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Abstract
Satellite remote-sensing products with high spatial and time resolution are expected to provide alternative data sources for 
data-sparse regions. This study clarifies if the satellite–gauge product outperforms the satellite-only product by comparing 
remote-sensing precipitation products: one that incorporates rain gauge data (GSMaP-Gauge) and one that uses satellite 
only (GSMaP-MVK). The appropriateness of those two commonly used high-resolution products as the input to the con-
ceptual hydrological model Hydrologiska Byråns Vattenbalansavdelning for stream flow prediction was also investigated. 
In addition, we also analyzed the deviations of model parameters due to the bias in remote-sensing precipitation inputs 
compared to standard ground measurements. The results indicated that GSMaP-Gauge was superior, with satisfactory to 
good performances in predicting stream flow in both temperate and subtropical basins (Hyeonsan, Fuji, and Da). However, 
its performance was slightly worse than GSMaP-MVK in the Upper-Cau basin, which was explained by the poor quality of 
the adjusted data source due to sparse data and the satellite–gauge blending algorithm of GSMaP-Gauge. Better parameter 
agreements with the observations of GSMaP-Gauge than GSMaP-MVK were found in the Hyeonsan and Da river basins 
where GSMaP-Gauge showed almost consistent relationship of monthly rainfall compared to ground measurements.

Keywords  Remote sensing precipitation · Satellite-gauge product · Satellite-only product · Stream-flow simulation · 
Parameter adjustment

Introduction

Precipitation is one of the most important inputs for hydro-
meteorological modeling. However, in many regions of the 
world, particularly in developing countries, data on rain-
fall are very poor or even nonexistent due to inadequate 
funding for the installation and operation of ground-based 
measurement networks. This problem is a challenging task 
for hydrology applications, and it bottlenecks the water 

resources management of these countries. During the last 
two decades, remote-sensing rainfall estimation products 
with broad spatial coverage and repeated temporal cover-
age have provided a potential solution to the lack of data in 
these regions.

Although satellite-based precipitation products have 
broad spatial coverage and repeat temporal coverage, satel-
lite rainfall values are just estimates, which have various 
sources of uncertainty (e.g., gaps in the revisit times, an indi-
rect relationship between remote signals and the rainfall rate, 
atmospheric effects that modify the radiation field, the cov-
erage of the satellite, and the spatial and temporal sampling 
discrepancy between satellite estimates and the ground-
based estimates). There have been many efforts to improve 
the pure satellite precipitation products by incorporating rain 
gauge information in satellite-based rainfall retrieval algo-
rithms, with the emergence of global satellite–gauge rainfall 
estimation products such as Gage Adjusted Global Satellite 
Mapping of Precipitation (GSMaP-Gauge), adjusted Pre-
cipitation Estimation from Remotely sensed information 
Using Artificial Neural Network (PERSIANN) (Hsu et al. 
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1997), and Multi-Satellite Precipitation Analysis (TMPA) 
(Huffman et al. 2007). This raises two questions. The first 
is whether the satellite–gauge precipitation products always 
outperform the original satellite-only precipitation prod-
ucts. The second is whether high-resolution satellite-based 
precipitation estimates can provide reliable rainfall infor-
mation for discharge predictions. This study evaluated and 
compared two global remote-sensing precipitation products: 
GSMaP-Gauge and Global Satellite Mapping of Precipita-
tion moving vector with Kalman filter (GSMaP-MVK). They 
were developed as Global Satellite Mapping of Precipitation 
(GSMaP) projects, which promote high precision and high 
resolution from not only microwave radiometers but also 
geostationary infrared radiometers. There are several reasons 
for choosing these two products. First, they produce a very 
high spatial resolution (0.1°) and high time resolution (1 h). 
In addition, the GSMaP-MVK product has been success-
fully producing fairly good pictures in near real time and 
has a comparable score compared to other high-resolution 
systems (Ushio et al. 2009). However, GSMaP-MVK has 
a tendency to underestimate extremely high precipitation 
rates compared to the ground measurements in some par-
ticular operational applications (Ushio et al. 2013). In this 
circumstance, GSMaP-Gauge has been developed to fill the 
gap in the precipitation estimates between the satellite and 
rain gauge data attributable to the difference in spatial and 
temporal resolution.

It is important to investigate remote-sensing precipitation 
products in various areas and different climate regimes to 
obtain a more comprehensive understanding of them, which 
is useful for improving not only products themselves but also 
the utilization of the data that they provide. Several previous 
studies have assessed the stream flow prediction capability 
of different remote-sensing products (Stisen and Sandholt 
2010; Bitew and Gebremichael 2010; Shrestha et al. 2008; 
Liu et al. 2017). It is concluded that satellite rainfall products 
are potential precipitation input for hydrological applica-
tions; performance of hydrologic model depends on satellite 
product type, watershed size, and hydroclimatic region (Su 
et al. 2007; Tobin and Bennett 2009; Yilmaz et al. 2005). 

