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Abstract In this paper, a class of fuzzy cellular neural
networks with multi-proportional delays is investigated. By
applying contraction mapping fixed point theorem and
differential inequality techniques, some sufficient condi-
tions are established for the existence and global attrac-
tivity of a unique almost periodic solution for the model,
which improve and supplement existing ones. Moreover, a
numerical example is given to illustrate the feasibility and
application of the obtained results.

Keywords Fuzzy cellular neural networks - Almost
periodic solution - Existence - Global attractivity -
Multi-proportional delay

Mathematics Subject Classification 34C25 - 34K13 -
34K25

1 Introduction

As is well known, both in biological and man-made neural
networks, delays are inevitable, due to various reasons. For
instance, time delays can be caused by the finite switching
speed of amplifier circuits in neural networks [21].
Therefore, fuzzy cellular neural networks (FCNNs) with
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delays have been extensively applied in psychophysics,
speech, perception, robotics, adaptive pattern recognition,
vision, and image processing (see [1, 9, 23, 31]). When
FCNNs model is used to describe the biological dynamics
with periodically varying environment, the coefficients and
delays in the model are usually periodically time-varying,
and there have been extensive results on the problem of the
existence and stability of periodic solutions of FCNNs with
time-varying delays in the literature. We refer the reader to
[2, 6, 17, 19, 25, 26] and the references cited therein.

On the other hand, time delays involving in cellular
neural networks (CNNs) may be proportional in theory,
that is to say, the proportional delay function t(¢) = 1 — gt
is a monotonically increasing function with the increase of
time ¢t > 0, where ¢ is a constant and satisfies 0 <g<1. In
fact, the proportional delay is one of the many objective-
existent delay types such as the proportional delay usually
is required in web quality of service routing decision,
which is because it is convenient to control the networks
running time according to the network allowed delays [5,
30, 32-35]. Moreover, the systems with proportional
delays have many interesting applications, for example,
collection of current by the pantograph of an electric
locomotive [18], electrodynamics [7], nonlinear dynamics
[3, 20], and probability theory on algebraic structures [4].

Here, it is worth noting that, if we consider the effects of
the environmental factors, almost periodicity is sometimes
more realistic and more general than periodicity, and thus,
people have paid much attention to the study of existence and
stability of almost periodic solutions and pseudo almost
periodic solutions for CNNs with time-varying delays and
distributed delays because of its successful applications in
variety of areas such as signal processing, pattern recogni-
tion, chemical processes, nuclear reactors, biological sys-
tems, static image processing, associative memories,
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optimization problems and so on (see [10-15,22,27-29] and
the references cited therein). However, to the best of our
knowledge, there is no result on problem of almost periodic
solutions for FCNNs with proportional delays.

Motivated by the above discussions, the main purpose of
this paper is to establish some sufficient conditions on the
existence and global attractivity of almost periodic solu-
tions for the following FCNNs with multi-proportional
delays:

mn=wwmm+§%mmmm+§mme+mw

=

+ A ay(0,0s(a0) + V' By (0)8,5(00)

=1

[

+ A Ty(0)u(1) + V Hy () (1), 1> 10 >0,
=1 =

j
xi(s) = @;(s), s € [pito, to], i €J={1,2,...,n},

(1.1)

where oy(t), B;(1), T;(t) and Hy(t) are the elements of the
fuzzy feedback MIN template, fuzzy feedback MAX tem-
plate, fuzzy feedforward MIN template and fuzzy feedfor-
ward MAX template, respectively; a;(¢) and b;(t) are the
elements of feedback template and feedforward template;
A,V denote the fuzzy AND and fuzzy OR operation,
respectively; x;(1), u;(¢) and I;(¢) denote the state, input and
bias of the ith neuron, respectively; ¢;(¢) represents the rates
with which the i-th neuron will reset its potential to the
resting state in isolation when disconnected from the net-
works and external inputs; f;(-) and g;(+) denote the nonlinear
activation functions; g;;,1,j € J are proportional delay fac-
tors and satisfy 0 <g;; < 1,and ¢;;t = t — (1 — g;j)t, in which
7;(t) = (1 — g;)t is the transmission delay function, and
(1 —gy)t — oo as g5 # 1, t — 005 @;(s) denotes the initial

value of x;(s) at s € [p;t, to], pizlrgjgn{q;j}, and

@; € C([pito, 1], R). When coefficients and activation
functions in (1.1) are continuous, it can be shown by the
method-of-steps given in Hale and Verduyn Lunel [8] that
the solution of (1.1) exists and is unique.

