-priority cus-
tomers from the orbit are assumed. Inter-retrial times have a 
PH distribution. Under the formulated conditions, the con-
sidered model looks to be extremely difficult to study. The 
authors avoid the existing difficulties by the rough trunca-
tion of the system of equilibrium equations and solution of 
the corresponding finite system of linear algebraic equations 

by a known in the literature method. In Vishnevsky et al. 
(2021), the priority multi-server system MMAP/PH/M/N is 
analyzed using machine learning methods.

Concluding the short overview of the papers devoted to 
priority queues, it is possible to formulate the main contribu-
tions of our paper that are as follows:

• Invention of a novel flexible priority scheme. This 
scheme is the significant generalization of known in the 
literature effective schemes and is more friendly to the 
low priority customers. Such friendliness (fairness) is 
achieved via (1) reservation of the sets of servers not 
only for service of high priority customers but for service 
of low priority customers as well; (2) maintenance of a 
buffer for temporary storing the high priority custom-
ers what makes them more tolerant with respect to the 
low priority customers; (3) permission of the sequential 
forced termination of service of low priority customers 
only after reaching the fixed thresholds by the queue 
length of high priority customers.

• Algorithmic analysis of a multi-server queueing system 
applying such a scheme including description of opera-
tion of the system by the continuous-time multi-dimen-
sional Markov chain with complex boundary behavior, 
derivation and explanation of the infinitesimal generator 
of the chain, derivation of a simple ergodicity condition 
for this chain.

• Effective algorithm for computation of the stationary dis-
tribution of the states of the queueing system. This algo-
rithm requires much less computer memory and runtime 
than the known in the existing literature.

• Analysis of the proposed priority scheme under the 
assumption that the flows of customers are defined by 
two MAP arrival processes. This makes the considered 
model much more adequate to real systems, telecommu-
nication systems in particular, where the flows of PUs 
and SUs have a correlated bursty nature compared to the 
models with the stationary Poisson arrival process com-
mon in the existing literature.

• Numerical illustration of the impact of parameters of 
control strategy on the key performance measures of the 
system and possible economical effect of application of 
the proposed and analyzed priority scheme.

The section-wise breakup of this paper is as follows. A 
mathematical model is described in Sect. 2. The multi-
dimensional process describing the behavior of the system is 
analyzed in Sect. 3. The generator of the process is derived. 
The ergodicity condition is presented. A numerically stable 
algorithm for the computation of the stationary distribution 
of the system states is outlined. Expressions for the compu-
tation of some performance measures are given in Sect. 4. 
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Section 5 contains brief description of two sets of numerical 
examples. Section 6 concludes the paper.

2  Mathematical model

We consider the complex of two interacting multi-server 
queueing systems that partially share the servers. Each sys-
tem provides service to its own arrival process using cur-
rently available for this system servers. The structure of this 
complex is presented in Fig. 1.

The total number of servers in both systems is equal to 
N. The systems share the existing servers in the following 
way. The number of servers reserved exclusively for using 
by System 1 (for service of Type-1 customers) is equal to 
R. The number of servers reserved exclusively for using 
by System 2 (for service of Type-2 customers) is equal to 
M, 1 ≤ M ≤ N − R − 1. The rest pool consisting of common 
N − R −M servers can be used by both systems only when 
all their own reserved servers are busy. A certain priority 
in access to the common pool is given to Type-1 custom-
ers. Namely, if the number of customers requiring service 
in System 1 is not large, then all N − R servers, which are 
not reserved exclusively for using by System 1, are available 
for the use by System-2. However, when the number of cus-
tomers in System 1 increases, this system may sequentially 
withdraw servers (one-by-one) from the common pool. This 
can lead to termination of service of Type 2 customer receiv-
ing service by the server from the pool if all servers of this 
pool are busy.