The studies of satellite rainfall products through stream flow 
simulation in hydrological modeling framework are few in 
number and do not cover adequately different satellite rain-
fall products, basin sizes (particularly small basins), and 
hydroclimatic regions (Bitew et al. 2012). This study pro-
vides well-organized and synthesized insight into the hydro-
logical applications of some remote-sensing precipitation 
estimations in several river basins of various sizes and under 
different climates. We examined the effectiveness of com-
bining rain gauge measurements with a satellite-only prod-
uct and investigated the ability and shortcomings of remote-
sensing precipitation products as an input into a hydrological 
model for stream flow prediction in several river basins in 
East and Southeast Asia under a wide range of climate con-
ditions and topographical terrains with different degrees of 
complexity. In addition, we analyzed the deviations of model 
parameters due to the bias in remote-sensing precipitation 
inputs compared to standard ground measurements.

Study area and materials

Study area

We included basins in a wide range of latitudes and under 
different climatic conditions (tropical monsoon and tem-
perate climate) in three different Asian countries (Japan, 
Vietnam, and South Korea). The Hyeonsan and Fuji basins 
are located in mid-latitude areas of South Korea and Japan, 
respectively, and they have relatively dense rain gauge 
networks. On the other hand, the Da and Upper-Cau river 
basins are located in the northern part of Vietnam in a tropi-
cal climate area, and they have much lower rainfall gauge 
densities. The local dense rain gauge networks (Table 1) 
in 4 investigated river basins are used as reference data to 
evaluate the performance of remote-sensing precipitation 
products.

Da river basin is a humid catchment (annual relative 
humidity of 82%; 85–90% in the rainy season) and is the 
biggest branch of the Red river basin, which is located in a 

Table 1   Summary of 
characteristics of the study 
basins

JP, Japan; VN, Vietnam; SK, South Korea
*The large, medium, and small size rivers basins are with total area of > 20,000, 2000–20,000, 
and < 2000 km2, respectively (Kendale 2011)

Fuji Da Upper-Cau Hyeonsan

Country JP VN VN SK
Area (km2) 2179 45,900 2760 1167
Size classification* Medium Large Medium Small
Gauge number 19 22 8 14
Spatial extensions 35.5N–36N 20.5N–25N 11N–14N 21.5N–22.1N

138E−139E 100E−106E 105E−106E 128E−130E
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diverse and complex topographical area, characterized by 
linear belt-shaped, strongly folded bedrock. The regional 
relief is strongly dissected with relative height differences 
from 1500–2000 m to 30–50 m, changing alternately from 
high mountain ranges surrounding plateaus to low moun-
tains with valleys. Its climate is tropical monsoonal with two 
different seasons: a warm and humid summer, and cool and 
dry winter. Rainfall is distributed unevenly over the catch-
ment, both in time and in space, which is attributed to many 
factors such as the elevation of the topography and the ori-
entation of mountains. The high mountains in the Pusilang 
mountain chain block the southwest monsoon that causes 
high rainfall on the east side of the basin. The annual rain-
fall in the Hoang Lien Son mountain chain, which includes 
many high mountains (above 2800 m), is very large, from 
2000 to 3200 mm per year. Meanwhile, the west side of the 
Da river basin is sheltered from the wind, which results in 
a lower annual rainfall, from 1800 to 2000 mm in Muong 
Nhe Province and 1200–1600 mm in the Son La and Moc 
Chau plateaus. Da river basin consists of different rock types 
including terrigenous rocks, carbonate rocks (mainly lime-
stone and dolomite), and metamorphic siliceous rocks. There 
are plentiful types of soil in the basin due to the effects of 
internal radiation regime with abundant tropical heat and 
light energy, high humidity climate, rich rain, and heavy 
rains: wet soil, semi-flood soil, alluvial rivers and streams, 
accumulations valley soil, degenerated clay by paddy 
change, clay typical soil, clay humus soil on the mountain, 
inert limestone soil, and stone. The major soil types of Da 
river basin are clay typical soil and clay humus soil on the 
mountain, which account for 51.47% and 41.23% of the total 
area of the river basin, respectively. Land cover types of Da 
river basin can be classified into three types: annual crops, 
long-term crop, and forest vegetation. The vegetation in the 
mountains northeast is plentiful, and the forest area is about 
28.25% of the natural area in 2000 subtropical climate region 
with two distinct seasons. The rainy season, which provides 
more than 80% of the total annual rainfall, usually starts in 
May and ends in September. The topography of the Upper-
Cau river basin includes mountainous areas, with only a 
few mountain peaks exceeding 1000 m and hilly land that is 
much less complicated than the Da river basin. As a result 
of the less complex topography, the spatial distribution of 
rainfall there is more even than in the Da river basin, with 
the average annual rainfall varying from 1500 to 2000 mm 
per year. The major soil groups of Upper-Cau river basin are 
rocky–inert erosion, boggy and slope convergent, yellow red, 
and mountainous red yellow humus (Thai et al. 2017). Land 
cover over Upper-Cau river basin is diverse including fruit 
tree, scrub mixed with woods, grass mixed with farm land, 

long-term industrial plantation, irrigated rice, subsidiary and 
short industrial, crops, rice and subsidiary crops, burn over 
land, grass, rich and medium natural forest, poor natural for-
est, residential land, scrub, brushwood (Jayawardena et al. 
2002).

