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Abstract
Simpson’s paradox (SP) is a statistical phenomenon where the association between 
two variables reverses, disappears, or emerges, after conditioning on a third varia-
ble. It has been proposed (by, e.g., Judea Pearl) that SP should be analyzed using the 
framework of graphical causal models (i.e., causal DAGs) in which SP is diagnosed 
as a symptom of confounding bias. This paper contends that this confounding-based 
analysis cannot fully capture SP: there are cases of SP that cannot be explained away 
in terms of confounding. Previous works have argued that some cases of SP do not 
require causal analysis at all. Despite being a logically valid counterexample, we 
argue that this type of cases poses only a limited challenge to Pearl’s analysis of 
SP. In our view, a more powerful challenge to Pearl comes from cases of SP that 
do require causal analysis but can arise without confounding. We demonstrate with 
examples that accidental associations due to genetic drift, the use of inappropriate 
aggregate variables as causes, and interactions between units (i.e., inter-unit causa-
tion) can all give rise to SP of this type. The discussion is also extended to the amal-
gamation paradox (of which SP is a special form) which can occur due to the use of 
non-collapsible association measures, in the absence of confounding.

Keywords Simpson’s paradox · Causal modelling · DAGs · Confounding

Zili Dong, Weixin Cai and Shimin Zhao contributed equally to this paper.

 * Weixin Cai 
 w3cai@ucsd.edu

 Zili Dong 
 zdong67@uwo.ca

 Shimin Zhao 
 szhao249@wisc.edu

1 London, ON, Canada
2 Department of Philosophy, University of California San Diego, 9500 Gilman Dr, La Jolla, 

CA 92093, USA
3 Department of Philosophy, University of Wisconsin-Madison, 1300 University Ave, Madison, 

WI 53707, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s13194-024-00610-8&domain=pdf
http://orcid.org/0009-0001-9906-3700


 European Journal for Philosophy of Science           (2024) 14:44    44  Page 2 of 22

1 Introduction

Simpson’s paradox (SP), in its most striking form, is a phenomenon where a statisti-
cal association between two variables X and Y in the entire group (or aggregate data) 
reverses in every sub-group (or disaggregate data). SP also includes cases where the 
association between X and Y in the entire group disappears in each sub-group, as 
well as cases where an association between X and Y appears in each sub-group even 
if they are unassociated in the whole group. Since we typically partition a group 
based on some third variable of interest Z (e.g., Sex), we may also say that SP occurs 
when the association between X and Y reverses, disappears, or emerges, after condi-
tioning on Z. For a recent survey of SP, see Sprenger and Weinberger (2021).

Two clarifications on the above definition of SP are needed. Firstly, following 
Hoover (2003) and Sprenger and Weinberger (2021), we understand SP primarily 
as a sample-level phenomenon that can be readily observed in statistical data. In 
this paper, the concept of sample association is distinguished from the concept of 
population (or probabilistic) correlation. Of course, if we have a case of SP in which 
sample associations between X, Y, and Z adequately indicate the probabilistic cor-
relations between them, this will be a case of SP defined in terms of both association 
and correlation.1 Secondly, even though we agree that causality plays a key role in 
understanding many important cases of SP, the definition of SP we adopt in this 
paper does not stipulate that SP must be a causal phenomenon.2

Probably the most well-known example of SP is the case of graduate admissions 
at the University of California, Berkeley in 1973 (Bickel, Hammel & O’Connell, 
1975). It was recorded that at the university level, about 44% of the males and about 
35% of the females were admitted. This means that being female was negatively 
associated with being admitted to the University of California, Berkeley, which 
suggests that there might have been discrimination against female applicants in the 
admissions process. However, if we break down the data, we will find that, in the 
majority of the departments, there was no significant bias against female applicants. 
In fact, in a few departments, females were even more likely to be admitted than 
males. This poses the question of whether there was truly sex discrimination that 
affected the admissions committee’s decisions. That is, if we want to identify the 
existence of sex bias in the admissions process, should we look at the university-
level data or the department-level data?

1  In most cases, we can safely ignore the difference between sample associations and probabilistic cor-
relations. Still, there are cases in which it is important that we separate them, as we shall see later in the 
paper.
2  It has been suggested that SP, in its nature, is a causal phenomenon (e.g., Pearl, 2014; we shall come 
back to this later in the paper). For Pearl, a genuine case of SP must be embedded in a causal context. 
Apparent cases of SP that lack causal context are dismissed by him as not genuinely paradoxical (he calls 
such cases “Simpson’s reversal”). Although we think the distinction Pearl draws between Simpson’s par-
adox and Simpson’s reversal is well-motivated, we also find it somewhat ad hoc to stipulate that SP must 
be a causal phenomenon. We show in Sect. 3 that there are more principled reasons why cases of SP that 
lack causal context should be distinguished from those cases that have a causal context, without having to 
draw the distinction by stipulation.
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Although SP may seem like a purely statistical or probabilistic oddity, philoso-
phers have long recognized its causal roots. Back in the 1980s, SP was posed as an 
important challenge to probability-raising accounts of causality (see, e.g., Cartwright, 
1979). In this context, Cartwright rightly pointed out that the association between the 
cause-variable X and the third variable Z is essential for the occurrence of SP.3 To 
avoid SP, she proposed that we measure causal effects relative to the so-called ‘caus-
ally homogeneous’ populations or reference classes in which there is no association 
between X and Z, since Z can be seen to have been ‘held fixed’ in such homogene-
ous reference classes. However, this proposal, embedded in the probability-raising 
approach to causality, is subject to the approach’s inability to explicitly represent 
causal structures underlying the SP. As early as 1987, Irzik and Meyer had realized 
the inadequacy of Cartwright’s solution and suggested we analyze the causal struc-
ture of SP using tools of causal modelling (Irzik & Meyer, 1987).4 The tool they used 
is the method of path analysis (invented by Sewall Wright around 1920), which is a 
precursor to the more powerful framework of graphical causal modelling developed 
later by Spirtes et al. (2000) and Pearl (2009).

Proponents of the framework of graphical causal models propose to analyze SP 
in causal-graphical terms (Pearl, 2009, 2014; Pearl et al., 2016; Pearl & Mackenzie, 
2018; Spirtes et  al., 2000). Notably, Pearl et  al. (2016) assert that they can “fully 
resolve Simpson’s Paradox by determining which variables to measure and how to 
estimate causal effects under confounding” (p. 44). For Pearl et al., confounding is to 
be analyzed in terms of causally interpreted directed acyclic graphs (DAGs). Essen-
tially, their proposal is that for all types of SP involving X, Y, and Z, the paradox can 
be resolved by construing the partitioning variable Z as a confounding variable rela-
tive to a causal DAG over {X, Y, Z}. We will explain this in more details in Sect. 2 
(see especially Fig. 1 there).