The exact rule of servers withdrawal by System 1 
from the common pool is defined by the set of thresholds 
(B1,B2,… ,BN−R−M) arranged as

When the number of customers presenting in System 1 is 
less than the threshold B1, then only R servers operate (pro-
vide service or stay idle) in System 1. When the number 
of customers in System 1 belongs to the interval [B1,B2), 
then R + 1 servers provide service in System 1,..., when the 
number of customers in System 1 belongs to the interval 
[Bk,Bk+1), k = 2,N − R −M − 1, then R + k servers provide 
service in System 1. When the number of customers in Sys-
tem 1 exceeds the threshold BN−R−M , then the number of 
servers providing service in System 1 is N −M. We assume 
that if during the epoch when System 1 needs to withdraw 
a server from the common pool there are free servers in the 
pool, one of the free servers will start operation as part of 
System 1. If all servers from the common pool are busy and 
at least one of them provides service to a Type 2 customer, 
one of these servers immediately terminates the current ser-
vice and starts service of the first Type 1 customer from the 
buffer. A customer, the service of which was terminated, 
is lost. When all servers from the common pool provide 
service to Type 1 customers, further withdrawal of servers 
becomes impossible. When the queue of Type 1 customers 
decreases, the corresponding servers from the common pool 
become available for Type 2 customers again depending on 
the relation of the current number of Type 1 customers in the 
system and the thresholds Bk, k = 1,N − R −M.

Note that in the particular case of thresholds choice 
such as Bk = R + k, k = 1,N − R −M, the considered pri-
ority scheme turns to the usual discipline with a preemp-
tive priority of Type 1 customers and servers reservation 
for both types of customers. Note also that usually in the 
literature reservation of servers for service of SUs (Type 
2 customers) is not implemented. Formally, we obtain this 
usual case by setting in our more general model the thresh-
old M equal to zero.

System 1 has an infinite buffer. The arrival process at 
System 1 is the MAP, coded as MAP1. It is defined by the 
underlying process �t with finite state space {1, 2,… ,W} 
and two square matrices D0 and D1 of size W. For more 
information about MAP,  its properties and usefulness for 
modeling telecommunication networks see, e.g, Lucantoni 
(1991), Chakravarthy et al. (2001), Dudin et al. (2020a), 
Vishnevskii and Dudin (2017). The average arrival rate of 
the MAP1 is denoted as �1. It can be found as �1 = �D1�, 
where � is an invariant vector of the MAP1 satisfying 
equations �(D0 + D1) = �, �� = 1, and � = (1, 1,… , 1)T , 
� = (0, 0,… , 0).

System 2 has no buffer. The arrival process at System 
2 is also MAP. It is coded as MAP2 and defined by the 
underlying process vt with finite state space {1, 2,… ,V} 
and two square matrices H0 and H1 of size V. The average 
arrival rate of the MAP2 is denoted as �2 . If at an arrival 

R < B1 < B2 < ⋯ < BN−R−M .

Fig. 1  Structure of the systems
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moment of a customer there are no available servers, this 
customer is lost.

The service time in System r, r = 1, 2, is exponentially 
distributed with the parameter 𝜇r, 𝜇r > 0.

Now, let us analyze the described queueing model.

3  Process of the system states

The behavior of the system under study can be described by 
the regular irreducible continuous-time Markov chain

where during the epoch t, 

• it is the number of customers in System 1, it ≥ 0;

• rt is the number of busy servers in System 2, rt = 0,N − R 
if it < B1;  rt = 0,N − R − k if Bk ≤ it < Bk+1and rt = 0,M 
if it ≥ BN−R−M;

• �t is the state of the underlying process of the MAP1 , 
�t = 1,W;

• vt is the state of the underlying process of the MAP2 , 
vt = 1,V .

Here and further, the notation like x = 0,X means that the 
parameter x admits values from the set {0,… ,X}.

Let us enumerate the states of the Markov chain �t, t ≥ 0, 
in the direct lexicographic order of the components 
{it, rt, �t, vt} and assume that the set of the states having the 
value i of the component it is a level i. Let the intensities of 
transition of the process �t be defined by the entries of its 
infinitesimal generator Q.

Theorem 1  The generator Q of the Markov chain �t, t ≥ 0, 
has the block three-diagonal structure. The non-zero blocks 
of the generator are defined as follows:

�t = {it, rt, �t, vt}, t ≥ 0,

where

• ⊗ and ⊕ indicate the symbols of the Kronecker product 
and sum of matrices, see Graham (2018);

• Ci = diag{0, 1,… , i − 1, i} where diag{…} denotes the 
diagonal matrix having the diagonal entries listed in the 
brackets;

• E−
k
 is the square matrix of size k + 1 with all zero entries 

except the entries (E−
k
)l,l−1 = 1, l = 1, k;

• E+
k

 is the square matrix of size k + 1 with all zero 
entries except the entries (E+

k
)l,l+1 = 1, l = 0, k − 1 and 

(E+
k
)k,k = 1;

• Ẽ−
k
 is the matrix of size (k + 1) × k with all zero entries 

except  the  ent r ies  
(
Ẽ−
k

)
l,l
= 1, l = 0, k − 1  and 

(Ẽ−
k
)k,k−1 = 1;

• Ẽ+
k
 is the matrix of size (k + 1) × (k + 2) with all zero 

entries except the entries (Ẽ+
k
)l,l = 1, l = 0, k.