Fuji River is located in central Japan; it originates in the 
Southern Alps and is surrounded by many high mountains in 
the west (peaks over 3000 m) and north (peaks over 2000 m). 
The geological features of the basin are very steep, with 90% 
of the area covered by mountains. Due to a giant dislocation 
called the Itoi river-Shizuoka Tectonic Line, which runs in a 
north–south direction, along with many other dislocations in 
the region that have caused many collapsed areas, the geo-
logical features are very complex and fragile. Therefore, the 
spatial rainfall pattern varies significantly. Annual rainfall in 
the Kofu basin is as low as 1100 mm. The middle and lower 
reaches experience more precipitation, with high average 
values ranging from 2000 to 2500 mm. The whole basin 
receives a mean annual precipitation of around 2100 mm. 
The basin lies in an inland mid-latitude climate region 
with hot and humid summers, and cold and dry winters. 
The temperature differences between summer and winter 
are extreme, with average temperatures of 26 °C and 3 °C, 
respectively. A geologic map of Fuji river basin with distri-
bution of major rock types including quaternary, mesozoic, 
volcanic rock, plutonic rock can be found in catalogue of 
rivers for Southeast Asia and the Pacific (Jayawardena et al. 
1997). The land use of Fuji river basin includes built-up 
area, paddy field, cultivated area, orchard, mulberry field, 
tea field, forest, shrubland and grassland, barren land (Jaya-
wardena et al. 1997) (Fig. 1).

The drainage area covers the Upper-Cau river basin to the 
gauging station Gia Bay in Thai Nguyen, with a drainage 
area of 2760 km2. As with the Da river basin, it is located 
in a humid,

The Hyeongsan River flows through the southeastern part 
of Gyeongbuk Province on the Korean Peninsula. It cov-
ers an area of 1160.80 km2 and consists of low mountain-
ous relief, the highest peak being 901 m (Mt. Beakwoon) 
in the upper stream; there is a plain in the lower stream. 
The average annual precipitation over the river basin is 
approximately 1117 mm, with a moderate spatial distribu-
tion of 1000 to 1700 mm. The major rock types over Hyeo-
nsan river basin include bulguksa granite, yucheon group, 
hayang group, sedimentary rocks (Jayawardena et al. 2012). 
The land use of this basin is classified into 6 main groups 
including water, urban, grassland, forest, paddy field, and 
agricultural field (Jayawardena et al. 2012). The major soil 
type of Hyeonsan river basin is Hayang group, and the major 
land cover type is forest.
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Remote‑sensing precipitation products

GSMaP‑MVK

GSMaP-MVK version 5.222.1 was used in this research. 
The GSMaP-MVK method estimates the precipitation 

rate from microwave (MW) sources and uses the mor-
phing method (Joyce et al. 2004) to produce a morphed 
product. Surface rain rates in 0.1° pixels of the infrared 
(IR) brightness temperature were obtained using a Kalman 
filter. The rainfall predictions were refined based on the 
relationship between the IR brightness temperature and the 

Fig. 1   a Locations of targeted 
river basins (red points) and rain 
gauges, stream-flow gauges of 
b Da river basin c Upper-Cau 
d Fuji river basin e Hyeonsan 
river basin
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surface rainfall rate. The microwave radiometer (MWR) 
sensors used for GSMaP-MVK rainfall retrieval include 
the Special Sensor Microwave/Imager (SSM/I), TRMM 
Microwave Imager (TMI), and Advanced Microwave 
Scanning Radiometer for EOS (AMSR-E). The IR data-
sets used for GSMaP-MVK retrieval were supplied from 
the National Oceanic and Atmospheric Administration 
(NOAA) Climate Prediction Center (CPC) with 30 min 
temporal resolution. The latitudinal range of the IR data 
was 60°N–60°S.

GSMaP‑Gauge

This study utilized GSMaP-Gauge version 5.222.1.40. 
GSMaP-Gauge is a product that is adjusted to the GSMaP-
MVK and has been developed to mitigate the mismatches 
between the ground measurements with the GSMaP-MVK. 
The gauge-adjusted data sources used in GSMaP-Gauge are 
the CPC global gauge datasets. It is a unified precipitation 
product combining all information sources available at the 
CPC by taking advantage of the optimal interpolation objec-
tive analysis technique. The dataset provides daily gauge-
based global precipitation with 0.5° × 0.5° spatial resolu-
tion. The analysis quality of the CPC dataset varies with 
the gauge network density. This will consequently have an 
impact on the quality of GSMaP-Gauge data.

Hydrological model and simulation setups

The HBV model is a conceptual model of catchment hydrol-
ogy, which simulates discharge with areal mean precipitation 
as the main input. The HBV model has been used in numer-
ous studies and has been adopted as a standard forecast-
ing tool in nearly 200 basins throughout Scandinavia, with 
further applications in more than 40 countries. Therefore, 
we chose to use it in this study. It is characterized by a rela-
tively simple and robust two-layer tank model structure and 
focuses on capturing the most important runoff generating 
process. The snow routine, soil and evaporation routine, and 
groundwater and its response are the three main modules of 
the HBV model (Fig. 2). The precipitation from rainfall and 
snow melt computed in the snow routine is transferred into 
storage in the soil moisture zone through the soil moisture 
routine. The response routine consists of two interconnected 
reservoirs. The upper storage zone is fed with water from 
the soil moisture zone. When available, water percolates 
from the upper to the lower storage zone at a constant rate. 
There is runoff from these two storage zones in proportion 
to their contents. The lower zone is also directly affected 
by precipitation and potential evaporation in parts that 
represent lakes, rivers, and outflow areas. Finally, the dis-
charges from the two reservoirs are combined and a simple 
time–area transformation is applied. This transformation is 

