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Abstract

Stroke remains one of the leading causes of long-term disability and mortality despite recent advances in acute thrombolytic
therapies. In fact, the global lifetime risk of stroke in adults over the age of 25 is approximately 25%, with 24.9 million cases of
ischemic stroke and 18.7 million cases of hemorrhagic stroke reported in 2015. One of the main challenges in developing
effective new acute therapeutics and enhanced long-term interventions for stroke recovery is the heterogeneity of stroke,
including etiology, comorbidities, and lifestyle factors that uniquely affect each individual stroke survivor. In this comprehensive
review, we propose that future biomarker studies can be designed to support precision medicine therapeutic interventions after
stroke. The current challenges in defining ideal biomarkers for stroke are highlighted, including consideration of disease course,
age, lifestyle factors, and subtypes of stroke. This overview of current clinical trials includes biomarker collection, and concludes
with an example of biomarker design for aneurysmal subarachnoid hemorrhage. With the advent of “-omics” studies, neuroim-
aging, big data, and precision medicine, well-designed stroke biomarker trials will greatly advance the treatment of a disease that
affects millions globally every year.
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Introduction

Despite the advances in the care of patients, stroke remains
one of the leading causes of death and long-term disability in
adults [1-3]. The approximate lifetime risk of stroke in adults
older than 25 worldwide is approximately 25% [4], with 24.9
million cases of ischemic stroke and 18.7 million cases of
hemorrhagic stroke reported globally in 2015 [1]. Although
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the age-adjusted incidence of stroke may be declining, the
prevalence of the disease and the global health burden will
rise as the size of the aging community increases. In addition,
the prevalence of stroke is also increasing in younger popula-
tions [4]. This will affect patients who would otherwise be a
part of the workforce, with a potential loss of income from
long-standing disability that also impacts the family unit and
the community as a whole [3]. While middle and low
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socioeconomic regions are particularly impacted by stroke [2,
4], it has a significant influence on all communities, even
when care is given in the most advanced and comprehensive
clinical setting. Despite the most advanced acute interven-
tions, a significant number of patients will suffer residual dis-
ability as a consequence of stroke. The HERMES meta-
analysis of the highly successful thrombectomy trials found
that 54% of patients who received thrombectomy still had
either persistent long-term disability or died [5, 6]. Stroke-
related healthcare costs are expected to climb approximately
$3 billion per year, with an estimated total healthcare cost of
$94.3 billion per year expected by 2035 in the USA [1]. Thus,
stroke remains a formidable disease that will continue to im-
pact society in the absence of effective prevention, new acute
therapeutic modalities, and enhanced interventions for long-
term recovery.

Current Challenges in Defining Ideal
Biomarkers for Stroke

1. Biomarker utilization The development and honing of indi-
vidualized care for patients require the ability to account for
the multitude of variables that influence patient outcome.
Stroke is a heterogeneous group of disorders subdivided by
many variables such as ischemic versus hemorrhagic, stroke
etiology, size, location, and severity. As a result, it is crucial to
have methods that allow extensive clinical phenotyping. One
way to accomplish this is through biomarkers. A biomarker
can be created from clinical data points, fluid, or tissue anal-
ysis (for various “-omics,” e.g., transcriptomics, lipidomics,
proteomics, or metabolomics), clinical outcome scales, toxi-
cology, imaging, physiologic testing, histology, microbiome
analysis, and biochemical studies, to name a few. These bio-
markers can improve diagnostic precision, predict clinical out-
comes, select patients for clinical trials, monitor disease pro-
gression, and identify new therapeutic targets [7, 8].
Biomarkers could also precisely determine beneficial, futile,
or harmful treatments [9]. For example, biomarkers could ac-
curately predict the risk of non-aneurysmal rupture and sub-
arachnoid hemorrhage (SAH) [10].