In this paper, we contend that this causal-graphical analysis of SP, despite offer-
ing genuine insight, is not complete and cannot fully resolve SP as Pearl et al. have 
claimed. We acknowledge that many important types of SP do arise from confound-
ing; however, we do not think this is a universal feature of SP. For one thing, some 
cases of SP lack causal context, as has been argued by Bandyopadhyay et al. (2015). 
While acknowledging that Bandyopadhyay et  al. raise a logically valid objection 
against the completeness of Pearl’s causal-graphical analysis of SP, we will examine 
their argument from the perspective of scientific and statistical practice and show 
that, at least from this perspective, it poses no significant challenge to Pearl’s analy-
sis. More importantly, we show that even if we narrow down our attention to cases 
of SP that do need a causal treatment, we can still find various types of SP that do 
not involve confounding of any sort. After carefully examining these types of SP, 
we conclude that SP should be seen as a symptom with many aetiologies and there 
appears to be no unified analysis that can capture all of them.

3  See also Sprenger and Weinberger (2021) for a detailed explanation of why an association between X 
and the third variable Z is necessary for SP to occur.
4  Irzik and Meyer’s (1987) analysis of SP is remarkably farsighted; its core idea is basically the same as 
Pearl’s confounding-based analysis of SP (see the illustrative example they give on p. 513).
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The rest of the article proceeds as follows. In Sect. 2, we first present Pearl’s causal-
graphical analysis of SP and then point out its limitations which are to be further 
examined in subsequent sections. In Sect.  3, we argue that Bandyopadhyay et  al.’s 
alleged counterexample to Pearl’s analysis (i.e., the Marble example) does not con-
stitute a threatening objection to Pearl, because the example presupposes strong acci-
dental associations which are unlikely to be encountered in ordinary life or scientific 
practices. Section 4 discusses three cases of SP which all require a causal analysis, but 
Pearl’s analysis does not apply. Specifically, in Sect. 4.1, we discuss a case of SP aris-
ing in an evolutionary context due to accidental associations (random genetic drift). 
Section 4.2 discusses a case of SP arising from the use of inappropriate aggregate var-
iables as causes, and Sect. 4.3 discusses a case of SP arising from inter-unit causation 
(illustrated using a non-stationary time series example). Section 5 extends the discus-
sion to a generalized version of ‘SP-type’ phenomena known as the amalgamation par-
adox (AP).5 It has been recognized by epidemiologists—but less known by philoso-
phers—that some cases of AP can occur without confounding; for this reason, we note 
that Pearl’s analysis of SP cannot be generalized to AP. Section 6 is a brief conclusion.

2  The scope and limitations of the causal‑graphical analysis

In this article, we focus on Pearl’s causal-graphical analysis of SP (especially the one 
presented in Pearl, 2014) since, to our knowledge, this is the most influential and sys-
tematic treatment of SP by far. At the centre of his analysis is the framework of graphi-
cal causal models. The first thing to note is that although Pearl’s analysis of SP is often 
referred to as the ‘causal analysis’, it is more accurate to call it the ‘causal-graphical 
analysis’. This is not merely a verbal issue: while graphical modelling is undoubtedly 
an important tool in causal inference, a graphical model by no means captures every-
thing interesting about a system’s causal properties (Cartwright, 2001; Dawid, 2010).

Directed acyclic graphs (DAGs) are the most often used type of graphical models 
in causal inference. A causally interpreted DAG G consists of a set of vertices, which 
represent a set of causal variables V = {X, Y, Z, …}, and a set of edges, which repre-
sent direct causal relations between the variables. X is a direct cause of Y (relative to 
G) in the sense that it is possible to change the value of X through some atomic or ideal 
interventions such that the probability distribution of Y will change accordingly, when 
all other variables in the graph are held fixed by interventions (Pearl, 2009; Wood-
ward, 2003). G is directed, which means that all the edges are single-headed arrows. 
We define a causal path between X and Y on G as a path on which the edges between 
X and Y are all directed in the same direction (e.g., X→Z→W→Y). G is also acyclic, 
which means that it contains no causal circle (i.e., causal path that starts and ends with 
the same variable, e.g., X→Z→X). Besides, G and its corresponding joint probabilistic 

5  It is sometimes said that AP is “the most generalized version of [SP]” (Sprenger & Weinberger, 2021), 
and sometimes SP and AP are used as synonyms (as in, e.g., Hernán et al., 2011). Admittedly, this use 
of terminology is confusing. To avoid confusion, we make a clear distinction between SP and AP in this 
paper: AP is defined as a broader category than SP, with SP being a special case of AP. This distinction 
will be important for our discussion in Sect. 5.
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distribution over V are assumed to satisfy the causal Markov condition (a modern suc-
cessor of Reichenbach’s principle of common cause). This condition says that for any 
variable X in V, X is probabilistically independent of every other variable except X’s 
descendants (i.e., X’s effects), conditional on X’s parents (i.e., X’s direct causes).

DAGs have proven empirically fruitful in representing and analyzing the causal 
structure or data-generating process relevant to a causal investigation. They are par-
ticularly suited for handling the notorious problem of confounding in causal infer-
ence (Pearl et al., 2016; Shrier & Platt, 2008).6 The primary task of causal inference 
in many scientific domains (especially in high-level sciences such as biology, soci-
ology, epidemiology, etc.) is to identify and estimate causal effects. Confounding 
is an important type of systematic source of error that might occur during causal 
effect estimation. An error is systematic means that its occurrence is not accidental; 
that is, it does not occur by chance. For example, if we use the marginal association 
between X and Y in the observational data to measure the direct effect of X on Y, we 
may misestimate the effect when there are indirect causal paths between X and Y that 
bring about indirect effects of X on Y. For Pearl, such kind of discrepancy should be 
assessed using DAGs which can visually represent all the relevant causal assump-
tions. With these causal assumptions and the help of certain graphical rules (e.g., the 
back-door criterion), we can then eliminate confounding by adjusting for or condi-
tioning on a (sufficient) set of confounding variables (Pearl et al., 2016).

For our purposes below, it suffices to focus on the estimation of the direct effect of X 
on Y relative to a pre-specified DAG on {X, Y, Z}. Relative to a DAG on {X, Y, Z}, our 
estimation of the direct effect of X on Y will be confounded if and only if any of the fol-
lowing situations obtains: (a) we fail to adjust for Z when Z is a common cause of X and 
Y, (b) we mistakenly condition on Z when it is a common effect of X and Y (here Z is also 
called a ‘collider’ and this type of confounding is also known as ‘collider bias’), or (c) we 
fail to adjust for Z when Z is a mediator between X and Y (i.e., Z is on an indirect causal 
path between X and Y). Figure 1 illustrates these three cases of confounding with DAGs.