a triangular function adjusted for the correct timing of peak 
flows. In this study, given that all four targeted river basins 
are free of snow, the number of calibrated parameters was 
decreased from 12 to 9. These calibrated parameters, which 
determine the soil moisture accounting routine, and the river 
routing and response routine, are described in Table 2, with 
their ranges used for automatic calibration and Monte Carlo 
simulations. The soil moisture routine is controlled by three 
parameters, denoted as the maximum soil moisture storage 
FC (mm); soil moisture threshold LP (−), above which actual 
evaporation reaches potential evaporation; and the param-
eter BETA (−), which determines the relative contribution 
of rainfall or snow melt to runoff. The response routine is 
a lumped model with two boxes connected in series under 
constant percolation PERC (mm/d). The response function 
transforms the recharge from precipitation into runoff by 
simply summing the recharges from the groundwater boxes 
assumed in the model structure. K0, K1, and K2 are recession 
coefficients, while a threshold parameter, UZL (mm), is used 
to produce overflow when the water storage of the upper 
zone is exceeded. For the routing routine, the generated run-
off in one time step is distributed on the following days using 

Fig. 2   Structure of HBV model (Seibert 2005)
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one free parameter, MAXBAS (d), which determines the 
base of an equilateral triangular weighting function. Six of 
the calibrated parameters play important roles in determin-
ing the discharge quantity predictions: two control the soil 
and evaporation routine (FC and BETA), three are recession 
coefficients (K0, K1, and K2), and UZL controls the amount 
of runoff from the upper and lower reservoirs. Therefore, in 
this application, the readjustment of model parameters to 
compensate for the differences in runoff from input rainfall 
estimates is focused on those six parameters. The role of FC 
is very important in separating the effective precipitation 
into runoff and soil moisture. Low FC values indicate a low 
water holding capacity of the soil and a small amount of 
water available for evapotranspiration; this in turn enlarges 
the runoff. BETA controls the partition of the precipitation 
into runoff and soil moisture recharge. Low BETA values 
indicate more runoff formation than soil moisture recharge 
(Nibret et al. 2010). While K0 and K1 affect the overland 
flow and quick interflow, K2 has an impact on base flow from 
deep groundwater. Larger values of these recession coeffi-
cients result in an increasing outflow at the catchment outlet. 
In addition, UZL also affects the runoff from the upper zone 
layer box. A lower UZL leads to more runoff and vice versa.

Xu and Vandewiele (1994) examined the sensitivity 
of a monthly rainfall–runoff (RR) model due to errors in 
rainfall and concluded that watershed models are able to 
adjust the parameters to compensate for the bias in rainfall. 
Therefore, the quantitative bias of different remote-sensing 
precipitation inputs would cause a difference in calibrated 
model parameters. Therefore, the discrepancy of the rain-
fall inputs is compensated for by changing the parameters 
to maintain the simulated discharge as well as possible. To 
assess the relationship between model parameters obtained 
from rain gauge data and satellite-derived data, it is vital to 
evaluate the population of a parameter set rather than judg-
ing a single parameter set because of “equifinality” issues. 
This problem states that there is no unique solution for the 
hydrological model calibration; in other words, equally good 

model performances can be obtained from different param-
eter sets. The assessment of model parameter uncertainty is 
beyond the scope of this study; however, a parameter popula-
tion containing 10,000 model parameter sets was generated 
using a Monte Carlo algorithm for analyzing the impact of 
an inaccurate amount of remotely sensed precipitation on 
the reaction of a model parameter that directly affects the 
outflow at the outlet of a catchment. Only parameter sets that 
are capable of generating a model performance index with a 
Nash–Sutcliffe (N–S) efficiency larger than 60% for the best 
performances by the corresponding rainfall input obtained 
by the GAP automatic calibration process were kept for 
analysis. The magnitude of the six parameters referred to 
earlier was judged graphically using box plots.

The HBV model parameters for each watershed and 
rainfall input were calibrated separately with different 
precipitation inputs (local ground rainfall measurements, 
GSMaP-MVK and GSMaP-Gauge) over the 2-year period 
of 2002–2003 using automatic calibration by the GAP opti-
mization tools facilitated in the model package. Stream flow 
was simulated for the validation period of 2004–2005 from 
the HBV rainfall input for each rainfall source (including 
local rain gauge data, GSMaP-MVK and GSMaP-Gauge) 
and the corresponding model parameters. The objective 
function was to maximize the N–S efficiency between the 
simulated and observed stream flows. The N–S efficiency 
and coefficient of determination (R2) were used to judge the 
stream flow prediction capability of the alternative rainfall 
inputs.