The remaining of this paper is organized as follows. In
Sect. 2, we give some basic definitions and lemmas, which
play an important role in Sect. 3 to establish the existence
of almost periodic solutions of (1.1). Here we also study
the global attractivity of almost periodic solutions. The
paper concludes with an example to illustrate the effec-
tiveness of the obtained results by numerical simulation.

2 Preliminaries

In this section, we shall first recall some basic definitions,
lemmas which are used in what follows.

@ Springer

For convenience, we denote by R"(R = IRI) the set of all
n—dimensional real vectors (real numbers). For any
{xi} = (x1, x2,...,x,) € R", we let xl denote the absolute-
value vector given by |x| = {|x;|}, and define ||x|| = max |x; |-

A matrix or vector A > 0 means that all entries of A are greater
than or equal to zero. A > 0 can be defined similarly. For
matrices or vectors A; and Ay, A} > Aj (resp. A} > Aj) means
that Ay — A, >0 (resp. A} — A, > 0). C(R, R") denotes the
set of continuous functions from R to R".

Definition 2.1 (see [6]) Letu(r) € C(R, R"). u(r) is said to
be almost periodic on R if, for any & > 0, the set T(u,¢) =
{6 :|lu(t+90) —u(r)]|<e for all r€ R} is relatively
dense, i.e., for any ¢ > 0, it is possible to find a real number
1 =1(¢) > 0 with the property that, for any interval with
length (&), there exists a number 6 = d(¢) in this interval
such that |lu(t + ) — u(r)||<e, for all ¢ € R.

We denote by AP(R, R") the set of the almost periodic
functions from R to R". Then (AP(R,R"),|-]) is a
Banach space, where || - ||, denotes the supremum norm
Ifll o := sup |[f (1)|| (see [6]). For h € C(R, R), let " and

teR

h~ be defined as
h* = sup |h(1)],

teR

h = }g[g |h(1)].

It will be assumed that c;,a;, by, Ty, oy, Py Hy, Ty,

I;,u; : R — R are almost periodic functions, and i,j € J. We
also make the following assumptions which will be used later.

(Hp) For each i € J,

1 +T
Mc;] = TEIEOOT/ ci(s)ds > 0,
t

and there exist a bounded and continuous function ¢; :
R — (0, +o00) and a positive constant K; such that

eij; cilu)du K,eijl Glde gor all t,s€Randt—s>0.
(H,) For each j € J, there exist nonnegative constants L;
and L] such that

() =) < Ll = v], lgj () — gi(v)| < Lflu = v,
for all u, veR.

(H,) There exist positive constants &1, &,,..., &, and o;
such that

suﬂg { — &) + K [ &! Z |aij(t)|L{éj

e =1

+fiIZ(I%:;O)I+|ﬂy(t)l)Lffj]} <-—m il
j=1
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Lemma 2.1 (see [24]). Let x;,%;, 0,k € R, hj : R — R ¢ -
' ' (xi(qii(t+9))) — gi(xi(gijt))| < =————————, i, jEJ.
be continuous functions, and i,j € J, then we have |g,(xj(q,( ) g](xj(q] )| 2n(Me + M?) hJ
n n (2.3)
0;ihi( < 0;i||h;(
j/:\l i) /:\ (%) Z| il () = ()1, With the help of (2.2), (2.3) and Lemma 2.1, we get
and I\ 2 (e + 8)g(xi(qi (e + 6))) — N\ o ()i (xi(q1))
j=1 J=1
hix:) — qhi(T) | < () — hi(x)]. . "
i) = V() < 3 sl o) = ) < | Ate + lanto-+ o)~ A syl aste + a>>>’
=1 Jj=1

Lemma 2.2 Let x(r) € AP(R,R), and ¢ € R be a con-
stant. Then, x(gf) € AP(R, R).