Let us briefly prove this theorem. The proof is imple-
mented via the analysis of all variants of the Markov chain 
�t, t ≥ 0, transitions during an interval of the infinitesimal 
length.

Q0,0 =IN−R+1 ⊗ D0 ⊗ IV + 𝜇2CN−RE
−
N−R

⊗ IWV

− 𝜇2CN−R ⊗ IWV + E+
N−R

⊗ IW ⊗ H1 + I(N−R+1)W ⊗ H0,

Qi,i = Q0,0 − i𝜇1I(N−R+1)WV , i = 1,R,

Qi,i = Q0,0 − R𝜇1I(N−R+1)WV , i = R + 1,B1 − 1,

Qi,i =IN−R−k+1 ⊗ D0 ⊗ IV + 𝜇2CN−R−kE
−
N−R−k

⊗ IWV

− 𝜇2CN−R−k ⊗ IWV + E+
N−R−k

⊗ IW ⊗ H1

+ I(N−R−k+1)W ⊗ H0 − 𝜇1(R + k)I(N−R−k+1)WV ,

i = Bk,Bk+1 − 1, k = 1,N − R −M − 1,

Qi,i =Q
0 = IM+1 ⊗ (D0 + D1)⊗ IV + 𝜇2CME

−
M
⊗ IWV

− 𝜇2CM ⊗ IWV + E+
M
⊗ IW ⊗ H1

+ I(M+1)W ⊗ H0 − 𝜇1(N −M)I(M+1)WV , i ≥ BN−R−M ,

Qi,i−1 =min{i,R}𝜇1I(N−R+1)WV , 0 < i < B1,

Qi,i−1 =(R + k)𝜇1Ẽ
+
N−R−k

⊗ IWV , i = Bk,

k =1,N − R −M,

Qi,i−1 =(R + k)𝜇1I(N−R−k+1)WV , i = Bk + 1,Bk+1 − 1,

k =1,N − R −M − 1,

Qi,i−1 =Q
− = (N −M)𝜇1I(M+1)WV , i > BN−R−M ,

Qi,i+1 =IN−R+1 ⊗ D1 ⊗ IV , i = 0,B1 − 2,

Qi,i+1 =Ẽ
−
N−R−k+1

⊗ D1 ⊗ IV , i = Bk − 1,

k =1,N − R −M,

Qi,i+1 =IN−R−k+1 ⊗ D1 ⊗ IV , i = Bk,Bk+1 − 2,

k =1,N − R −M − 1,

Qi,i+1 =Q
+ = IM+1 ⊗ D1 ⊗ IV , i ≥ BN−R−M ,
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The diagonal entries of the matrix Qi,i are negative and 
the modulus of the diagonal entry defines the rate of the exit 
from the corresponding state of the Markov chain �t, t ≥ 0. 
The non-diagonal entries of the matrix Qi,i define the rates 
of transition of the Markov chain between the states within 
the level i. Let us explain the expression for the matrix Qi,i 
for i = Bk,Bk+1 − 1, k = 1,N − R −M − 1. In this case, the 
number of servers currently providing service to Type 1 
customers is equal to R + k and the number of servers pro-
viding service to Type 2 customers can take values from 
the set {0,… ,N − R − k}. The exits from the states that 
belong to the level i can happen due to: (a) the exit of the 
underlying process of the MAP1 from its states; (b) the exit 
of the underlying process of the MAP2 from its states; (c) 
service completion of a Type 1 customer in one of R + k 
servers or (d) service completion of a Type 2 customer in 
one of currently busy by providing service to this type of 
customers servers. Therefore, the rates of the exits are given 
(with the opposite sign) by the diagonal entries of the matrix 
I
N−R−k+1 ⊗ D

0
⊗ I

V
− 𝜇

2
C
N−R−k ⊗ I

WV
+ I(N−R−k+1)W ⊗ H

0
−

�
1
(R + k)I(N−R−k+1)WV

.