2. Ideal characteristics of an ideal biomarker Ideal biomarkers
in stroke should differentiate between patients with and with-
out the disease state or clinical outcome of interest with high
sensitivity and specificity. For stroke, ideal biomarkers should
be cost-effective, quickly obtainable without interfering with
administration of acute therapies, and non- or minimally inva-
sive [7, 8, 11]. In order for biomarkers to be universally appli-
cable, methods for data acquisition should be standardized and
realistically plausible even in settings with limited resources
[12]. Biomarker utilization should allow for avoidance of du-
plication of efforts among researchers. Obtaining and sharing
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the biomarker data should be possible while maintaining hu-
man subjects’ protection. In addition, an ideal biomarker
would have a signal that is not heavily influenced by con-
founders like gender, age, ethnic background, diet, medica-
tions, circadian rhythm, environmental exposures, and other
medical comorbidities.

3. Challenges in biomarker utilization Stroke is very complex,
so it is not likely that one biomarker will be the gateway to
precision medicine for treatment. This requires a paradigm
shift away from the hunt for the single biomarker that can
direct clinical care and research for all. The challenge is in
the selection of biomarkers with high sensitivity and specific-
ity among the many variables that may affect outcomes.
Sensitivity and specificity are a challenge with stroke bio-
markers, in particular, because the stroke itself triggers multi
end-organ stress that results in dynamic changes in expression
and cytokine release among the background biological signals
that will be unique to each person. Direct central nervous
system sampling is often not possible unless a patient requires
a surgical procedure that would provide that access for clinical
reasons such as open aneurysm clipping, intraventricular drain
placement, or specialized intracranial pressure monitoring.
Thus, biomarker analysis is limited to mostly indirect mea-
sures of brain activity, imaging, blood, other body fluid anal-
ysis, and clinical data for prediction models. Variables such
as sex, age, ethnic background, diet, medications, environ-
mental exposures, and other comorbidities may confound bio-
markers. Confounders affect the signal-to-noise ratio and thus
the sensitivity, specificity, and predictive value of the bio-
marker [7, 8]. It is more likely that multiple biomarkers or
panels from “Big Data” could improve precision [8, 12-16].
Big Data in stroke effectively aids in the identification of
relevant biomarkers from the myriad possibilities [17]. In fact,
Big Data recently identified the utter lack of African patient
data in 31 stroke-related genome-wide association studies that
identified genetic determinants of several stroke subtypes
[18], which will be an important requirement for any effective
population-based biomarker. Although useful, registries and
clinical trial data may exclude the identification of confound-
ing variables [12]. Partnering with large data analytic compa-
nies for Big Data analysis can provide insight on key variables
that may otherwise not be captured. Challenges faced in reha-
bilitation research also demonstrate variability in the types and
assessment of biomarkers for tracking clinical outcome, ob-
jective assessment of recovery limits, and replication of re-
search findings [19]. In addition, efforts are needed to harmo-
nize biomarker assessment and improve secured portability of
data for analysis between research collaborators [12]. Last, the
importance of finding cytoprotective agents in the post-
endovascular therapy era will require effective biomarkers
[8, 20]. Neuroprotective agents thus far have failed to effec-
tively translate to clinical application, but appropriately



Transl. Stroke Res. (2020) 11:615-627

617

selected biomarkers may revive this effort [13]. Because of
these challenges, any proposed biomarker would need to be
cross-validated [21].

Thus, an ideal biomarker, or most likely group of bio-
markers, will successfully achieve the following goals:

1. Stratify patients who will respond better to treatments,
especially with regard to relevant clinical trials;

2. Identify which treatment(s) to apply to a specific patient;

3. Monitor the response to a treatment for information on
whether a treatment should be changed to improve
efficacy;

4. Advance the therapeutic field toward using individualized
patient outcomes as endpoints.

In this review, we summarize biomarkers throughout the
continuum of stroke care, the implications of biomarker use in
clinical trials, the utility of clinical biomarkers in reverse trans-
lation to preclinical studies, and the coordination and planning
necessary for successful biomarker development.