Consider a concrete example. If we are interested in the effect of Paxlovid pills in 
reducing deaths from COVID-19, we cannot simply compare the death rate in a group 

Fig. 1  Three possible cases of confounding in the estimation of the direct effect of X on Y 

6  For various reasons, the term ‘confounding’ has been used in confounding ways (pun intended). For 
example, sometimes ‘confounding’ is used to refer merely to bias due to lurking common causes (cf. 
Hernan et al. 2011). Our usage here is much broader, following Pearl et al. (2016). On this broad usage, a 
confounding variable may also be a collider or a mediator; see our discussion below.
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of COVID-19 patients who took the pills with the death rate in another group who did 
not. This estimation of the drug’s effectiveness is confounded since patients at a higher 
risk of dying from COVID-19 are also much more likely to receive the pills. In other 
words, risk factors for Covid-19 such as age or chronic diseases, if unadjusted for, will 
lead to confounding (of type (a) mentioned above) in the effect estimation.

Pearl (2014) suggests that we use DAGs to analyze causal structures that are at work 
behind various cases of SP. In his analysis, SP is diagnosed as a peculiar consequence of 
confounding. The basic idea is the following. The reason we find SP ‘paradoxical’ is that 
we think how X (e.g., Sex) affects Y (e.g., Admission) should not depend on the level at 
which the influence is measured. If the associations between X and Y in the large group 
and in the sub-groups disagree with each other, they cannot both indicate the ‘true’ effect 
of X on Y—at least one of the associations must be ‘spurious’. For it violates our causal 
intuition to say that depending on the way we look at the data, an applicant’s sex can both 
influence, and not influence, her admission. Pearl’s key insight is that the kind of spuri-
ous association that leads to SP should be seen as resulting from confounding. If we can 
eliminate the confounding responsible for a case of SP (assuming that the relevant causal 
structure is known), we will obtain an unconfounded estimation of the true effect of inter-
est. The paradoxicality and counter-intuitiveness of SP will then be explained away.

Pearl (2014) identifies a group of causal structures that can give rise to SP, together 
with a group of causal structures that cannot. Here we consider one example repre-
sentative of each type. First, consider the DAG in Fig. 2a, which depicts the putative 
causal structure responsible for the example of Berkeley’s graduate admissions.7 Note 
that there are two causal paths from Sex to Admission, which means that, relative to this 
DAG, Sex is both a direct and an indirect cause of Admission. This type of causal struc-
ture is prone to generating SP, because the causal influence that Sex has on Admission 
along the direct causal path and the indirect one could be in opposite directions.

More specifically, Sex will have a direct effect on Admission if sex bias does exist 
in the admissions process (e.g., being female causes one to be discriminated against 
in this process).8 At the same time, one’s sex may influence one’s department choice, 

7  This causal graph is adapted from Pearl and Mackenzie (2018, p. 312, Fig. 9.4). Pearl and Mackenzie 
also considered more complicated causal structures, but these complications are not essential for our dis-
cussion here.
8  Note that the direct effect of Sex on Admission only reflects possible sex biases during the admissions 
process. This cannot tell us anything about structural sexism.

Fig. 2  A comparison of a causal structure that can generate SP and a causal structure that (allegedly) 
cannot generate SP
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which can further affect one’s chance of being admitted by the university because 
some departments are harder to get in than others. Thus, Sex also has an indirect 
effect on Admission, which is mediated by Department. In this case, the associa-
tion between Sex and Admission in the university-level data, without adjusting for 
Department, gives us an estimation of the sum of the direct and indirect effect (i.e., 
the total effect) of Sex on Admission. To examine whether there is sex bias against 
female applicants—that is, whether Sex has a direct effect on Admission—we should 
instead look at the association between Sex and Admission when Department is 
adjusted for, given that the decision to admit an applicant was processed within 
each department. In other words, we should rely on the association between Sex and 
Admission in the department-level data to infer whether female applicants were dis-
criminated against in the admissions process. If one tries to identify sex discrimina-
tion using the university-level data, the estimation will be confounded.

In contrast, the causal structure in Fig. 2b is claimed by Pearl to be unable to give 
rise to SP. His reason is that, in this DAG, Z cannot bring about any of the three afore-
mentioned types of confounding: Z is not a common cause, a collider, or a mediator. 
Given the causal Markov condition, the DAG implies that X and Z are probabilistically 
independent. Under the assumption that probabilistic independence implies statistical 
independence, X and Z should be found unassociated in the data. It is this assumed 
absence of association between X and Z that justifies Pearl’s claim that SP will not 
arise for this DAG. However, this assumption does not always hold. It is still possible 
that X and Z, despite being causally and probabilistically independent, are accidentally 
associated in the data we collected, especially when the sample size is small; in such 
cases, we may still encounter SP in the absence of confounding. Fortunately, this type 
of situation is unlikely to arise in sufficiently large samples. Additionally, note that 
both associations arising from chance and associations resulting from confounding 
are ‘spurious’ in the sense that they do not reflect true causal effects. The difference 
between them, however, is that in statistical practices, the latter is much more robust 
and common. This is also why Pearl simply disregards the possibility of accidental 
associations in his discussion. We will come back to these points in Sect. 3.

Undoubtedly, Pearl’s causal-graphical analysis of SP contains genuine insight 
and covers a broad range of cases of SP. That said, we believe this analysis is 
inadequate in important ways. His analysis focuses on those cases of SP in which 
the associations involving X, Y, and Z are supposed to be explained by positing an 
underlying causal structure over {X, Y, Z}, represented using a DAG. However, it 
is well-known that DAGs make certain assumptions about the causal structures 
they represent which do not necessarily hold in practice.9 In particular, a standard 
DAG presupposes at least two things. Firstly, the causal variables have been well-
chosen. Poor choices of variables, for instance, using variables that are inappro-
priately defined or logically connected, may bring trouble to causal inference (see 

9  Broadly speaking, our point here aligns with Spanos’ claim that Pearl’s “causal explanation of the 
paradox largely ignores some of these empirical issues by viewing it as a purely probabilistic conundrum 
… when models are estimated using actual data, one needs to secure the validity of the model assump-
tions vis-a-vis the data before any causal information can be utilized reliably” (Spanos, 2021, p. 608). 
In other words, investigators run the risk of introducing unwarranted causal information into the model 
when those model assumptions are not examined for their validity.
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Woodward, 2016). Secondly, an association between two variables can always be 
causally explained, either as a result of genuine causation or as that of confound-
ing.10 As we shall see later, these assumptions, while making DAGs expedient to 
use, may not always hold.

It follows that Pearl’s causal-graphical analysis of SP will not apply in either of 
the following two types of cases:

Case 1: The occurrence of SP does not require the existence of any causal relation-
ships among the relevant variables (i.e., X, Y, and Z). That is, none of the associa-
tions between X, Y, and Z in  this case of SP needs to be generated by causation 
among these variables. To make sense of this type of SP, causal information is irrel-
evant.
Case 2: SP occurs in a context in which the effect of X on Y is queried, prompting 
an investigation into the causal story underlying SP. Moreover, this causal story is 
required for explaining away SP in this case. However, the presence of this type of 
SP does not result from confounding; its root lies somewhere else.