Here, the symbol of the Kronecker product of matri-
ces is used to describe simultaneous transitions of several 
components of the multi-dimensional Markov chain. The 
non-diagonal entries of the just written matrix define the 
sum of the rates of transition of the Markov chain between 
the states within the level i due to the reasons (a)–(d) listed 
above. But the transitions within the level i can occur also 
due to two other reasons: (e) service completion of a Type 
2 customer and (f) arrival of a Type 2 customer. The rates 
of transition due to the reason (e) are given by the matrix 
𝜇2CN−R−kE

−
N−R−k

⊗ IWV . Here, the multiplier �2CN−R−k 
reflects the rates of service completion while the multiplier 
E−
N−R−k

 reflects the decrease by one of the number of servers 
providing service to Type 2 customers. The rates of transi-
tion due to the reason (f) evidently are given by the matrix 
E+
N−R−k

⊗ IW ⊗ H1. Here, the matrix H1 defines the rates of 
transitions of the underlying process of the MAP2 at a Type 
2 customer arrival moment, while the multiplier E+

N−R−k
 

reflects the increase by one of the number of servers provid-
ing service to Type 2 customers. As the result of considera-
tion of reasons (a)-(f) of the Markov chain transitions within 
the level i,  we obtain the formula for the matrix Qi,i which 
we prove. The proof of the formulas for the matrix Qi,i with 
other values of i is made analogously.

Now, let us explain the expressions for the matrix 
Qi,i−1. We consider the most difficult case when 
i = Bk, k = 1,N − R −M . Transitions from level i to level 
i − 1 occur only due to service completion of a Type 1 
customer. In the considered case, R + k servers were pro-
viding service to Type 1 customers. Therefore the total rate 
of service completion in these servers is equal to (R + k)�1. 

The matrix Ẽ+
N−R−k

 reflects the fact that, according to the 
suggested threshold strategy, after this service completion 
moment the number of servers from the common pool that 
can provide service to Type 1 customers decreases by one. 
Correspondingly, the number of servers from the com-
mon pool that can provide service to Type 2 customers 
increases by one. As the result of these considerations, we 
obtain the formula for the matrix Qi,i−1 which we prove. 
For other values of i,  the proof is similar and a bit easier 
because for that values the number of servers from the 
common pool that can provide service to Type 2 customers 
does not change. Correspondingly, instead of the matrix 
Ẽ+
N−R−k

 we have the identity matrix of the suitable size.
Now, let us explain the expressions for the matrix 

Qi,i+1. We consider the most diff icult here case 
i = Bk − 1, k = 1,N − R −M. Transitions from level i to 
level i + 1 occur only due to the arrival of a Type 1 cus-
tomer. Intensities of the corresponding transitions are 
given by the entries of the matrix D1. In the considered 
case, the arrival of a Type 1 customer leads to reaching 
the threshold Bk. This implies that, in addition to k − 1 
servers from the common pool, which provide service to 
Type 1 customers, one more server starts service of a Type 
1 customer. Respectively, the number of servers from the 
common pool that are available for Type 2 decreases by 
one. If all servers from the pool were busy, one of Type 2 
customers is expelled from the service. Probabilities of the 
corresponding transitions of the number of Type 2 custom-
ers are given by the entries of the matrix Ẽ−

N−R−k+1
. The 

proof of the formula for the matrix Qi,i+1 in the considered 
case is finished. Other cases are simpler and are proven 
analogously. Theorem 1 is proven.

Theorem 2  The considered queueing model is stable (i.e., 
the Markov chain describing its behavior is ergodic) if and 
only if the inequality

holds true.

The intuitive proof is the following. One can see that 
System 2 is stable for any values of parameters because 
it has a finite state space. Let us consider System 1. The 
stability of a queueing system means its ability to reduce 
the number of customers faster, on average, than custom-
ers arrive in the case when the system is overloaded. It is 
easy to see that, if System 1 is overloaded, it behaves as 
a classical MAP∕M∕N −M queueing system with N −M 
servers, the ergodicity condition of which is defined by 
inequality (1). More formal proof can be easily done with 
the use of the corresponding results from the theory of 

𝜆1 < (N −M)𝜇1
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Quasi-Birth-and-Death processes or M/G/1 type Markov 
chains, see, e.g., Dudin et al. (2020a), Neuts (1994, 2021).