Proof We only consider the case of ¢ > 0 since other
situations can be dealt with by the analogous approach. For
convenience, denote x(gf) by y(f). By the almost periodicity
of x(¢#), one can see that for any ¢ > 0, there exists
I =1(¢) > 0, for any interval with length /, there exists a
number 7 in this interval such that

|x(t+7) —x(r)|<e, tE€R,

(2.1)

For the ¢ given above, choose £/ > 0, then [a,a + ;1](a €
R) is an arbitrary interval with length ;7 > 0. Then there

exists a t € [ga,qa +I], such that (2.1) holds. Clearly,
ér € [a,a+ %l], we deduce from (2.1) that

1 1
v(z + 5%’) —y(0)] = |x(q(t + 51)) — x(g1)
= |x(gt + 1) —x(qt)| <e, teR.
This proves Lemma 2.2. O

Lemma 2.3 For i,j € J, let x;, 05, f; € AP(R), g; € R
and (H,) hold, then

/\O‘U 8 (x(qit) \/ﬁy gi(xi(git)) € AP(R,R), i € J.

Jj=

Proof 1t follows from (H;) that g;(j € J) is uniformly
continuous on R. By Lemma 2.2 and [6, pp. 5, Theo-
rem 1.9], we have

gi(xi(gy1)) € AP(R,R), 1i,jelJ.

Let  M® = max;jc/{sup,cr |8 (xi(q;7))|}, M* = maxije,
{sup,cp |o;(#)|}. For any & > 0, from [6, pp. 19, Corollary
2.3] and the definition of the uniformly almost periodic
family, it is possible to find a real number [ = I(¢) > 0 with
the property that, for any interval with length /, there exists

a number 6 = J(¢) in this interval such that

&

gt +0) = (M + M)

o ()| < i,j€J, (2.2)

and

A B late -9~ Aniosstan)

=1

< Zlg/ %j(qij (1 + 0))) o (7 + ) — o (1)

j=1

+ Z o (1)1 (%13 (1 + 9))) — &;(xi(qyt))]

<MY oo+ 0) = a0 + 4Dl Caio-+ 9)

— &i(xi(gy1))|

&

n
<M? v
— 2n(M# + M*)

&
— 4
j:Zl 2n(Mé + M*)

<é

which implies

A\ uttstla) € APE.R), i<

j=

Similarly, we have

\n/lﬁ )gi(xi(gyt)) € AP(R,R), i € J.

j=

This completes the proof. O
Remark 2.1 Note that

n

/\ Tyt + 8)u;(t + ) —

j=1 J

>=

T (t)u;(t)

1

Z Ty(t + 0)|[ui(t + ) — wi ()| + > [us(1)[|Ty (¢ + 8) — Ty (1)

j=1 j=1

and

Hi(t)u;(t)

<:

\/H,] t+ O)ui(t + 5) —

j=1 J

1

< 37 Hylr+ I+ 6) — )

J=1

#3001 9)

J=1

—Hy(1)], i€l
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Using a similar way to that in Lemma 2.3, one can show

T;( \/Hl] ui(t

3 Main results

) EAP(R,R), i€ J.

>=

1

J

In this section, we establish sufficient conditions on the
existence and global attractivity of almost periodic solu-
tions of (1.1).

Theorem 3.1 Let (Hy), (H;) and (H,) hold. Then, there
exists a unique almost periodic solution of system (1.1).

Proof Set xi(t) = & 'xi(t), i€J, then we can trans-
form (1.1) into the following system
X(1) = —ai()x(1)

+ &Y ag(nf(Ex () )+ &)
j=1

)+ & Zb’J ui(t

F& A\ aEsan) + &\ By0s (&5

j=1

+ & AT w0 + &\ H(w(r), i€l
j=1 j=1

Let ¢ € AP(R,R"), it follows from Lemma 2.3 and
Remark 2.1 that

-1
Z“U ()i (&;(2)

+ &t /\ ;i (1)gi(&0;(qit))

1)+ & L(r)

)+ & Zbu uj(t

+ 5;1 \/ﬁ;j(f)gj(fj%(%jt))
i

+ ‘fi_l /\le;(t)u, ) +& \/HU u;(t
j=1

(3.1)

Then, notice that M([c;(f)] >0, i € J, in view of (3.1), it
follows from Lemma 2.1 in [22] that the nonlinear almost
periodic differential equations,

0 = a0+ Sl 0)
+ C_l Z by (t)u;(t

+&! /\ ()i (& 0;(qit))

(t) + & 'I(r)

+ 571 \/ [5ii(t)gj(éj(f’j(qijt))

j=1 j=1
n n
+ & N Ti0w(0) + &7\ Hy(0wy(0), i € J,
J=1 J=1

has exactly one almost periodic solution:

@ Springer

) €AP(R,R), i€ J.