The sort of counterexample to Pearl’s analysis in Case 1 has been extensively exam-
ined by Bandyopadhyay et al. (2015), which will be the focus of our discussion in the 
next section. As Bandyopadhyay et al. argue, at least in some cases, SP need not be 
analyzed in causal terms. We agree with them that their counterexample shows that 
Pearl’s analysis cannot adequately account for all possible instances of SP. Neverthe-
less, we believe it is equally important to explore counterexamples along the lines of 
Case 2. For one thing, while Bandyopadhyay et al.’s counterexample, as an instance of 
Case 1, constitutes a logically valid objection to Pearl’s analysis, we believe that it is 
not a practically strong challenge. As we shall explain, the occurrence of their counter-
example is extremely rare in ordinary and scientific contexts. In our view, it is counter-
examples along the lines of Case 2 that offer a stronger ground against the adequacy of 
Pearl’s analysis.

For another, Case  2 has received limited attention in the literature, although the 
question of whether there are causal grounds of SP that do not involve confounding and 
thus are not subject to Pearl’s analysis is evidently important. Pearl’s causal-graphical 
analysis regards confounding as an indispensable condition for SP and considers con-
founding adjustment as sufficient for resolving SP. This, if true, implies that practition-
ers of causal inference need not worry about possible instances of SP if no confounding 
is present. In this paper, we show that this is not the case. SP can arise in causal con-
texts where confounding is absent. In Sect. 4, we offer three cases of SP that fall under 
Case 2. As we shall see, for all three cases, although causal information plays a key 
role in explaining away the paradox, none of them involves confounding.

10  It must also be acknowledged that these assumptions may be made by other approaches to causal 
inference as well. For example, that causal variables should be in some sense well-chosen is a prerequi-
site not just for graphical causal modelling but also for the potential-outcomes approach to causal infer-
ence.
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3  Simpson’s paradox without causation? A statistical‑practice 
perspective

Bandyopadhyay et al. (2011, 2015) (and more recently, Sarkar & Bandyopadhyay, 
2021) defend a non-causal, “logic-based” analysis of SP. According to them, at 
least in some cases, SP is fundamentally an arithmetic oddity, whose nature has 
nothing to do with causality. In their view, SP “involves the reversal of the direc-
tion of a comparison or the cessation of an association when data from several 
sets are pooled” (Bandyopadhyay et al., 2015, p. 13; note that this is essentially 
equivalent to the definition of SP we give at the beginning of this paper). Impor-
tantly, Bandyopadhyay et  al. emphasize that the satisfaction of these conditions 
need not presuppose any causal relations among X, Y, and Z. Moreover, causal 
information is also unnecessary for explaining why data patterns satisfying 
these conditions can give us a feeling of puzzlement (and thus be regarded as 
“paradoxical”).

Therefore, Bandyopadhyay et  al. claim, it is not the case that SP can only be 
explained away by positing causal relations among the relevant variables. Note that 
they do not deny that sometimes we need to analyze SP causally. However, “SP has 
to do with causality only if we ask the what-to-do question”—the question of “What 
should one do when confronted with a typical case of the paradox?” (Bandyopad-
hyay et al., 2015, p. 14; emphasis added). In other words, the causal structure under-
lying an instance of SP becomes relevant only in circumstances where one is con-
sidering what decision should be made in view of the associations exhibited in this 
instance of SP. For example, when we encounter a situation where it appears that 
the effect of a treatment reverses after conditioning on sex, the question of how such 
‘contradictory’ evidence should guide the use of the treatment arises. In cases where 
no such decision-making concern arises, according to Bandyopadhyay et al., there 
would be no need to understand SP through a causal lens.

Bandyopadhyay et al. use the Marble example to illustrate their point. Suppose 
there are two bags of marbles with different sizes and colours. Table 1 reports how 
many marbles of a specific size-colour pair there are in each bag. It is observed that 
within both bags (Bag 1 and Bag 2), big marbles are more likely to be red, com-
pared with small marbles. Given this, it seems reasonable to expect that the same 
pattern will hold once we merge all the marbles together. However, this expectation 
cannot be fulfilled: the association between Size and Colour reverses in the aggre-
gate data. We find this result surprising, peculiar, or perplexing because it violates 
our expectation. According to Bandyopadhyay et al., “[t]here are no causal assump-
tions made in this example” regarding how Size, Colour, and Bag are related to one 

Table 1  The Marble example with fictitious data. (adapted from Bandyopadhyay et al., 2015, table 5)

Red Marble Rates Bag 1 Bag 2 Total

Big Marbles 180/200 = 90% 100/300 = 33% 280/500 = 56%

Small Marbles 480/600 = 80% 10/100 = 10% 490/700 = 70%
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11  Pearl would give a different response to the Marble example: he would think that this is not a genuine 
case of SP at all but merely a case of Simpson’s ‘Reversal’ (see footnote 2). For Pearl, it is essential for a 
genuine case of SP that it violates our causal intuition. If we understand him correctly, he seems to think 
that the violation of the causal intuition (as we talked about in Sect. 2) should be a defining feature of SP. 
Although we agree with Pearl that cases of SP that violate this causal intuition are the exemplars of SP, 
and we also agree on the explanatory significance of this causal intuition, we hesitate to make this feature 
definitional of SP. After all, the definition of SP we give in Sect. 1—which is also widely used in the lit-
erature—is not formulated in causal terms. Besides, many of our concepts have both typical and atypical 
cases. The Marble example seems to be better conceived as a less typical case of SP.

another (Bandyopadhyay et al., 2015, p. 19). This implies that no confounding can 
be appealed to in accounting for why this instance of SP occurs. Granted that this 
is the case, Bandyopadhyay et  al. contend that at least in this example, SP has a 
purely arithmetic root, which implies that “SP is not basically causal” (p. 13). Thus, 
Pearl’s causal-graphical analysis cannot be a universal treatment of SP.

We agree that Bandyopadhyay et al.’s Marble example is a genuine case of SP: 
the example does involve the kind of association reversal characteristic of SP, and 
therefore, conforms to the definition of SP we give at the beginning of this paper.11 
In addition, we agree that the example does stimulate our intuitive perplexity and 
that the perplexity can be explained away without invoking any causal postulates 
involving the relevant variables. Indeed, the example is designed in this way in order 
to constitute a counterexample to Pearl’s causal-graphical analysis.

Nevertheless, we find the Marble example inadequate in an important sense. From 
a statistical-practice perspective (as opposed to a purely ‘logic-based’ or ‘arithmetic’ 
one), this example presupposes a highly uneven distribution of marbles in the two bags. 
In particular, in Bag 1, ¾ of the marbles are small, whereas in Bag 2, ¾ of the mar-
bles are big, which means there is a strong association between Size and Bag. This 
distribution of the marbles is extremely rare from a statistical practice perspective. This 
is because, assuming that the causal Markov condition is satisfied, these variables are 
not expected to be found highly associated in almost all the data we may encounter in 
practice (given the relatively large sample size in this example) unless we posit causal 
connections among them. In fact, under the hypothesis that there is no causation (and 
thus no correlation) between Size and Bag in the Marble example, the probability of 
observing a difference in the proportions of big marbles between the two bags is 50% 
(i.e., 300/400 − 200/800) or more is lower than 0.000001: it happens less than once in 
a million times. Similarly, the strong association between Colour and Bag presented in 
Table 1 is also extremely rare, assuming that Colour and Bag are not correlated.