Remark  Having the average arrival rate �1 and the service 
rate �1 of Type 1 customers fixed, it is obvious that the total 
number N of servers has to be larger than �1

�1

 while the num-
ber M of servers reserved for service of Type 2 customers 
must be less than N −

�1

�1

. To make a more exact evaluation 
of the required number N of servers and admissible values 
of the numbers of reserved servers R and M for providing 
the desired level of service to both types of customers, it is 
necessary to compute the stationary distribution of the sys-
tem states.

It is easy to see that the Markov chain �t belongs to the 
class of Quasi-Birth-and-Death processes with many 
boundary levels and level-independent transitions between 
the levels having the numbers larger than N − R −M. Let 
us assume that ergodicity condition (1) is fulfilled. Then 
t h e  s t a t i o n a r y  p r o b a b i l i t i e s 
�(i, r, �, v) = lim

t→∞
P{it = i, rt = r, �t = �, vt = v} exist. Let us 

enumerate these probabilities in accordance with the intro-
duced lexicographical order of the states of the Markov 
chain �t and form the row vectors

where

It is well-known fact that the stationary probabilities of 
Markov chain �t can be found as the unique solution to the 
system

where � = (�0,�1,�2,…).

To solve the infinite system of equations (2), the follow-
ing numerically stable algorithm can be used.

Theorem 3  The vectors �i, i ≥ 0, are calculated as

where the vectors �i, i ≥ 0, are defined by the recursive 
formulas

�(i, r) = (�(i, r, 0, 0), �(i, r, 0, 1),… ,

�(i, r, 0,V),�(i, r, 1, 0),�(i, r, 1, 1),… ,�(i, r,W,V)),

�i = �(i) = (�(i, 0),�(i, 1),… ,�(i,Ri)),

Ri =

⎧
⎪⎨⎪⎩

N − R, if i < B1,

N − R − k, if Bk ≤ i < Bk+1,

M, if i ≥ BN−R−M .

�Q = �, �� = 1,

�i = �i

( ∞∑
l=0

�l�

)−1

, i ≥ 0,

Here, matrices Gi are calculated using the following back-
ward recursion

where the matrix G is the minimal nonnegative solution to 
the equation

This algorithm is the improved version of the algorithm pre-
sented in Dudin et al. (2013). The improvement consists of 
using the recursion for vectors �i, i ≥ 0, instead of the recur-
sion for matrices Φi, i ≥ 0, of the corresponding dimension 
in Dudin et al. (2013). This improvement is very essential 
from the point of view of the reduction of the required for 
numerical realization computer memory and runtime.

4  Performance measures

Having calculated stationary probabilities, for the quali-
tative study of the model, we look at the following key 
system performance measures.

The average number L of customers in both systems 
can be found as

The average number L1 of customers in System 1 can be 
found as

The average number L2 of customers in System 2 can be 
found as

�0(Q0,0 + Q0,1G0) = �,�0� = 1,

�i = −�i−1Qi−1,i(Qi,i + Qi,i+1Gi)
−1
, i = 1,BN−R−M − 1,

�BN−R−M
=

− �BN−R−M−1
QBN−R−M−1,BN−R−M

(Q0 + Q+G)
−1
,

�i = −�i−1Q
+(Q0 + Q+G)

−1
, i > BN−R−M .

GBN−R−M
= G,

GBN−R−M−1
= −(Q0+

Q+GBN−R−M
)−1QBN−R−M ,BN−R−M−1

,

Gi = −(Qi+1,i+1 + Qi+1,i+2Gi+1)
−1Qi+1,i,

i = BN−R−M − 2,BN−R−M − 3,… , 0,

Q+G2 + Q0G + Q− = O.

L =

∞∑
i=0

Ri∑
r=0

(i + r)�(i, r)�.