Results

Remote‑sensing precipitation estimations

Before simulating the daily stream flow predictions of the 
different rainfall input sources using the HBV concep-
tual rainfall runoff model, we evaluated the basin average 

Table 2   Calibrated HBV 
parameters and their ranges

Parameter Explanations Minimum Maximum Unit

Soil and evaporation routine
FC Maximum soil moisture 50 1000 mm
LP Soil moisture threshold for reduction in evaporation. 0.3 1 –
BETA Shape of coefficient 1 6 –
Groundwater and response routine
K0 Recession coefficient 0.05 0.5 d−1

K1 Recession coefficient 0.01 0.3 d−1

K2 Recession coefficient 0.001 0.1 d−1

UZL Threshold for K0 outflow 0 100 mm
PERC Maximal flow from upper to lower Groundwater box 0 6
MAXBAS Routing, length of weighting function 1 5 d
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precipitation forcing input during the calibration period 
for several criteria: accumulated precipitation, seasonal 
variation, RMSE, and BIAS. The evaluation of rainfall esti-
mations and stream flow prediction capability of the two 
GSMaP products are discussed in this section.

Evaluation of the performance of GSMaP‑MVK

This section discusses the effects of climate and topogra-
phy on the performance of the satellite-only precipitation 
product GSMaP-MVK. Both microwave radiometer in LEO 
and infrared radiometer in GEO are used to produce the 
global precipitation map with 1 h and 0.1 degree resolution. 
GSMaP-MVK applies the algorithm described in Aonashi 
et al. (1996) and Kubota et al. (2007) to convert the bright-
ness temperature of primary microwave radiometer to sur-
face rain rate. MW sensors measure the MW radiation dur-
ing the formation of rainfall droplets and thus provide more 
accurate rainfall estimations than the infrared radiometer. 
However, they are only available on low-orbit satellites and 
have a coarse spatial resolution. Another restriction is that 
they may misclassify very cold surfaces and ice on mountain 
tops with rain clouds (Dinku et al. 2010). In addition, the 
overland underestimation of warm orographic rain that does 
not contain ice particles is also challenging for MW rainfall 
retrieval, mainly due to ice scattering (Dinku et al. 2010). 
The precipitation estimates between the microwave over-
passes are interpolated using the IR data by the technique 
of Kalman filter and moving vector, which is described in 
Ushio et al. (2013).

Our study area contained two different climatic regions. 
The Hyeonsan and Fuji river basins are located in a temper-
ate zone, whereas the Da and Upper-Cau river basins are in a 
subtropical zone. All four basins are located in mountainous 

areas associated with orographic rainfall. Lifting the moist 
air for orographic cloud formation may lead to precipitation 
when the cloud top is still warm and while there is little 
development of ice particles, which is undetected by the 
cloud top IR and passive MW (PMW) algorithms. Oro-
graphic rainfall could be one factor leading to the underes-
timation of GSMaP-MVK in our study area along with the 
small available number of PMW image samplings used for 
GSMaP-MVK retrieval.

For the mid-latitude river basins, GSMaP-MVK signifi-
cantly underestimated the rainfall accumulation (Fig. 3) dur-
ing the two-calibration-year period in both the Hyeonsan and 
Fuji river basins. In addition to the reasons for rainfall under-
prediction mentioned above, this can be partly explained 
by the errors in differentiating between an ice surface and 
cloud in the ice surface snow screening process of the MW 
algorithm. In Hyeonsan, although GSMaP-MVK consist-
ently underestimated the rainfall quantity throughout the 
year, with rainfall under-predictions exaggerated from May 
to September (Fig. 4), it was able to capture the variation in 
the monthly rainfall budget during the rainy season. In the 
Fuji river basin, GSMaP-MVK underestimated the amount 
of precipitation throughout the year, except in May and June 
(Fig. 4). The monthly variation in the rainfall budget in Fuji 
was more similar to observations than in Hyeonsan (Fig. 4). 
With regard to the second category, GSMaP-MVK rainfall 
estimations were dramatically lower than the observations 
during the whole year in the Da river basin. In the Upper-
Cau river basin, GSMaP-MVK rainfall accumulation fol-
lowed the observations quite well, with a marginal overesti-
mation from mid-2002 to mid-2003. This was the result of 
compensating for the dramatic overestimation in June and 
relatively moderate under-prediction from August to the end 
of the year. It is interesting that GSMaP-MVK was able to 

Fig. 3   Accumulated precipita-
tion of GSMaP-MVK (red line) 
and GSMaP-Gauge (blue line) 
vs ground measurements (green 
line) in a Hyeonsan basin, b 
Fuji basin, c Da basin, and d 
Upper-Cau basin
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produce monthly rainfall fluctuations that were quite close 
to the ground measurements from the beginning of the year 
to May. In general, GSMaP-MVK performed better in terms 
of accumulating the precipitation budget in the Upper-Cau 
river basin than in the Da river basin.

GSMaP‑MVK versus GSMaP‑Gauge

In all four river basins, GSMaP-Gauge adjusted the pre-
cipitation quality by increasing the amount of precipitation. 
GSMaP-Gauge gave a very good correction for GSMaP-
MVK in Hyeonsan, providing good agreements with rain 
gauge data for rainfall accumulation (Fig. 3) and monthly 
variation in rainfall during the wet season (Fig. 4). In the 
Fuji river basin, although GSMaP-Gauge accumulations 
were similar to the observations and produced less underesti-
mation during the dry period, it exceeded the rain gauge data 
during the rainy season. As a result of enlarging the GSMaP-
MVK estimations, GSMaP-Gauge produced less underesti-
mation in precipitation accumulation and monthly rainfall 
budget in the Da river basin. On the other hand, GSMaP-
Gauge accumulations notably overestimated reference rain 

gauge data by exaggerating the rainfall amount in May and 
June.