Note that Bandyopadhyay et  al. cannot explain the strong association between 
Size and Bag and that between Colour and Bag in Table 1 by appealing to a biased 
process of disproportionally sorting more small marbles and red marbles into 
Bag 1. This is because, in that case, the Marble example would require a causal 
analysis, since this biased sampling process is actually an instance of collider bias 
(see Sect. 2 for more on collider bias). That is, if the size and colour of a marble 
affect which bag it will be put into, then Bag will become a collider whose value is 
affected by both Size and Colour. Now that a causal structure behind the data has 
been introduced, the Marble example will no longer be a counterexample to Pearl’s 
causal-graphical analysis.
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Therefore, the associations in the Marble example can only be ‘chancy’ or acciden-
tal in the sense that they are a result of very rare random fluctuations in the process of 
sorting marbles into bags. These accidental associations, especially the one between 
Size and Bag, play a key role in generating SP in this example: if we were to render 
the proportions of big marbles in both bags roughly the same, SP would not occur. The 
fact that the occurrence of SP in the Marble example depends on strong accidental 
associations implies that, statistically speaking, this kind of SP (Case 1) is far less 
common or robust, compared to typical cases of SP such as the Berkeley admissions 
example. We have very little reason to expect that data patterns similar to the Mar-
ble example will be ever observed in statistical practice. By contrast, in the Berkeley 
example, there is a causal structure that robustly generates associations among Sex, 
Department, and Admission. This causal structure may also be found in other years or 
places. For this reason, we may expect to find similar occurrences of SP in the admis-
sions processes in the years after 1973 at UC Berkeley or other universities.

We think Bandyopadhyay et  al.’s discussion of SP does not give due emphasis 
to the fact that instances of SP generated by robust causal structures and those gen-
erated by chancy fluctuations are not on a par with respect to their importance in 
scientific practice. In most contexts, scientists collect and analyze data in order to 
reveal underlying causal structures (or for other causally relevant goals, including 
explanation, prediction, understanding, and control).12 The connection between a 
causal structure and the associations it robustly generates allows scientists to infer 
the former from the latter. However, when associations seem to provide ‘contradic-
tory’ evidence for the underlying causal structure, as we saw in the Berkeley admis-
sions example, it can be particularly puzzling; this is why SP as a statistical phe-
nomenon has received so much scientific attention.

Importantly, since accidental associations may mislead causal inference, scien-
tists will take various measures (e.g., collecting more data, and conducting signif-
icance tests) in attempts to reduce the possibility that the evidence they observe 
comes from an accidental association in a particular dataset. These measures enable 
scientists to quickly discover and discard, to their best knowledge, accidental asso-
ciations due to chancy fluctuations in sampling. For this reason, SP arising from 
accidental associations is of minimal scientific relevance.13 Therefore, we claim, it 

12  Notably, there are data-generating processes that are non-causal but remain scientifically significant. 
For example, nonlocal quantum correlations that violate Bell inequalities are usually considered not 
subject to a causal interpretation (cf. Myrvold et  al., 2024). Despite this, these correlations have been 
robustly observed in well-designed Bell experiments, which is why they are of great scientific signif-
icance. See Frisch (2020) for a brief survey of this issue; see Wood and Spekkens (2015) and Näger 
(2022) for recent discussions. However, because the literature on SP has almost exclusively focused on 
high-level sciences where quantum effects can be safely ignored, we will also set aside quantum correla-
tions in this paper. We thank an anonymous reviewer for suggesting this point.
13  Note that we are not denying the value of investigating ‘outliers’ or ‘exceptional’ data points. As 
pointed out by an anonymous reviewer, there are ample examples in medicine where paying attention 
to ‘exceptional responses’ to a treatment in clinical trials led to important medical progress (Mukherjee, 
2015). However, as Mukherjee also made clear, the rarity of these cases is due to complex interactions 
between numerous causal factors. These factors are of scientific interest because if we can discover and 
control these factors, we will be able to robustly generate these ‘exceptional’ cases. Therefore, they are 
not ‘chancy’ fluctuations in the statistical sense which are not generated by any interesting causal factors.
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is mainly through a causal lens that scientists come to see cases of SP as intellectu-
ally intriguing and practically significant. In contrast, although the Marble example 
successfully demonstrates that Pearl’s causal-graphical analysis is not a universally 
valid treatment of SP, its dependence on an extremely rare random fluctuation pre-
cludes it from being a scientifically and practically significant counterexample.

Lastly, we disagree with Bandyopadhyay et al. (2015) that causality only mat-
ters when decision-making questions are asked regarding a case of SP. One may 
still want to conduct a causal inquiry about how an instance of SP is generated 
when one’s goal is purely epistemic, such as explanation or understanding. It is 
quite often that people scrutinize data merely for the sake of gaining an under-
standing of its underlying data-generating process, without immediate concern 
for decision-making. For instance, one might have a purely epistemic interest 
in the historical question of whether there was truly sex bias in Berkeley’s 1973 
graduate admissions process, even if she does not want to make any decisions.

Interestingly, we do find a type of SP that arises due to an accidental association 
between X and Z, and at the same time, has a more visible scientific significance. 
Unlike the Marble example, however, this new type of SP needs to postulate causal 
relations among the relevant variables. So, these two types of SP, despite both relying 
on accidental associations, are importantly different: one is situated in a causal context 
whereas the other need not be. This is why we will leave the discussion to Sect. 4.

4  Simpson’s paradox with causal contexts but beyond confounding

This section aims to demonstrate that even among cases of SP that are embedded in 
a causal context, some of them cannot be analyzed as a consequence of confound-
ing. Note that we are not saying that these cases should not be analyzed causally, nor 
are we saying DAGs are no longer useful for analyzing them. Our claim is specifi-
cally that these cases need to be treated in a careful and nuanced manner which goes 
beyond what Pearl’s (2014) analysis can offer.

4.1  Accidental associations

The previous section discussed a form of SP free of causal context, as illustrated 
using the Marble example. In this section, we shall see that similar to the Marble 
example, accidental associations can also play a key role in generating SP when the 
instance of SP is situated in a causal context. More specifically, an accidental asso-
ciation between X and Z can generate SP over {X, Y, Z} when they form a causal 
structure like the following: X → Y ← Z (see Fig. 2b). Recall that in Sect. 2, we 
noted that this causal structure cannot generate SP, only on the assumption that there 
is no accidental association between X and Z. But if X and Z are, in fact, accidentally 
associated, SP can still arise in this causal structure.