L1 =

∞∑
i=1

i�i�.
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The average number Nserv−1 of servers in System 1 can be 
found as

The average number Nserv−2 of servers in System 2 can be 
found as

The average number Nserv−1 of busy servers in System 1 can 
be found as

The average number Nbuffer−1 of customers in the buffer of 
System 1 can be found as

The average intensity �out−1 of the output flow of success-
fully serviced customers from System 1 is defined as

The average intensity �out−2 of the output flow of success-
fully serviced customers from System 2 is defined as

The probability Pent of a customer loss in System 2 upon 
arrival is computed as

The loss probability Pforce of a customer in System 2 due to 
the forced termination of the service is computed as

The probability Ploss of an arbitrary customer loss in System 
2 is computed as

L2 =

∞∑
i=0

Ri∑
r=1

r�(i, r)�.

Nserv−1 =

∞∑
i=0

(N − Ri)�i�.

Nserv−2 =

∞∑
i=0

Ri�i� = N − Nserv−1.

Nbusy−1 =

∞∑
i=0

min{i,N − Ri}�i�.

Nbuffer−1 =

∞∑
i=R

max{i − (N − Ri), 0}�i� = L1 − Nbusy−1.

�out−1 = �1Nbusy−1 = �1.

�out−2 = �2L2.

Pent =
1

𝜆2

∞∑
i=0

�(i,Ri)(IW ⊗ H1)�.

Pforce =
1

𝜆2

N−R−M∑
k=1

�(Bk − 1,N − R − k + 1)(D1 ⊗ IV )�.

Ploss = Pent + Pforce = 1 −
�out−2

�2
.

5  Numerical example

Let the arrival flow of Type 1 customers be defined by the 
matrices D0 and D1 of the form

The average arrival rate is �1 = 1565.71 customers per sec-
ond. The coefficient of correlation of successive inter-arrival 
times is equal to c(1)

cor
= 0.368483, and the coefficient of vari-

ation is equal to c(1)
var

= 3.98.

Let the arrival flow of Type 2 customers be defined by the 
matrices H0 and H1 of the form

The average arrival rate is �2 = 3422.86 customers per sec-
ond. The coefficient of correlation is equal to c(2)

cor
= 0.4439, 

and the coefficient of variation is equal to c(2)
var

= 9.87.

Customers correspond to requests for the transmission 
of information. The average size of Type 1 customers is 6.4 
kilobytes (KB). We assume that each server corresponds 
to a channel having a throughput of 10 megabits per sec-
ond (Mbps). Thus, the average service intensity �1 of Type 
1 customers is �1 =

10000000bps

6400∗8bits
= 195.313 customers per 

second. The average size of Type 2 customers is 0.8 KB. 
Thus, the average service intensity �2 of type 2 customers is 
�2 =

10000000bps

800∗8bits
= 1562.5 customers per second.

Since the considered model has a lot of control param-
eters ( N, R, M, Bk, k = 1,N − R −M) and it is impos-
sible to graphically illustrate the dependence of the 
main performance measures on all these parameters, we 
have to somehow fix all control parameters, except two 
of them, that we will vary. To this end, first of all let us 
assume that the thresholds B1,B2,… ,BN−R−M are defined 
as Bk = kB, k = 1,N − R −M, where B is a fixed integer 
parameter.

We present below two sets of the numerical results. In the 
first set, we assume that the total number N of servers in the 
queueing system is equal to 50. The parameter R defining 
the number of servers reserved for service of only Type 1 
customers is fixed by R = 1. Therefore, we can vary only the 
values of the parameters M and B and show their impact on 
the key performance measures of the system and depend-
ence of the introduced cost criterion on these parameters. 
The corresponding dependencies are given by Figs. 2, 3, 4, 
5, 6 and 7.

After that, we fix the optimal value B = 6 of the param-
eter B and present the results from the second set. In this 
set, we illustrate the dependencies of the same performance 
measures on the parameters N and M. They are given by 
Figs. 9, 10, 11, 12 and 13 below.

D0 =

(
−21000 60

3 − 600

)
, D1 =

(
20880 60

3 594

)
.

H0 =

(
−60000 60

3 − 600

)
, H1 =

(
59880 60

3 594

)
.
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Let us describe the first set of the results. We vary the 
parameter B defining the step of increasing of the thresholds 
Bk over the interval [2, 20]. The parameter M defining res-
ervation of servers for Type 2 customers in the model can 
take values from the interval [0,N − R). However, based on 
the inequality M < N −

𝜆1

𝜇1

, which was derived from the 
ergodicity condition (1), it is easy to calculate that in the 
considered example the parameter M cannot be larger than 
41. Thus, we vary the parameter M over the interval [0, 41] 
with step 1.