Biomarkers in the Context of Disease Course

Very simple blood biomarkers are often used in stroke care
(e.g., blood glucose, cholesterol, and hemoglobin Alc [22]) in
addition to clinical and physiologic data and imaging, but the
requirement for more advanced panels of biomarkers has been
recently recommended [23]. Although current biomarkers
tune therapy at the population level, the true value and oppor-
tunity for a paradigm shift uses technological advances made
feasible through implementation of -omics technology. This
would allow medical personnel to predict individual patient
outcomes based on personalized biomarkers, which would be
particularly effective in long-term assessments as each patient
is his/her/their own control. This would also shift clinical re-
search from large, expensive randomized clinical trials to
smaller, more tailored groups of patients using predicted out-
comes as the benchmarks.

From the perspective of biomarker research in stroke, the
management of disease can be divided into three phases: pre-
stroke (potentially years prior), stroke (both pre-hospital and
in-hospital phases), and post-stroke phase of recovery and
rehabilitation. The differences between these phases stem
from population access, cost, speed, and depth of analysis.
Stroke biomarker research can and should be performed in
each phase independently and pursued separately. Phase-
specific biomarker research includes:

1. Pre-stroke phase

The research on comprehensive stroke biomarkers in the
pre-stroke phase remains in its infancy. This phase must be a

cost-effective and population-based endeavor that includes
-omics, activity, environment, and electronic health record.
Optimally, data collection should be continuous over a long
period to optimize within-patient controls and comparisons
with patients who do not develop the disease. Primary ques-
tions include whether the patient will experience stroke, pre-
diction of downstream sequela related to the stroke, and treat-
ment responses. Such answers can be delivered only through
recruitment of entire populations (e.g., Framingham [24] or
Baseline [25] studies), though studies in stroke-prone popula-
tions (e.g., hypertensive, obese) based on global statistical
analysis are also needed [26]. More recently, reports of in-
creased risk of adverse events with aspirin when used for
cardiovascular disease prevention in patients without symp-
tomatic cardiovascular disease [27] highlight the need for
patient-individualized interventions. Better identification of
patients who could suffer from stroke within a whole popula-
tion would have a tremendous impact on healthcare, as the
new algorithm would better identify high-risk stroke groups
on the level of individual patients. This could introduce the
concept of a “biomarker passport,” which would provide
patient-specific guidelines and expected outcomes readily
available to the care management team prior to the first or
recurrent stroke for optimization of stroke prevention. An ex-
ample is the Disparities in Transition of Care After Acute
Stroke Hospitalization, in which enrolled patients are follow-
ed and multidomain Big Data analysis, including clinical, en-
vironmental, and social determinants data, will be used to
identify key variables associated with post-discharge out-
comes in stroke patients [28]. This also would have potential
impact on management in the acute setting. For instance,
knowledge about collateral circulation is essential in making
decisions regarding mechanical thrombectomy. It would be
highly valuable to have that information before a stroke occurs
as a “biomarker passport.” Having biomarker passport a priori
would open the window of opportunity for novel therapeutic
options prior to the onset of ischemia specifically to optimize
collateralization.

Currently, we predict the risk of the whole population
based on specific classifiers, but these data are still not com-
pelling for individuals. Therefore, pre-stroke biomarker re-
search through application of biomarkers and Big Data sci-
ence would identify patient-specific risks to various patholog-
ical conditions, predicted severity, and pace of progression.
Because of the involvement of large populations in pre-
stroke phase biomarker development, these biomarkers
should be relatively low cost and multimodal. However, there
is no need for speed of data collection and processing.
Therefore, the data can be processed by large medical centers
and include the genomic background as well as lifestyle ac-
tivity and environment (e.g., light intensity, pollution). In ad-
dition, easily available biological materials such as saliva or
urine are preferable; however, in the early phase of research,
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these samples should be checked against blood and cerebral
spinal fluid (CSF) analysis, which would be more difficult to
obtain for high-frequency longitudinal analysis. The breadth
of obtainable information could counterbalance this, while
adding other -omics could be beneficial if cost was not pro-
hibitive. Finally, having individualized information about
stroke risk can improve stroke systems of care. The “biomark-
er passport” can be used to assist patients with making tailored
lifestyle changes for stroke prevention and when the data are
combined with other patients, it can also be used to ensure that
resources are appropriately provided to facilitate these en-
deavors. For example, having these data can be useful for
determining the impact of having easily accessible healthy
food options, clinics, pharmacies, and parks and recreations,
to name a few. In addition, it can be used to coordinate trans-
portation and triage models for emergency medical services
and hospitals.