X001 = {3 (0} = { e b [é > a5 (G0,6)
> j=1
T me)u, )+ & )

+&! /\ %;(5)8;(&9;(4is))
j=1

& A\ Tiuls) + ¢ \/Hii(s)“f(s)] dS}-

+&7\ Bi(9)gi(E0;(a49))
=1

(3.3)

Now, we define a mapping T : AP(R, R") — AP(R, R") by
setting

(To)(1) =x"(1),

We next prove that the mapping 7T is a contraction mapping
of AP(R, R"). In fact, in view of (3.3), (Hy), (H;) and (H>),
for ¢,y € AP(R, R"), we have

[(Te) (1) — (T) ()]
= {l((Te)(1) = (TY) (1)1}

{'/ o |:€i1 iaif(s)(fj(iﬂﬂj(s)) = f(&Y;(s)))
i 1(]/\ fxl} g] é/(p] qu /\OC,](S g] éJ (qus))>
Gi 1<l\n/ﬁ g/(f]‘ﬂ, ‘1:/ \/ﬁu gj leﬁ (qus))>:|ds

Jj=1

< {Kz/ e_fr i (u)du |:éil Zl |aij(s)|L§§j‘(P_i(s) — IPJ(Y)|
S =

+&! i(l%’(S)\ + B (IDL &loj(gis) — '//j(qijs)|:| dS}

J=1

S

n

FET (ool + |ﬁ,~,<x>|>Lf<f} dslo(r) - wnm}

Jj=1

S{/,w =Lt )~ oaslip(r) — wmuw}
{/ e—ff"f"“““u - 29 (sslole) - bl

g{(l——)lltp() (r)\\x},

Vo € AP(R,R").

}

. n i
o J. [i,-_' Z lay(s)|L &
=

and

o
I(T0)(0) — (TY)D < max{1 — 2 lo(1) (1),
which implies that the mapping T :AP(R,R") —

AP(R,R") is a contraction mapping. Therefore, the map-
ping T possesses a unique fixed point
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X = (a7 (1), x5 (1), ..., x (1) € AP(R,R"), Tx*™ = x™,
and x** satisfies (3.2). So (1.1) has a unique continuously
differentiable almost periodic solution x* = (& x}*(z),
Ex5 (1), ..., Ex5%(¢)). The proof of Theorem 3.1 is now
completed. O

In what follows, we investigate the attractivity of the
solutions for (1.1).

Theorem 3.2 Under the assumptions of Theorem 3.1,
system (1.1) has a unique almost periodic solution x*(¢),
and there exist two positive constants A and o, which are
independent of solutions of (1.1), such that for arbitrary
solution x(f) of (1.1) associated with initial value
(1) = {;(t)}, the following inequality holds

max{ sup

o |¢i(s) = x7 (s)[}

(1+1)
for all ¢>1,.

[lx(5) =" (D] <A

Proof Obviously, by Theorem 3.1, (1.1) has a unique
almost periodic solution x*(z) = {x7(¢)}. Suppose that
x(1) = {x;(r)} is an arbitrary solution of (1.1) associated
with initial value ¢(r) = {p;(t)}. We denote z(r) =
xi(t) = x;(t),t > pito,i €J, and  |z]|. = max{ sup

s€[pito, to]
|pi(s)

240 =tz + a0 0)
[ (1) 8;(x; (qi) /\“tj )8 (%] (git) }
|:/\/ ﬁu g/ x] qU \/ ﬁlj g/ q:; :| ielJ.