Figure 2 illustrates the dependence of the average num-
ber L of customers in both systems on the threshold M 
and the parameter B defining the values of the thresholds 
Bk, k = 1,N − R −M.

As it is seen from Fig. 2, the average number of cus-
tomers in both systems significantly increases with the 
increase of the parameters M and B. This increase is 
mainly caused by the increase of the number Nbuffer−1 of 
Type 1 customers in the buffer. Note, that in the consid-
ered example the value Nbusy−1 does not depend on the 
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parameters M and B and is equal to 8.016457. This can 
be explained by the fact that there are no losses of Type 
1 customers and all they obtain service. Thus, the mean 
value of the number Nbusy−1 of busy servers is always equal 
to �∕�1. But, the distribution of this number depends on 
the parameters M and B.

Figure 3 illustrates the dependence of the loss probability 
Ploss of a Type 2 customer on the parameters M and B.

One can see that the loss probability Ploss sharply 
increases with the decrease of the parameters M and B. This 
is clear because the decrease of these parameters leads to 
worse conditions for Type 2 customers. When B decreases, 
servers from the common pool are more frequently occu-
pied by Type 1 customers. When M (the number of serv-
ers reserved exclusively for service of Type 2 customers) 
decreases, more Type 2 customers are rejected upon arrival. 
Also, more Type 2 customers are forced to terminate service 
due to the capture of servers from a common pool by Type 
1 servers.

Figure 4 illustrates the dependence of the loss probability 
Pforce of a Type 2 customer due to the forced service termi-
nation on the parameters M and B. The dependence of the 
probability Pent of a customer loss upon arrival to System 2 
on the parameters B and M is presented in Fig. 5. Because 
Ploss = Pent + Pforce, the sharp increase of these probabilities 
with the decrease of M and B was obviously anticipated.

Let the quality of the system operation be evaluated by 
the following economical criterion:

We aim to find the set of parameters (B, M) providing the 
optimum (maximum) value of the criterion under fulfillment 
of the constraint

where Vwait is the mean waiting time of Type 1 customers 
and V is an arbitrarily fixed in advance number. The mean 
waiting time can be found according to Little’s formula as

Here, the parameter a defines the average profit earned by 
successful service of one Type 1 customer; the parameter b 
defines the average profit earned by successful service of one 
Type 2 customer; the parameter c defines the charge paid by 
the system due to the interruption of the service of a Type 
2 customer; the parameter d defines the charge paid by the 
system due to the loss of a Type 2 customer at the entrance 
to the system.

In this example, we fix the cost parameters as follows: 
a = 0.05, b = 0.03, c = 50, d = 0.2. The parameter V is 
fixed as V = 0.05.

E(B,M) = a�out−1 + b�out−2 − c�2Pforce − d�2Pent.

Vwait < V

Vwait =
Nbuffer−1

�1
.

The criterion E(B, M) defines the average profit obtained 
by the system per unit of time. We aim to find the values of 
M and B that maximize the profit of the system under the 
constraint that the average waiting time of an arbitrary Type 
1 customer will not exceed 0.05 seconds.

Figure 6 illustrates the dependence of the average waiting 
time of a Type 1 customer on the parameters M and B.

The dependence of the criterion E(B, M) on the param-
eters B and M is presented in Fig. 7.

The optimal value of the cost criterion E(B, M) is equal 
to 108.657 and is achieved for B = 6 and M = 31. Compu-
tations were implemented using Wolfram Mathematica on 
notebook Lenovo with CPU Intel(R) Core(TM) i7-1165G7 
2.80GHz and 16 GB RAM. Running time for computation of 
the value E(B, M) of the cost criterion for one point (B, M) 
was equal in average to 15 seconds. It is worth noting that, 
because computation time was acceptable for preparation 
of the examples, no optimization of the code was made. 
Computation time can be essentially reduced via such an 
optimization and the use of more powerful notebook or PC.

Now, let us describe the second set of the numerical 
results. Let us fix B = 6 and vary the total number of servers 
N. All other parameters are assumed to be the same as in the 
previous set of examples. Based on the ergodicity condition 
(1), we conclude that the minimal number of servers N 
should be greater than �1

�1

 . Thus, in the considered example 
the minimal admissible number of servers is 9 and we vary 
the parameter N over the interval [9, 70] with step 1. The 
parameter M varies over the interval [0,N − 8).