2. Stroke phase

Biomarker development in this phase should include what
is clinically considered the hyperacute phase (<6 h after
stroke onset). This phase would be both pre-hospital when a
person arrives at the emergency department, as well as the in-
hospital acute phase (6—72 h after stroke onset), although note
that these time frames relate to ischemic stroke. Within the 6—
24 h, the latter phase is of particular importance for ischemic
stroke, as this is within the extended time window, which
some patients may be eligible for endovascular therapy [29,
30]. There is also more compelling evidence suggesting that
selected patients may benefit from receiving thrombolysis
[31-33]. During the first several days after symptom onset
for ischemic and hemorrhagic stroke, care is focused on med-
ical stabilization. After medical stabilization, preparation of
the patient for rehabilitation is a priority until new interven-
tions are developed. This phase of biomarker development is
dependent on stroke etiology, size, and medical complications
(Fig. 1). For example, large ischemic strokes, SAH, and intra-
cerebral hemorrhage (ICH) patients may have complications
at later times (> 72 h after stroke onset), extending the window
for intensive therapy. Also, the pathophysiology of hemor-
rhagic stroke differs from ischemic; thus, we should consider
biomarker development for SAH/ICH separately from ische-
mic stroke, as outlined below. Finally, biomarkers may change
dramatically in a short window of time during the hyperacute
and acute phases compared with other phases, which is a
challenge for identifying optimal treatment windows (Fig. 2).

The occurrence of stroke typically prompts evaluation for
immediate therapeutic intervention. The biomarker passport
could play an invaluable role in streamlining stroke care; how-
ever, acute phase biomarkers are a desirable addition. In this
phase, only patients with stroke can be studied, which limits
study recruitment for ideal controls. Moreover, likely the most
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valuable data from advanced imaging and monitoring would
come from comprehensive stroke centers in which cutting-
edge management is available. In this intensive period, timing
is also critical. Therefore, output from biomarkers should be
very fast or even instant. Thus, biomarker development should
focus on speed and accuracy, and less on cost. In fact, there are
already biomarkers in acute stroke care (e.g., imaging) that
determine indications for thrombectomy and mismatch be-
tween clinical deficit and infarct size [29]. However, there
are still opportunities for improvement, better to guide the
therapeutic processes in this intensive phase, and identify
mechanisms that may be adjunctive therapeutic targets to
thrombectomy.

3. Post-stroke phase

After medical stabilization, the requirements for bio-
markers change, as does the utility of particular biomarkers.
Unfortunately, the patient population is now further limited to
survivors, and the application of biomarkers in this phase is
more challenging due to difficulties in finding effective inter-
ventions to enhance neuroplasticity and recovery. There is
already a known rule of 70% recovery on the population-
based level, which could be used as a benchmark for popula-
tion studies [34]. However, at the single-patient level, there is
high variability preventing the use of patients as their own
controls [35]. Therefore, identifying better “predictors” of re-
covery on a patient-based level would be the most beneficial,
particularly through next-generation sequencing or other ad-
vanced -omics [36]. Functional connectivity may also serve as
a useful biomarker, especially if obtained through low-cost
and more feasible technology such as EEG [37].
Unfortunately, the logistics and costs related to advanced im-
aging (e.g., MRI) might be prohibitive for widespread appli-
cation during this phase. However, longitudinal specimen col-
lection, especially saliva or urine, and the placement of stim-
ulating electrodes to guide in-home therapy seems reasonable.
A recent comprehensive review from the American Society of
Neurorehabilitation highlights the challenges of developing
effective biomarkers to guide rehabilitation [38]. The major
value of biomarkers in this phase of stroke is to stratify pa-
tients to appropriate rehabilitation programs, tailor rehabilita-
tion programs that prove initially ineffectual, and for counsel-
ing the patient, family, and environment on expected
outcomes.