Table 3 shows that in the small and medium size river 
basin, GSMaP-Gauge with the combination of the rain 
gauge data expressed a better relationship with the rain-
fall observations in Hyeonsan, Fuji than Upper-Cau river 
basin. In Hyeonsan and Fuji, GSMaP-Gauge showed sig-
nificant improvement compared with GSMaP-MVK with a 
great reduction in the RMSE and BIAS values. In addition, 
in the Upper-Cau river basin, GSMaP-Gauge worsened the 
agreement between GSMaP-MVK and the ground data by 
drastically increasing the RMSE and BIAS from 2.24 to 
39.88 mm/day and from 0.06 to − 1.04 mm/day, respec-
tively. These results indicate that blending remote-sens-
ing precipitation data with rain gauge data do not always 
lead to better precipitation estimations. One of the rea-
sons could be that there is no rain gauge used to produce 
CPC global rain gauge data in Upper-Cau basin (Fig. 5). 
Because the number of the rain gauge of CPC global gauge 
data in Hyeonsan and Fuji is more than that in Upper-Cau 
(Fig. 5), the relationship between local rain gauge data and 
CPC global gauge data in Hyeonsan and Fuji is stronger 

Fig. 4   Seasonal Variation in 
basin average precipitation of 
GSMaP-MVK (red line) and 
GSMaP-Gauge (blue line) vs 
ground measurements (green 
line) in a Hyeonsan basin, b 
Fuji basin, c Da basin, and d 
Upper-Cau basin

Table 3   Relationship between 
daily average precipitation over 
catchments between satellite-
based precipitation and ground 
observations using statistics

RMSE BIAS

GSMaP-MVK GSMaP-GAUGE GSMaP-MVK GSMaP-GAUGE

Hyeonsan 45.79 5.478 1.19 − 0.143
Fuji 28.50 12.63 0.75 − 0.327
Da 71.97 20.67 1.18 0.62
Upper-Cau 2.24 39.88 0.06 − 1.04
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than in Upper-Cau (Fig. 6). Thus, there was significant 
improvement in GSMaP-Gauge compared with GSMaP-
MVK in the Hyeonsan and Fuji basins, but the deteriora-
tion of GSMaP-Gauge compared with GSMaP-MVK in 
the Upper-Cau basin. Therefore, this result highlights that 
the constraints of the relevant rain gauge density for blend-
ing space-born precipitation and ground measurements of 
rainfall should be implemented in the merging algorithm, 
to avoid exaggerating the uncertainties due to data sparsity 

issues. In addition, there are few “one rain gauge” pixels 
falling inside the area of Da RB, which results in similar 
poor relationship between local rain gauge and CPC rain 
gauge data set in Da to the case of Upper-Cau with the 
0.46 R2 values. However, GSMaP-Gauge was superior to 
GSMaP-MVK with the RMSE and BIAS from 71.97 to 
20.67 mm/day and from 1.18 to 0.62 mm/day, respectively. 
The huge size of Da river basin would be one factor that 
mitigates the impact of rain gauge limitation on the quality 
of satellite–gauge merging precipitation GSMaP-gauge.

Fig. 5   Ground rain gauge distri-
butions of the CPC global gauge 
data set in the study regions

Fig. 6   Relationship between 
local rain gauge data and CPC 
global gauge data set in a Da, b 
Upper-Cau, c Hyeonsan, d Fuji
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Deviations of model parameters

In the Hyeonsan and Da catchments, because GSMaP-
MVK significantly underestimates the accumulation of 
rainfall and monthly rainfall quantity, the parameters were 
adapted in a way that the model produced more stream 
flow. The adjustment of the parameters due to the incor-
rect estimations of the amount of rainfall was clear in both 
the soil routine and upper zone and lower zone response 

routine in Hyeonsan, with noticeably low GSMaP-MVK’s 
FC, and UZL values and substantially high K1 values 
(Fig. 7). Although the adaptation of the parameters was 
obvious in the soil routine and lower zone response rou-
tine in Da river basin, minor differences were seen in the 
parameters controlling the upper zone (Fig. 8). As a con-
sequence of the dramatic water budget improvement in 
GSMaP-Gauge compared to the original satellite-only 
product GSMaP-MVK in these two river basins (Figs. 3 

Fig. 7   Box plots of 6 param-
eters impacting on generating 
discharge for calibration period 
2002–2003 in Hyeonsan river 
basin

Fig. 8   Box plots of 6 param-
eters impacting on generating 
discharge for calibration period 
2002–2003 in Da river basin
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and 4), all six parameters calibrated using GSMaP-Gauge 
expressed little statistical difference with those obtained 
from reference rain gauge data.

In the Fuji river basin, although GSMaP-Gauge accu-
mulations deviated slightly from observations, the monthly 
amounts of rainfall were not consistently underestimated 
with the larger rainfall budget during the rainy season and 
the lower precipitation during the dry season compared to 
the rain gauge data (Fig. 4). This could be one of the reasons 
for the much less similar quartile ranges of GSMaP-Gauge 
parameters compared to observations in the Hyeonsan and 
Da river basins (Fig. 9). In addition, because of the large 
underestimations of precipitation, GSMaP-MVK generated 
noticeably low UZL and moderately higher K1 values, to 
increase the recharge amount from upper zone box (Fig. 9).