—x}(s)|}. Then

— £ 0)]

(3.4)
Define a continuous function I';(w) by setting
Ti(w) = Sglg{wél — (g + ZK Jag (125 + (Jowg(s)|
t =1

+|ﬁzjj(5)|)Lf€wln"L”]fj}»

where o € [0, mljn 1§f ¢(1)], i € J. Then, from (H,) , we
et

have

[i(0) = Sup{ ~Gi(0& + D Killay(0)|L + (|o(s)]
=1

t>0

+ Iﬁ;j(S)I)Lf]éj} <0,
ield,

which, together with the continuity of I';(w) and the facts
that

1+t 1
é <a;, 1 ( + >§ln— for all >0,
1+l 1+6]ijl qij

implies that we can choose a constant o €

(0, min inf ¢;(7)) such that I';(¢) <0, and

ieJ t>0
aﬁ»
su
oS
g aln(%)
+ [B;(s))Lie i”]&;

sup{aé,» —&(1)
>0

+ By (s)DLge é,}

= F,(0)<O

é+ZK|au L+ (Jag(s)]

IN

&+ D Killag(0IL + (lo(5)]
=1

(3.5)

For any ¢ > 0, consider the functions V;(¢),i € J, defined
as follows

ol
Vi(t) = M\flfl(HzHg +e)e ‘71“|+107 M > max{l, méﬁlJXKi},
1
t>0,¢ = mmé
Therefore,

- oIt
Viluit) =ME; (2l + &) éye ™70
1 e
:Mf;l(Hz”gv + g)gxefalnﬁealn(l o)
< V()"

(3.6)
"5 for all t>1g,K,j €J,

and
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Jzito)| <& (llzll + )& < ME (IIzll + &)

(3.7)
=Vi(to), i€el.
We next claim that
|zi(t)| < Vi(t) for all t > 1, i €J. (3.3)

Otherwise, there must exist i € J and 0 € (#, +00) such
that

|2(01)] = Vi(0r) = ME (|12l + §)&e ", (39)
and
|zi(t)| < V;(t) for allt € [ty, 04], j€J. (3.10)
Note that

zi(s) + cils) Zau (i (s —filx] 7(s)]

L o;j ()8 (x;(qys /\“U 5)8j(x ql] ))1
|_/\/BU 5)8;(%i(qis) \/ﬁy 5)gj(x ‘111 ))]

s € [to, 1], t € [to, 01].

(3.11)
. . . fs ci(u)du .
Multiplying both sides of (3.11) by e’o , and inte-
grating it on [y, 7], we get
' ci(u)du
1) =z i)e b
/ A {Zaij(s)[ﬂ(xj(s)) —fi(x (5))]
=1

L ;i (5)8;(xi(qijs)) /\“U 5)gj(x CIUS))‘|
|-/\/Bl] g] 'x] ql} \/sz gj ))‘| }d ’

t € [fy, 01].
In view of Lemma 2.1, (3.5), (3.6), (3.7) and (3.10) yield

@ Springer

0,
— ci(u)du
(00 =z (t)e o

Zi

o 01
+/ ¢ {Za,j ()[fi(x; (s
)
n n
+ [/\oc,j $)8i(xi(qis)) /\oc,j

J=1

[\/ﬁ,, 5)8;(%(ijs)

Jj=1

—fi(x (5))]

qus :|

\/ﬂ,, )8;(x} (q5s }}d

7‘[‘()1 :( )d
<6;1(‘|Z||* +e)¢iKie Yo

/01 B fu
T

+ (l(9)] + By ()DL 11 (g55) 1 s

K, S ag ()LL)

j=1

U
_ - i (u)ds
Sé/l(‘|2||y+8)éiKie ];0 Ci(u)du

o e 3 o

fo j=1
" LS ‘71"(11\(%>
+ (lo ()| + | By(s)DLfe” 7]

—olnlts
x & M|l + &) e "ads

K; n,
—ME (2] + £)Ee ! { - J, e

0, 0, Y
+/ eif.s (@w)—%) v IKZ\aU
)
In(-LEs
+ (o(s)] + 1B, (5) D LSe” ““Mgw}
(€i(u)—7%;)du

o0 (K - 0y 5
<ME (|12, + €)ée {M e

0, 0y, P
+ effs (@) =rRdu (& (5) — ds}
/ @) - 1)

= ME (|2 + &) &e "
0 .
X [1 - (1= %)87 ﬁol(c'(”>*m)du]
146
<ME (|2l + e)e ",
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which contradicts (3.9). Hence,
e — 0™, we have from (3.8) that
[1x(2) =" (1) ]| = max |z(7))|
mgjx{ sup  |i(s) —x7 (s)[}
€lpito, to]
<A

(1+1)°

(3.8) holds. Letting

for all 1>t

(3.12)

where A = M&; é”(l +1)7 and &" = = max &;. This proves
Theorem 3.2.