Consider the following example (see Table 2; adapted from Sober, 2024, p. 44) 
about how being selfish or altruistic may affect the expected number of offspring 
of an individual (i.e., fitness). There are two groups, A and B, each containing two 
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traits: being selfish, or being altruistic.14 A trait’s fitness in a group is defined by 
how many offspring individuals of the trait in that group produce on average. For 
example, in group A, there are 200 selfish individuals, and they have 800 offspring 
in total, so the fitness of selfishness in group A is 800/200 = 4. As shown in the table, 
being selfish is positively associated with fitness in both group A and group B. How-
ever, the association between selfishness and fitness reverses once the two groups 
are analyzed as a whole (i.e., as a metapopulation). This is paradoxical if we inter-
pret fitness as representing the causal propensity of a trait in producing offspring.

The paradoxicality of this example is primarily due to the existence of a very 
strong association between variables Selfish and Group: in our example, group A is 
dominantly altruistic whereas group B is dominantly selfish. Without this associa-
tion, SP would not be possible. But where does this association come from? It might 
be because having a particular trait causes one to be in a certain group—making this 
case of SP similar to the Berkeley example.15 But what we want to show below is 
that the association need not necessarily come from a causal source.

Even if we assume that Selfish and Group are causally independent (as depicted 
in Fig. 3), we may still be able to accidentally observe a strong association between 
them. Regarding our example specifically, such a strong association may have 
resulted from genetic drift, such as the founder effect (Dobzhansky & Pavlovsky, 
1957). That is, by pure chance, two relatively small groups of individuals may hap-
pen to have highly uneven distributions of altruism and selfishness upon being 
separated from the larger group. Put differently, the association between Selfish and 
Group in the above example can be seen as a result of random fluctuations.

Clearly, this chancy association is not a result of confounding, since Selfish and 
Group have been assumed to be causally independent. Still, this accidental association 
can mislead causal effect estimation and lead to SP. Therefore, if we are to estimate 
the fitness of selfishness reliably, we need to first make sure that genetic drift does not 
generate a significant accidental association between Selfish and Group in the data.

Table 2  A hypothetical example 
of SP involving the fitness of 
being selfish or altruistic

Fitnesses Group A Group B Total

Selfish 800/200 = 4 1600/800 = 2 2400/1000 = 2.4
Altruistic 2400/800 = 3 200/200 = 1 2600/1000 = 2.6

Fig. 3  A causal graph for the SP involving Selfish, Group and Offspring, without positing a causal rela-
tion between Selfish and Group 

14  For the sake of simplicity, let us assume asexual reproduction, no mutation, and no migration.
15  This situation also seems to be what Sober (2024, Sect. 3.2) has in mind.
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4.2  Aggregate variables

An important type of scenario that can supply ‘paradoxical’ associations needed for 
SP but cannot be analyzed away in terms of confounding involves the use of aggre-
gate or summed variables as causes. An aggregate variable is one that can be writ-
ten as the sum of two or more other variables (e.g., X = X1 + X2). It is known that an 
aggregate variable may have an ambiguous effect on an outcome of interest, if the 
variables it sums up have heterogenous effects on the outcome (Spirtes & Scheines, 
2004). A well-known example of such kind of aggregate variable is total cholesterol 
(TC). TC consists of both low-density lipoprotein (LDL) and high-density lipoprotein 
(HDL), which have opposite effects on cardiovascular diseases (CVD). The ambiguity 
in the effects of such kind of aggregate variables, as we shall see, opens a door for SP.

Imagine that we have a group of patients in which levels of total cholesterol are 
unassociated with the incidence of cardiovascular diseases, which suggests the prima 
facie result that TC has no effect on CVD. However, if we condition on levels of HDL, 
surprisingly, TC becomes positively associated with CVD (i.e., a higher level of TC 
is associated with a higher CVD rate, conditional on HDL). So, a positive associa-
tion emerges upon conditioning the third variable—making this a case of SP. Table 3 
represents the results of a fictitious dataset for this example. It shows that CVD is unas-
sociated with levels of TC in the entire study group (50% vs. 50%). However, within 
both sub-groups, having a high level of TC seems to make the patients more likely to 
develop cardiovascular disease. How should we explain this paradoxical result?

Due to the non-causal (specifically, logical) relationship among TC, HDL, and LDL 
(i.e., TC = LDL + HDL), including these three variables in a single causal graph may 
cause trouble. So, to say the least, caution is needed if one attempts to provide a graphi-
cal analysis of the above example. In particular, it is helpful to represent non-causal rela-
tionships using dashed arrows so as to distinguish them from causal relationships (see 
Fig. 4). Besides, in the DAG we draw, there is no need to draw a causal arrow from TC 
to CVD, given that all the work TC appears to be doing is in fact done by LDL and HDL.

However, the sort of mixed graph in Fig. 4 is nothing like a standard DAG. It is widely 
acknowledged and observed in causal inference practice that variables in a standard DAG 
should not stand in non-causal relationships. Therefore, there is no standard DAG repre-
sentation for the causal structure underlying the type of SP we are discussing here. In par-
ticular, HDL in Fig. 4 is not a confounding variable since it is not even a cause of TC. This 
means that Pearl’s causal-graphical analysis cannot handle this type of SP.

How should we explain away and avoid this type of paradox then? The answer 
is simple: TC should not be used as a cause of CVD to begin with, because its 
‘effect’ on CVD is ambiguous. Instead, we should use HDL and LDL as causes when 

Table 3  Fictitious data for the incidence of cardiovascular disease among sub-groups (with low and high 
levels of HDL) and among the whole group

 CVD Rates Low HDL High HDL Total

Low TC 40/70 = 57.1% 20/50 = 40% 60/120 = 50%
High TC 80/130 = 61.5% 120/270 = 44.4% 200/400 = 50%
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investigating the incidence of cardiovascular diseases. So, it turns out that the genu-
ine source of SP in this case is not confounding but a bad choice of causal variables, 
that is, the use of inappropriately summed variables as a cause.

4.3  Inter‑unit causation

Following the broader point behind Sect. 4.2, we now present another type of SP 
that can arise due to inappropriate variable choice instead of confounding. This type 
of SP has its root in having chosen a set of variables which are defined on a group 
of units that causally interact with each other. This phenomenon is known as inter-
unit causation (Spirtes et al., 2000, p. 296; J. Zhang & Spirtes, 2014) or interactions 
among units (Zhang et al., 2022). As we shall see, inter-unit causation may create an 
association between two causally independent variables, giving rise to SP. This type 
of SP is not due to confounding, and thus falls outside of Pearl’s (2014) analysis; a 
more nuanced causal analysis is needed.

Such type of SP can be found, for example, in non-stationary time series data, 
a series of data whose statistical properties (e.g., mean) depend on the time when 
the data are collected.16 Let us consider a concrete example (adapted from Hoover, 
2003), which we call ‘Height&Math’:

Height&Math’: Choose a class of 20 six-year-old children in the US and a class 
of 20 six-year-old children in China. Each year, we first measure the heights of 
the US children (Height) and order the data in the alphabetic order of their last 
names, and then measure the mathematical knowledge of the Chinese children 
(Math) using a standard diagnostic test, and order data in the same way.17 Collect 
the data annually for six years.