In the Upper-Cau river basin, GSMaP-Gauge corrects the 
GSMaP-MVK value by increasing the amount of rainfall, 
leading to significant overestimations of accumulated rain-
fall and extremely high amounts of rainfall in May and June. 
This in turn causes a remarkably high FC and low K2, which 
reduces the outflow formation (Fig. 4). Although GSMaP-
MVK accumulations were marginally different from the rain 
gauge data (Fig. 3), their seasonal variation was drastically 
overestimated in June and moderately underestimated in the 
following months, but then the model performed well for 
the monthly rainfall during the first 5 months of the year 
(Fig. 4). This could be one of the factors that caused the 
parameter adjustments because of the bias in GSMaP-MVK 
rainfall to change the simulated discharge amount inconsist-
ently (both increase and decrease) in the Upper-Cau river 

basin. The excessively large FC and low K2 resulted in a 
smaller discharge, while significantly lower BETA produced 
the larger stream flow (Fig. 10).

After blending the rain gauge data with the GSMaP-
MVK, GSMaP-Gauge expressed a varied degree of improve-
ments in terms of precipitation accumulations, monthly vari-
ation in rainfall, RMSE, and BIAS in the Hyeonsan, Fuji, 
and Da catchments. These improvements led to better param-
eter agreements with the observations for GSMaP-Gauge 
than for GSMaP-MVK in the Hyeonsan and Da catchments. 
However, in the Fuji catchment, the parameters obtained by 
GSMaP-Gauge input did not show as much similarity with 
the rain gauge data as in the Hyeonsan and Da catchments. 
Figure 9 shows that the recession coefficient of the lower res-
ervoir K2 of GSMaP-Gauge was dramatically less than that 
of the observation and GSMaP-MVK. This was partly due 
to the different trends than the ground measurements in the 
seasonal variation in the rainfall budget in GSMaP-Gauge 
(Fig. 4b). GSMaP-Gauge overestimated the monthly water 
amount during the rainy season and underestimated monthly 
water budget during the dry season. During the wet sea-
son, some volume of water is kept in the in the lower layer 
tank and water is gradually released in dry season. The low 
GSMaP-Gauge K2 value leads to reduction in lower tank out-
flow generation. This could be the result of significant sur-
plus water budget during the rainy season. Similarly, the low 
GSMaP-Gauge K2 value in Upper-Cau (Fig. 10) could be 
also the outcome of significant overestimates rainfall budget 
of GSMaP-Gauge (Fig. 4d). In the Upper-Cau river basin, 
as a result of enlarging the precipitation accumulations 

Fig. 9   Box plots of 6 param-
eters impacting on generating 
discharge for calibration period 
2002–2003 in Fuji river basin
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RMSE and BIAS in the relationship with observed rainfall, 
GSMaP-Gauge did not enhance the parameter values to give 

values closer to the parameters retrieved from reference rain 
gauges.

Fig. 10   Box plots of 6 param-
eters impacting on generating 
discharge for calibration period 
2002–2003 in Upper-Cau river 
basin

Fig. 11   Model performances a 
R2 and b NS in 4 river basins 
of rainfall observations (green 
columns), GSMaP-Gauge (blue 
columns), and GSMaP-MVK 
(red columns) for calibration 
period
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Stream flow simulations using remote‑sensing 
precipitation products

Figures 11 and 12 indicate the ability of the HBV model to 
simulate the discharge in the four targeted river basins with 
all of the model performances of the rainfall observations 
was larger than 0.7 for both the calibration and validation 
periods. An excellent fit was expressed in the Hyeonsan, 
Fuji, and Upper-Cau river basins, and there was a strong 
correlation in Da between the observations and simulated 
discharge (Fig. 13).

In the Hyeonsan river basin, GSMaP-MVK showed mod-
erate simulation skill during the calibration period, with an 
N–S value of 0.64 and R2 value of 0.71. However, there was 
a poor agreement between the observed and GSMaP-MVK 
simulated flows in this river basin with a low N–S value 
of 0.5 and R2 of 0.52, respectively, during the validation 
period. It also expressed a tendency to substantially under-
estimate the high flow displayed in Figs. 13a and 14a. As 
a result of its better rainfall budget estimation and lower 
RMSE and BIAS, GSMaP-Gauge expressed a satisfactory 
performance, with a significant improvement by produc-
ing less underestimation of the high flow compared to the 
original GSMaP-MVK data (Figs. 13e and 14a). The R2 val-
ues for the time series of daily simulated and observed dis-
charge were 0.75 (for calibration) and 0.69 (for validation), 
and the N–S values were 0.74 and 0.67 for calibration and 

validation, respectively, indicating that GSMaP-Gauge had 
reasonable skills in reproducing stream flow in the Hyeonsan 
catchment.

In the Fuji catchment, although GSMaP-MVK simulated 
the stream flow with moderate skill, with intermediate N–S 
and R2 values (0.54 and 0.55, respectively) during calibra-
tion, it had an acceptable performance during validation with 
N–S and R2 values larger than 0.65. When GSMaP-MVK 
was replaced by GSMaP-Gauge, the model calibration per-
formance produced a remarkable increase of approximately 
24% for both N–S and R2, and a modest improvement of 
5% for R2 and 4% for N–S during validation. These results 
indicate a fair skill of GSMaP-Gauge for simulations repro-
ducing discharges measured on the ground.