Biomarkers Defined by Type of Stroke

Stroke is a heterogeneous disease in pathoetiology origins, as
well as variables affecting recovery. Thus, this requires bio-
marker trials designed specifically for the type of stroke.
Ongoing biomarker trials mainly focus on ischemic stroke.
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Fig. 1 Phases of stroke-related
biomarker study. The diagram
outlines how biomarker studies
should be tailored to both stroke
subset (y-axis) and phase of
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However, within this population are subpopulations of ische-
mic stroke patients who qualify for the recombinant tissue
plasminogen activator and/or mechanical thrombectomy. As
a result, treatment eligibility must also be considered. One
current biomarker trial, BACTRAC, utilizes the
thrombectomy procedure to collect blood at the time of stroke
onset from the stroke-affected brain area [39]. This ongoing
study is analyzing the blood distal to the clot for fluid bio-
markers predictive of injury and/or recovery, with the within-
patient proximal blood collection taken as a control standard.
If specific biomarkers are identified for a subset of patients,
and a rapid testing method developed, adjunctive therapies
could be administered intra-arterially at the time of recanali-
zation during mechanical thrombectomy. Thus, this creates a
need for biomarkers for therapeutic development that dramat-
ically differ from any other ischemic stroke patient subgroups,
including all ischemic stroke patients who do not qualify for
thrombectomy.

The main difference between ischemic and some hem-
orrhagic strokes is that in ischemia, the first 2 to 3 days
after the onset of stroke are typically the worst for the
patient, unless the patient has a large stroke where

Biomarkers

Fig. 2 Schematic for optimizing
stroke biomarker trials.
Biomarkers can be identified in
each phase of stroke (pre-stroke,
stroke, post-stroke) and stroke
subtype (ischemic, subarachnoid
hemorrhage, intracerebral
hemorrhage) to support precision
medicine for the individual
patient. RCT, randomized
controlled trial

e.g. clinical data, ’omics,

malignant edema occurs or there is early stroke re-occur-
rence. Thus, most important therapeutic decisions will be
made in that time, which requires rapid biomarkers. In
hemorrhagic conditions such as ICH and SAH, worsening
conditions frequently occur in a delayed fashion. Figure 1
depicts the progression of hemorrhagic stroke injury as it
differs from ischemic stroke. Both this and the differences
in pathophysiology and clinical course between hemor-
rhagic and ischemic stroke thereby alter the intensive ther-
apy and the post-stroke rehabilitation/recovery stages.
Therefore, providing more time for long-term biomarkers
in these latter conditions, as well as their predictive value
for secondary injury, would be highly valuable to guide
therapy and extend the window of intervention. Within
hemorrhagic stroke populations, variations between ICH
and SAH patients would suggest that, for example, ICH
biomarkers should focus on mechanisms and treatment of
brain edema, whereas SAH biomarkers could predict de-
layed vasoconstriction resulting in delayed cerebral ische-
mia (DCI). Finally and unfortunately, most ongoing bio-
marker trials exclude children with stroke, perhaps as pe-
diatric stroke patients encounter varied etiology and are

Desired biomarker trial
outcomes

- Improve diagnostic
precision
- Predict clinical outcomes

Choice of - Assist patient selection for
phase RCT
& stroke subtype - Help monitor disease

progression

- Advance treatment
efficacy

- Discover novel
therapeutic targets

imaging, fluids, biospecimens
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often not predictable within the first 24 h [40]. However,
future neonatal- and pediatric-specific biomarker trials
could have a significant impact as patients experience
high rates of comorbidities and various degrees of learn-
ing deficits throughout childhood [41].

Current Biomarker Trials for Stroke

Clinical trials for the discovery of diagnostic biomarkers
that will help differentiate between stroke and stroke
mimics (e.g., brain tumors, metabolic disorders, mi-
graines, transient ischemic attacks), and between ischemic
and hemorrhagic strokes, are underway. Table 1 provides
a sampling of biomarker trials taking place throughout the
world, predominantly in adults with ischemic stroke.
While there are several different types of potential bio-
markers, components found in blood are most commonly
evaluated. However, due to the heterogeneity of comor-
bidities and types of stroke, it has proven difficult to
identify biomarkers with adequate sensitivity and specific-
ity, as previously mentioned [56]. Therefore, biomarker
panels with a combination of markers related to inflam-
mation, oxidative stress, blood-brain barrier disruption,
and cell death may be of greater value, though they have
yet to demonstrate sufficient accuracy in clinical use [52,
57-59].