16  Perhaps the most well-known example of this type is Sober’s (2001) Venetian sea levels and British 
bread prices example (cf. Hoover, 2003; Steel, 2003). However, it is not easy to intuitively demonstrate 
why Sober’s example is a case of SP: when we fix the year in which sea levels and bread prices are meas-
ured, the sample size reduces to 1, which makes it hard to show that the association between them disap-
pears when conditioning on year.
17  It is not a necessary feature of this example that the data be ordered by children’s names. As long as we 
choose an ordering that is ‘random’ and use it consistently throughout the data collection process, SP can arise.

Fig. 4  A ‘mixed’ DAG containing both non-causal relations and causal relations
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In every single year, a US child’s height and a Chinese child’s mathematical 
knowledge are expected to be unassociated. The fact that a US child is of a cer-
tain height (e.g., 43 inches) should indicate nothing about what score the counter-
part Chinese child earns on the math test, and vice versa. Yet, over the years, as the 
US children grow taller, the Chinese children also learn more math in school. As a 
result, in the data of all six years, both Height and Math will increase monotonically, 
producing a strong association between them. As illustrated in Fig. 5, by treating the 
six years as a whole group and every single year as a sub-group, we see that an asso-
ciation absent at the sub-group level (Fig. 5a) emerges at the group level (Fig. 5b), 
making this example a case of SP.

Looking at this example, one might be tempted to posit Year as a common cause; 
doing so would allow this SP to be explained in terms of confounding. However, we 
believe this idea cannot stand scrutiny. Here, we agree with Yule (1926) and Steel 
(2003)—as well as J. Zhang and Spirtes (2014)—that it is ill-motivated to treat time 
as a cause. We are not saying this is uncontroversial, but given this broad consensus 
in the literature, the burden of proof is on those who think otherwise. The graph in 
Fig. 6a is, therefore, not an appropriate representation of the causal structure behind 
the Height&Math example.

We believe the best diagnosis of how SP arises in this example is as follows 
(see Spirtes et  al., 2000, p. 296; J. Zhang & Spirtes, 2014). So far, we have 
used ‘height’ and ‘mathematical knowledge’ as two ordinary random variables, 

Fig. 5  An illustration of the Height&Math example

Fig. 6  Two DAGs for the Height&Math example
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which are measured over several years on the chosen children. However, a 
child’s height (or math knowledge) in one year is causally relevant to the child’s 
height (or math knowledge) in the next year, because the child in one year grows 
(or learns) based on the last year’s height (or math knowledge). The original 
unit choice and variable choice thus induce ‘inter-unit’ causation, meaning that 
there is a causal relation between how one unit instantiates the relevant proper-
ties and how another unit instantiates them. In other words, the statistical units 
selected for analyzing a set of variables causally interact with each other. This 
creates trouble for standard statistical and causal analysis because inter-unit cau-
sation leads to the violation of the IID (independent and identically distributed) 
assumption in the sampling process. Causal analysis, built upon statistical analy-
sis, is designed to capture intra-unit causation, not inter-unit causation (J. Zhang 
& Spirtes, 2014).

Given the above diagnosis, the solution is to redefine height and mathematical 
knowledge as two series of variables: Heightt = {Height1, …, Height6} and Matht 
= {Math1, …, Math6}, where each variable is indexed to a year. This new unit 
choice and variable choice induces no inter-unit causation, and also successfully 
captures the underlying causal story. The resulting DAG is shown in Fig. 6b, which 
represents increases in height and mathematical knowledge using two parallel but 
separate causal chains. Comparing Fig. 6b against Fig. 6a makes it clear that “[i]t is 
the inter-unit causation that propagates an initial coincidence into [an] association”, 
as J. Zhang and Spirtes (2014, p. 247) summarize.

In our opinion, we need a DAG at least as complex as the one in Fig.  6b to 
accurately depict the causal structure behind the kind of SP involved in the 
Height&Math example, and in general, any SP due to inter-unit causation.18 Note 
this causal analysis has gone far beyond what Pearl’s analysis can offer. Rather than 
simply drawing a DAG among the three given variables (i.e., Height, Math and 
Year) involved in the case of SP in the Height&Math example, what the new analy-
sis demands is a redefinition of the variables and a reselection of units such that 
inter-unit causation is avoided.

5  The amalgamation paradox and the non‑collapsibility of odds ratio

All cases of SP discussed in the previous two sections share the common feature 
that the variable X is associated with the partitioning variable Z (e.g., Size is associ-
ated with Bag; Selfish with Group, etc.). As mentioned earlier, the presence of this 
association is necessary for SP to occur. However, if we shift our focus from SP to 

18  Of course, this more complicated DAG is still a simplified representation of the true causal struc-
ture. For example, a child’s current math knowledge is influenced by not only her math knowledge in the 
previous year, but also the amount of education she received during the year. Representing these extra 
causes will make the DAG more complete and more accurate, but will not affect our conclusion that time 
should be understood as what the variables are indexed to, rather than a causal variable on its own.
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its more generalized form, the amalgamation paradox (AP), the association between 
X and Z would no longer be necessary.19

AP is the statistical phenomenon in which the marginal or unconditional associa-
tion of two variables, X and Y, falls outside the range of the conditional associations 
with respect to a third variable, Z. To illustrate this definition, consider an example 
from Greenland (2021). Suppose that a study on a medical treatment with high mor-
tality has 50 males and 100 females in both the treatment and the control group. The 
two groups are relatively homogeneous in their medically relevant features such that 
no factor other than the treatment and sex can account for the difference in outcomes 
between the two groups. That is, in this example, Treatment is unassociated with 
Sex, and Sex is not a confounder (but an effect modifier; more below). Results show 
that among treated patients, 45 of 50 males and 30 of 100 females died, whereas, 
among untreated patients, 30 of 50 males and 10 of 100 females died (see Table 4).