In the Da river basin, GSMaP-MVK displayed satisfac-
tory model performance, with N–S and R2 values of 0.86 
and 0.79 during calibration and 0.76 and 0.73 during valida-
tion, respectively. However, as shown in Fig. 14c, there were 
significant underestimations for GSMaP-MVK, particularly 
during the low-flow period. In contrast, the flow estimated 
from GSMaP-Gauge matched the observed pattern of dis-
charge shown in Fig. 14c quite well and expressed satis-
factory skill for stream flow simulations, with the model 
performances larger than 0.84 for both the validation and 
calibration phases.

In the Upper-Cau river basin, both GSMaP-MVK and 
GSMaP-Gauge expressed the weakest simulation skills of 

Fig. 13   Scatter plots between observed discharge and simulation discharge by rain gauge (green star) vs GSMaP-MVK (red star) and vs GSMaP-
Gauge in a, e Hyeonsan, b, f Fuji, c, g Da and d, h Upper-Cau during the simulation period
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all four study areas. Figure 13d, h shows the underestima-
tion of high flow (larger than 20 mm/day) for both GSMaP-
Gauge and GSMaP-MVK. These underestimations can be 
observed in a hydrograph of the Upper-Cau river basin in 
Fig. 14d. In Fig. 12, the low R2 values (0.47 and 0.48) for 
GSMaP-Gauge and GSMaP-MVK, respectively, and low 
N–S values (consistently < 0.45) indicate that the reproduc-
tion of discharge by these two satellite-based precipitation 
products was not satisfactory. It should be noted that the R2 
and N–S values of GSMaP-Gauge were even worse than 
those of GSMaP-MVK, as shown by the larger RMSE and 
BIAS values (Table 3). This is probably due to either the 
lower number of rain gauges used for adjusted gauge data in 
this river basin or a limitation of the GSMaP-Gauge blend-
ing algorithm itself.

Discussion and conclusions

Two remote-sensing precipitation products, GSMaP-Gauge 
and GSMaP-MVK, were investigated to determine the effec-
tiveness of combining rain gauge data with satellite-only 
products to enhance their rainfall estimation performances. 
The suitability of these two global products as an input for 
the conceptual model HBV was also investigated, to simulate 
the daily stream flow in several river basins located in areas 
with various degrees of complex topography, under varied 
climate conditions.

It was interesting that the gauge–satellite product pro-
duced remarkable improvements in model performance 
compared to the satellite-only precipitation data in both tem-
perate basins (Hyeonsan and Fuji) and a subtropical basin 
(Da). In those catchments, GSMaP-Gauge performed mod-
erately satisfactory to well when reproducing discharge, with 
N–S and R2 values consistently higher than 0.65 for both 
validation and calibration (Figs. 11 and 12). This indicates 
the success of adjusting GSMaP-MVK using CPC global 
gauge data to generate GSMaP-Gauge in these areas. How-
ever, because of substantial overestimations of the rainfall 
amount and the increase in RMSE and BIAS, GSMaP-Gauge 
slightly worsened the performance of GSMaP-MVK in the 
Upper-Cau river basin. This indicates the need to modify the 
GSMaP-Gauge retrieval algorithm for blending gauge and 
satellite information due to the data limitations of sparse 
rain gauge networks.

Due to the uncertainties in the rainfall estimates of 
remote-sensing precipitation products, the parameters 
were adapted in such a way that the model produced more 
stream flow. Although GSMaP-MVK significantly and con-
tinuously underestimated the rainfall accumulations and 
monthly seasonal variation in the Hyeonsan and Da river 
basins, GSMaP-Gauge resulted in dramatic improvements in 
terms of these two aspects. Therefore, these improvements 
led to better parameter agreements with the observations of 
GSMaP-Gauge than those of GSMaP-MVK in these basins. 
However, in the Fuji river basin, the parameters obtained by 
GSMaP-Gauge input were not as similar to the rain gauge 

Fig. 14   Hydrograph of in a 
Hyeonsan, b Fuji, c Da, and d 
Upper-Cau during validation 
period
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data as in the Hyeonsan and Da basins. This was partly due 
to the different trends with the ground measurements in the 
seasonal variation in the rainfall budget in GSMaP-Gauge. 
In the Upper-Cau, as a result of the increased precipitation 
accumulations, RMSE, and BIAS in the relationship with 
observed rainfall, GSMaP-Gauge did not enhance the param-
eter values to give a value closer to the parameters retrieved 
from reference rain gauges.

Significant rainfall underestimations in the Hyeonsan, 
Fuji, and Da river basins (Figs. 3 and 4) and the poor rela-
tionship with rain gauge data in the monthly rainfall budget 
in the Upper-Cau river basin (Fig. 4) can be partly ascribed 
to an orographic effect. This leads to GSMaP-MVK dis-
playing poor to moderately satisfactory discharge simulation 
skills in those four river basins. Therefore, the accuracy of 
GSMaP-MVK needs to be further improved to become a 
more effectively useable product for hydrological simulation.
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