An important aspect to take into consideration is the
disease phase in which the biomarker is evaluated. As
shown in Table 1, several trials collect the specimens in
the hyperacute/acute phase of stroke. Many of these trials,
such as the Biomarkers of Acute Stroke Etiology (BASE)
trial, are attempting to identify biomarkers that will help
diagnose stroke at the time of admission. However, it is
important to note that while samples are collected during
the hyperacute/acute phase, they are often subsequently
frozen for later analysis. An improvement in the speed of
laboratory technology would optimize biomarkers to be
used in the clinical setting at the time of patient presenta-
tion. Other studies, while few, are evaluating biomarkers
during the post-stroke recovery/rehabilitation phase, with
some focusing on identifying biomarkers related to recur-
rent stroke. This is particularly relevant as the risk factor
for recurrent stroke remains high, especially in patients
with comorbidities [60]. Interestingly, the Tel Aviv Brain
Acute Stroke Cohort (TABASCO) study examined a com-
bination of genetic, inflammatory, imaging, and psycho-
logical markers during the acute phase to predict long-
term cognitive and functional decline, with collection of
both blood and saliva [61]. While TABASCO identified
imaging abnormalities, motor function (i.e., balance, gait),
and comorbidities as biomarkers for cognitive decline [45,
62, 63], blood and saliva results have yet to be published.
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Unfortunately, although a number of clinical trials contin-
ue, no blood biomarker or panel of biomarkers has signif-
icantly added to the diagnostics already obtained through
physical examination and imaging [64].

Designing Ideal Scenarios for Biomarker
Development

The selection and development of biomarkers should be based
on a clear understanding of the etiology of the given stroke
subtypes, relevant complications, and the recovery phase.
With that in mind, taking aneurysm SAH (aSAH) as an exam-
ple, pathological injuries develop over weeks. Symptoms in
which a practitioner could intervene would include initial se-
verity of injury, secondary cerebral vasospasm (CV), and DCI.
aSAH patients are routinely kept in the hospital for > 14 days
to monitor for development of secondary complications.
Clinically, it is difficult to predict whether a patient has CV
and symptomatic ischemia because these patients are critically
ill and the neurologic decline associated with delayed CV/
DCl/infarction is not discernable from the initial critical state.
Due to long-term functional impairments caused by CV/DCI/
infarction, identifying diagnostic biomarkers to correlate with
the severity of injury and prognostic biomarkers for the early
prediction of CV, as well as diagnostic biomarkers for moni-
toring the rise, peak, and resolution of CV, could serve as
clinically useful tools in the critical care management of
aSAH patients. Furthermore, understanding the dynamic and
temporal biomarker levels relative to the patient’s clinical
course would shed important insight on aSAH pathophysiol-
ogy and reveal novel putative therapeutic targets.

In terms of biospecimens, it is necessary to consider blood,
CSF if available, buffy coat, saliva, and urine. It would be
ideal to collect temporal samples at admission and at given
period intervals (e.g., 6 h) for up to 14 days post-bleed,
biospecimens collected as early as possible, including during
transportation in the ambulance, dependent on the expertise of
the first responders and ease of access. These temporal profiles
could then be correlated to initial clinical and radiographic
aSAH severity; the incidence, dynamics, and severity of CV;
the incidence of DCI and/or infarction; mortality; and func-
tional outcome scales at the time of discharge, through
12 months post-bleed. Comparing the rates of change would
delineate the contribution of central versus peripheral clear-
ance mechanisms fundamental to developing effective thera-
peutics. More specifically, changes in red blood cells and he-
moglobin (Hb) levels tend to mirror the evolution of CV, al-
though the mechanisms by which free Hb causes delayed
arterial narrowing are multifactorial and poorly understood
[65—67]. Possible mechanisms include neuronal apoptosis, in-
creased endothelin-1, direct oxidative stress on smooth muscle
cells, lipid peroxidation, and differential upregulation of
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Table 1 (continued)