Figure 8 illustrates the dependence of the average number 
L of customers in both systems on the total number of serv-
ers N and the number M of the servers reserved for Type 2 
customers.

Figures 9, 10 and 11 illustrate the dependence of the loss 
probabilities Ploss, Pforce and Pent on the parameters N and M. 
These figures show that in this example the main reason for 
Type 2 customers’ loss is their rejection at the entrance to 
the system. It is worth noting the non-monotonic behavior of 
the loss probability Pforce for a small number M of reserved 
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servers. Firstly, with the increase of N,   Pforce increases 
because a larger number N of servers gives higher chances to 
enter the service for Type 2 customers and, correspondingly, 
the higher rate of expelling these customers from service due 
to Type 1 customers arrival. After reaching the maximum, 
the probability Pforce decreases with a further increase of N 
because under large N Type 1 customers succeed to obtain 
service practically without interruption of Type 2 custom-
ers service. With the increase of M,  the probability Pforce 
quickly decreases because the majority of Type 2 custom-
ers succeed to obtain service in the reserved servers where 
service cannot be forcedly terminated.

Figure 12 illustrates the dependence of the average wait-
ing time of Type 1 customers on the parameters N and M. 

The obvious observation follows from this figure. Vwait sharply 
increases with the decrease of the total number N of servers 
and the increase of the number M of servers reserved for ser-
vice only Type 2 customers.

Let us slightly change the economical criterion. We assume 
now that the quality of the model operation is evaluated by the 
cost criterion

The meaning of the coefficients a, b, c, and d is the same 
as in the previous example. The coefficient f is the cost of 
maintenance of one server per unit of time.

We aim to find the maximum value of the criterion E(N, M) 
under constraint (3).

Let in this numerical example the cost coefficients are cho-
sen as follows: a = 0.02, b = 0.01, c = 1, d = 0.01, f = 0.5. 
The parameter V is fixed as V = 0.05.

The dependence of the criterion E(N, M) on the parameters 
N and M is presented in Fig. 13.

The optimal value of the cost criterion E(N, M) is equal to 
35.7289 and achieved for N = 52 and M = 33.

E(N,M) = a�out−1 + b�out−2 − c�2Pforce − d�2Pent − fN.
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6  Conclusions

A novel priority scheme suitable, in particular, for schedul-
ing PUs and SUs in cognitive radio systems under realistic 
assumptions about the arrival process is investigated. This 
scheme is more friendly to SUs than the majority of other 
schemes considered in the literature, in particular, a preemp-
tive priority of PUs. Possibility of PUs waiting in a queue 
and non-instantaneous termination of service of SUs when 
a PU arrives, reservation of servers for exclusive service 
of PUs and SUs are allowed. Under any fixed values of the 
parameters defining the arrival and service processes and 
any fixed number of servers and thresholds defining admis-
sion control, the stationary distribution of the system states 
is computed. Dependencies of performance measures of 
the system on parameters of admission control strategy are 
numerically shown. The possibility of using the obtained 
results for solving optimization problems is demonstrated.

As the possible directions for future research, the fol-
lowing ones deserve to be mentioned: (1) analysis of sys-
tems with several types of SU. This direction is important 
because in many real systems (see, e.g., Kalil et al. (2017), 
El-Toukhy and Arslan (2019), Goel and Kulshrestha (2021)) 
SUs are divided into several subclasses, e.g., real-time and 
non-real-time SUs, new SUs and SUs, service of which is 
interrupted, etc.; (2) analysis of systems with PU or (and) 
SU retrials (see, e.g., Sun et al. (2014b), Jain et al. (2022), 
Phung-Duc et al. (2022)); (3) analysis of systems operat-
ing in a random environment; (4) analysis of systems with 
priorities upgrades; (5) analysis of systems with the phase-
type distribution of service times; (6) analysis of systems 
with group service of SUs, (see, e.g., Brugno et al. (2018), 
D’Arienzo et al. (2020)), etc.

It is also planned to discuss the possibilities of applica-
tion of the obtained results in the context of the problems 
considered in Zhang et al. (2019), Li et al. (2018).
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