4 An example

In this section, we present an example to check the validity
of the main results obtained in Sect. 3.

Example 4.1 Consider the following FCNNs with multi-
proportional delays:

, 3. sft

—(145sin300)x (1) + sin ‘[t

f2(xa(t))

1 (1) +

+(Sint)e—2sinr+(cogzt) —251nt+s1n4t
T+ (cosng( < 1) N\ (cost)g2 (12(21))
81(X1 320 82(X2 )

320
SNV 56820,

1
+——(sint)g ( x1

320
3
500) = —(1+ 300830020+ V2 () + V3 1)

+(sint)e ’2Si"’+(c052t) ’2“‘”+sm5t

1 1
+320(005t)g1 xi( f) /\320 COSf)gz(xz(z )

1 1
+320(51nf)gl xl \/320 Slﬂ’)gz(xz(z )

(4.1)
where 121, fi(x) = folx) = LTy (x) =
g2(x) =1gx.  x(s)=o@;(s),s€ 3, 1, and @ €
C([%, 1],R), i,j=1,2.

Fig. 1 Numerical solutions 5

Obviously,

3. 3
at)=1+ 5sin 30r, () =1+ 508 30¢,
I, (t) = sin4t,
b]](l‘) = bzl(t) = sint, blz(l) = bzg(f) = cos 2t,

ui (1) = uy(t) = e 2501,

L (t) = sin5¢,

Hy() = Ty(t) =0, G(1) =1, e Jo o < gh=(t=),
i=1,2,t>s,
1 : 1
éi:17 CIIIZE L{:L§:E7 Ki:ell_07 l:1,2,
) sin /2t (1) sin v/3t ) cos /2t
a = a =
11 20 12 20 21 20
cos \/§t
) =—"—
022( ) 40
and

1 1
%j(1) = o5 (cos 1), fiy(t) = 5 (sint), i j = 1,2,
320 320

we obtain

sup{—¢;(¢ (f,JrZK |a(t \L

t>0

(loi (D] + 1B (DDLF1E}

—06, i=1,2, (4.2)

which imply that system (4.1) satisfies (Hp), (H;) and
(H). Moreover, from (4.2), we can choose ¢ = 0.01 such
that (3.5) holds. Then, Theorem 3.2 implies that system
(1.1) has a unique almost periodic solution x*(¢), and

max{ sup |¢;(s) — 7 (s)[}
€ el 1)
1x(7) =" (@)l <A y

)0.01 for all r>1,

(141

x(t) = (x1(£), x2 ()" of system
(4.1) for initial values

(27 _3)T7 (_77 _6)T7 (47 _S)Ta
respectively. This implies that
the almost periodic solution of
system (4.1) is globally
attractive

X0
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where A =1+ ¢m2%!, The numerical simulations in
Fig. 1 strongly support the conclusion.

Remark 4.1 1Tt is worth mentioning that, all scholars in [2,
6, 17, 19, 25, 26] and [10-15, 22, 27-29] have studied the
dynamics on CNNs and FCNNs under the fundamental
condition that the leakage term coefficient function is not
oscillating, i.e., }gngci(t) > 0(i € J). In system (4.1), the

time-varying leakage coefficients
3 3
at)=1+ Esin 30t and cp(r) =1+ 508 301

are oscillating. Thus, all results in the above references
cannot be applied to imply that all solutions of (4.1) con-
verge globally to the almost periodic solution. Here, we
employ a novel proof to establish some criteria to guar-
antee the existence and stability of almost periodic solu-
tions for fuzzy cellular neural networks with multi-
proportional delays. The method used in this paper pro-
vides a possible approach to study the problem on almost
periodic solutions of other FCNNs with multi-proportional
delays and oscillating leakage term coefficients. These
issues are worthy to research in near future works.

Acknowledgments The author thanks for the anonymous referees
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