Methods

Phase

Participant ~ Sample type

age

Stroke type

Clinical Trials (identifier)

Sample collection daily from admission to

Transcriptomic Signature of Vasospasm Consecutive

day 12. Blood evaluation of gene and

miRNA expression.

to Sub-arachnoid Aneurismal Hemorrhage:

VASOGENE (NCT01779713) [53]
Development of biomarker to identify patients with

aSAH who will develop arterial vasospasm.
The effect of melatonin on patients with hemorrhagic

S100B and CRP as a biomarker of neuronal

Acute

Blood

All

Hemorrhagic

injury will be assessed once on days 1

and 5 post ICU admission

stroke (Iranian Registry of Clinical Trials

2016100530164N1) [54]
EudraCT Number: 2007-002337-36

Study of CSF pharmacokinetics of

Acute

CSF

All

SAH

intravenous Kineret® in patients with an
external ventricular drain inserted for

clinical management

An open-labeled study of the cerebrospinal fluid

pharmacokinetics of intravenous Kineret® in patients with subarachnoid

hemorrhage.

Measurement of lipoprotein(a) levels as a

Pre-stroke and

Blood

18+

Not Specified

Baseline and On-statin Treatment Lipoprotein(a)

predictor of cardiovascular events or stroke.

recurrent

Levels for Prediction of Cardiovascular Events [55]
Meta-analysis of 7 clinical trials for the association of

lipoprotein(a) levels and risk of cardiovascular events.

related genes [67]. Further, the process by which blood me-
tabolites are normally cleared from the subarachnoid space is
unclear and may contribute to the inability to predict CV after
aSAH. One advantageous aspect of aSAH is that many pa-
tients will have a shunt to drain CSF. This allows sample
pairing (i.e., serum/CSF) collected at exact times from the
same patient, to monitor the dynamics of a given biomarker,
for example, when an early CSF biomarker appears in the
blood. Appropriate control samples are also extremely valu-
able (and interestingly, sometimes more difficult for a center
to obtain, especially with regard to CSF). For example, in the
context of aSAH, the control biospecimens would consist of a
single time point of simultaneously collected serum and CSF
samples from acoustic neuroma, colloid cyst, or communicat-
ing hydrocephalus patients (non-aSAH). In all cases, the sam-
ples should be collected using standardized protocols and, if
possible, by the same operating team.

Biostatisticians are vital for the investigation and should be
included from the beginning as they provide the proper design
analysis to identify biologically meaningful correlations. For
longitudinal (repeated measures) models, general (continuous
outcomes), and generalized (categorical/count outcomes), lin-
ear mixed models should be employed. These models should
account for the intra-individual correlations in outcomes with-
in subjects, missing data, and individuals having different
values of measurements. Interaction terms between time and
a given predictor (i.e., time X predictor) should be modeled to
assess whether changes in the outcome (slope) differ across
different levels of the biomarker. Finally, time-to-event mea-
sures (e.g., mortality) should be evaluated using Kaplan—
Meier curves, log-rank tests for univariate analysis, and Cox
regression for multivariable analysis. With the amount of data
gathered, machine-learning technology could foster the devel-
opment of prognostic and diagnostic biomarkers and provide
a solid mechanistic understanding of the dynamics relative to
clinical course. Along that line, the U.S. Food and Drug
Administration (FDA) announced an effort to develop a reg-
ulatory framework for medical artificial intelligence (Al) al-
gorithms that reflects the fact that these tools are continuously
learning and evolving from experience gained in real-world
clinical use [68, 69]. This biomarker-powered, self-learning
engine may ultimately transform healthcare.