The above results indicate that the medical treatment has effects of different mag-
nitudes on mortality among males and females. This is true regardless of whether 
the effect measure is odds ratio (OR) or risk difference—both are widely used in epi-
demiology. But there is something counterintuitive about OR in the above example. 
When OR is the chosen measure, we have OR(Treatment, Death) < OR(Treatment, 
Death | Sex = Female) < OR(Treatment, Death | Sex = Male). This implies that 
the marginal association between Treatment and Death cannot be expressed as a 
weighted average of the two conditional associations with respect to Sex. That is, 
the marginal association falls outside the range of the conditional associations; this 
makes the example an instance of AP. Note that what gives rise to AP in the above 
example is the use of the odds ratio measure, which has been known to be non-col-
lapsible (Hernán et al., 2011).20 By contrast, no such peculiarity is present when the 
chosen measure is risk difference, which is a collapsible measure, meaning that on 
this measure, the marginal association falls between the conditional associations.21

21  The notion of (non-)collapsibility used here refers primarily to a property of an association measure. 
A measure, m, of the association between X and Y is collapsible across Z, if and only if the measured 
marginal association m(X, Y) can be expressed as a weighted average of the measured conditional associa-
tions, m(X, Y | Z) (cf. Pearl, 2009, p. 193; Huitfeldt et al., 2019). Risk difference, for instance, is a collaps-
ible association measure in this sense. In contrast, odds ratio is a non-collapsible measure because there 
are datasets (such as the one represented in Table 4) where OR(X, Y) cannot be expressed as a weighted 
average of OR(X, Y | Z). One can also use collapsibility in a derivative sense that describe datasets. A 
dataset, D, is collapsible relative to a chosen association measure, m, if and only if the measured marginal 
association, m(X, Y), reported in D can be expressed as a weighted average of the measured conditional 
associations, m(X, Y | Z), in D. The dataset represented in Table 4 is non-collapsible relative to odds ratio 
in this sense. Moreover, Bandyopadhyay et al.’s (2015) notion of collapsibility states that a dataset is col-
lapsible if and only if the marginal association between X and Y has the same direction as their condi-
tional associations on Z. Since the marginal association being able to be expressed as a weighted average 
of the conditional associations implies that the marginal and the conditional associations are in the same 
direction (provided the conditional associations are already in the same direction), Bandyopadhyay et al.’s 
notion of (dataset) collapsibility encompasses the notion of (dataset) collapsibility as defined here in terms 
of weighted average. We thank an anonymous reviewer for prompting us to clarify this point.

19  As noted by Samuels (1993, p. 84), AP was first identified and defined by Good and Mittal (1987) 
who pointed out that SP implies AP: all cases of SP are cases of AP. See also Sprenger and Weinberger 
(2021) for a definition of AP and its relationship with SP.
20  See also Cummings (2009) for more discussions on the non-collapsibility of odds ratios.
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More broadly speaking, the peculiarity of AP lies in the fact that it violates our 
expectation that the association between two variables at the level of the entire group 
should be bounded by their conditional associations in the sub-groups (Hernán et al., 
2011). This intuition comes from the seemingly plausible presupposition—which is 
not always true—that the marginal association should be a weighted average of the 
conditional associations. As a special case, SP violates a categorical or qualitative 
version of this intuition; namely, we expect that if two variables are conditionally 
unassociated or positively/negatively associated in each sub-group, they should like-
wise be unassociated or positively/negatively associated in the entire group. So, in 
cases of SP, not only the marginal association between X and Y falls outside the 
range of associations conditional on Z, but the marginal and the conditional asso-
ciations are in opposite directions (e.g., the former is positive whereas the latter are 
non-positive). This is why SP, defined as association reversal, disappearance, or 
emergence, is a special form of AP. In light of this, it is natural to extend our atten-
tion to AP and ask the following questions: how can AP arise in a causal context, 
and when it does, what should we do? Attempts at answering these questions will 
help delineate the scope of the application of Pearl’s causal-graphical analysis of SP.

What is particularly noteworthy is that the kind of AP due to a choice of non-
collapsible association measure typically occurs in the presence of effect modifica-
tion.22 Effect modification occurs when a causal effect is sensitive to the value of 
a third variable.23 That is, Z is a modifier of the effect of X on Y when the effect 
varies across levels of Z (cf. Hernán & Robins, 2020). Importantly, a modifier is 

22  In other words, the combination of effect modification and non-collapsibility offers an important and 
typical causal context for the presence of AP in the data. However, this is not to say that effect modifica-
tion is a necessary condition for the presence of AP. It is possible that the marginal odds ratio between X 
and Y differs from the conditional odds ratios when the latter two are equal. Nevertheless, the occurrence 
of AP without effect modification is much less frequent in real life, as well as less impressive, compared 
to cases in which AP is present due to effect modification.
23  It is not easy to represent the presence of effect modification using standard DAGs; but see Weinberg 
(2007) for attempts of clarifying effect modification using (nonstandard) DAGs.

Table 4  This table demonstrates a case of AP relative to the odds ratio (OR) measure: the marginal asso-
ciation between treatment and death in the total group is 2.75, which is smaller than conditional associa-
tions in both males and females (6.0 and 3.9 respectively). For comparison, AP does not arise when risk 
difference is the association measure

Males Females Total

 Treated  Untreated  Treated  Untreated  Treated  Untreated

Totals 50 50 100 100 150 150
Died 45 30 30 10 75 40
Risks/Proportions 0.90 0.60 0.30 0.10 0.500 0.267
Risk differences 0.30 0.20 0.233
Odds 9/1 3/2 3/7 1/9 1/1 4/11
Odds ratios 6.0 3.9 2.75
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not a confounding variable. In our above example, Sex is a modifier of the treatment 
effect, but it is not a confounding variable since it is not associated with Treatment. 
This means that AP can occur in the absence of confounding. For this reason, Pearl’s 
analysis of SP cannot be generalized to AP. To be fair, we are not claiming that this 
is an intrinsic difficulty with Pearl’s analysis of SP, since to our knowledge, he does 
not claim that his analysis can be extended to dealing with AP. Still, we believe our 
discussion here helps us see the scope of Pearl’s analysis.

Given that non-collapsibility is necessary for the type of AP discussed in this 
section, a general solution is to avoid using non-collapsible effect measures such as 
odds ratios without well-justified reasons. As for circumstances where we do want 
to use the odds ratio, we should be aware that compared with causal effect at the 
whole-group level, the effect of X on Y measured in the sub-groups stratified on the 
modifier Z conveys more accurate causal information about how X influences Y in a 
specific causal background. Thus, when the data display a pattern of AP due to non-
collapsibility in the presence of effect modification, we should report sub-group-
specific effect estimations (although this does not imply that effect estimation at the 
whole-group level is biased or meaningless).

6  Conclusion

In this article, we have argued that Pearl’s causal-graphical analysis of SP, which diag-
noses SP as essentially a peculiar consequence of confounding, cannot capture the full 
spectrum of the phenomenon. We show that there are good reasons to believe that 
SP is a generic term encompassing a wide range of distinct phenomena. Confound-
ing is by no means the only source of SP, even if we admit that it is probably the 
most common and important one. Importantly, we do not claim that we have identified 
all possible sources of SP. There is nothing surprising about this, given that spuri-
ous associations observed in statistical data may come from a variety of sources: con-
founding, inappropriate variable aggregation, inter-unit causation, or sheer chance. 
The multiplicity of the sources of spurious association necessitates the multiplicity of 
the sources of SP. Thus, contra Pearl et  al. (2016), we find it untenable that a con-
founding-based analysis can resolve all cases of SP. As far as we can see, the plurality 
of the sources of SP, and thereby the plurality of its resolutions, are here to stay.
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