The development (and independent validation) of prognos-
tic and diagnostic biomarkers also provides solid mechanistic
understandings of pathology. All biomarker platforms should
include methods to identify therapeutically targetable path-
ways. Furthermore, through various surgical procedures, ac-
quisition of additional biospecimens could include blood at
the site of infarction, blood clot, brain tissue, etc. In fact, more
public/patient education and awareness would increase the
number of brain and tissue donors, and optimized protocols
should be in place to rapidly obtain post-mortem tissues.
Combined efforts could support such infrastructure and allow
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investigators access to these biobanks. We suggest that the
NIH StrokeNet, as well as international consortiums/
associations (e.g., Hemoglobin After Intracranial
Hemorrhage (HATCH) consortium [70]), include
biospecimen banking while conducting clinical trials, al-
though we acknowledge that funding would be required to
support the infrastructure. Finally, the American Heart
Association’s Precision Medicine Platform [71] would be an
excellent shared database for the deposition of acquired data
from shared biobanking consortiums.

Developing Biomarkers from Preclinical
Studies: from Bedside to Bench Then Back
to Bedside

One intriguing opportunity that brings together clinicians
and basic/translational stroke researchers is the idea of
reverse translation by which novel clinical stroke bio-
markers could be studied in animal models of stroke. In
this way, clinical researchers cast a wide net to screen
samples for factors that are impacted by stroke in an un-
biased, hypothesis-free fashion, to be followed up by
bench experimentation. For example, if a particular pro-
tein, cytokine, etc., is acutely elevated in many/most pa-
tients undergoing ischemic stroke, experiments could de-
termine whether this also occurs in lab animals after ex-
perimental stroke, followed by gain- and loss-of-function,
mechanistic, and therapeutic studies. The results of such
preclinical investigations could be translated back to the
clinic in the form of biomarker validation, novel drug or
intervention development, and clinical trials. Indeed, dur-
ing the translation of many promising preclinical stroke
biomarkers and therapies has been fraught with failures
[72], it is enticing to speculate that reverse translation
approaches, grounded in clinical realities, may improve
the chances of success.

Analogous to “drugability” in pharmacology, animal stud-
ies may also be used to conceptualize “biomarkerability.” The
experimental scenario may allow for biomarker screening in
well-defined experimental conditions [36], which can narrow
the selection of biomarkers to be detected by ultrasensitive
methods. For example, there are thousands of various
microRNAs (miRNAs) across the body that control mRNA
for brain-specific transcription factors, which may be present,
albeit only a few copies, in body fluids following stroke.
Genome-wide methods, such as next-generation sequencing,
may exhibit insufficient sensitivity to detect biomarker-ready
miRNAs. However, if miRNAs are identified based on anal-
ysis of infarcted tissue and verified in clinical samples, then
sensitive methods such as droplet digital PCR could be devel-
oped to catch injury or repair-relevant miRNAs in body
fluids—even single copies of particular miRNAs—which

@ Springer

may become valuable biomarkers detectable rapidly even dur-
ing the stroke phase.

Concluding Remarks

In conclusion, there is momentum moving the field into a
new frontier of stroke research—precision medicine. The
effective use of biomarkers allows for more precise phe-
notyping of patients, monitoring of disease progression
and response to therapy, and drug discovery. This endeav-
or will require international coordination of research ef-
forts, data, and resources. There are several limitations to
consider that will require unique approaches, such as data
sharing across different governing ethics boards and coun-
tries, data analysis, consistency of shared data elements
and documentation, cost of sample collection and analy-
sis, and reverse and forward translation of research find-
ings. An approach to maneuver around these challenges
will require coordination and collaboration, as well as
research efforts from basic scientists, clinical researchers,
clinicians, policy-makers, community, and industry to use
funds efficiently and reduce redundancy. Nonetheless, the
power to better shape the recovery of millions of stroke
survivors each year demands that we as a field harness
new technologies to design optimal biomarker trials that
support the development of new neurotherapeutic inter-
ventions. The new FDA medical Al regulatory effort,
coupled with the AHA Precision Medicine Platform,
may also transform healthcare into a biomarker-powered,
self-learning engine capable of providing optimal service
to patients, including those with stroke, on a globally
accessible level.
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