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Abstract The study of nanoparticles concentration for

the Jeffrey fluid model is considered with the process of

peristaltic waves in a three-dimensional rectangular chan-

nel. The main theme of the present study is to study the

effect of lateral walls on nanoparticle phenomenon in

peristalsis with non-Newtonian fluid model in a duct of

rectangular cross-section. The flow is considered in a wave

frame under the assumptions of long wavelength and low

Reynolds number. The resulting three-dimensional non-

linear and coupled partial differential equations are then

solved using homotopy perturbation technique. The phys-

ical features of lateral walls, mean volume flow rate, Jef-

frey fluid parameter, the Brownian motion parameter, the

thermophoresis parameter, local temperature Grashof

number and local nanoparticle Grashof number are dis-

cussed simultaneously through presenting graphical dis-

cussion. Three-dimensional phenomenon is also

investigated through graphs to see the variation of velocity

profile with space coordinates. Trapping scheme is also

manipulated with the help of streamlines for various per-

tinent parameters.

Keywords Peristaltic flow � Jeffrey fluid � Nanoparticles �
Rectangular duct � Homotopy perturbation method (HPM)

Introduction

Peristalsis is a mechanism of pumping fluids in ducts when

a progressive wave of area contraction or expansion

propagates along the length of a distensible tube containing

fluid. It instigates, in general, propulsive and mixing

movements and pumping the fluids against pressure rise.

Peristaltic pumping in physiology is an intestine leverage

of smooth muscle contraction. It includes the transportation

of urine from the kidney to the bladder, food through the

digestive tract, bile from the gall-bladder into the duode-

num, movement of ovum in the fallopian tube, etc. A

significant industrial application of this phenomenon is in

the design of roller pumps used in pumping fluids without

being contaminated due to the connection with the pump-

ing ordnance (Mishra and Manoranjan 2004). Nanotech-

nology has fundamental applications in industry since

materials of nanometer sized exhibit incomparable physical

and chemical characteristics. Water, ethylene glycol and oil

are common examples of base fluids used for the nanofluid

phenomenon. Nanofluids have their immense contribution

in heat transfer like microelectronics, fuel cells, pharma-

ceutical processes, and hybrid-powered engines, domestic

refrigerator, chiller, nuclear reactor coolant, grinding and

space technology and many more situations. They reveal

enhanced thermal conductivity and the convective heat

transfer coefficient counter balanced to the base fluid.

Nanofluids have been attracted the attention of many

S. Nadeem

Department of Mathematics, Quaid-i-Azam University,

Islamabad 45320, Pakistan

A. Riaz (&) � R. Ellahi

Department of Mathematics and Statistics, FBAS, IIU,

Islamabad 44000, Pakistan

e-mail: ariiui@hotmail.com

R. Ellahi

Department of Mechanical Engineering, Bourns Hall A373,

University of California, Riverside, CA 92521, USA

N. S. Akbar

DBS&H, CEME, National University of Sciences and

Technology, Islamabad, Pakistan

123

Appl Nanosci (2014) 4:613–624

DOI 10.1007/s13204-013-0238-5



researchers for new production of heat transfer fluids in

heat exchangers, in plants and in automotive cooling sig-

nifications, due to their extensive thermal properties. A

large amount of literature is available which deals with the

study of nanofluid and its applications (Khanafer et al.

2003; Hakan and Abu-Nada 2008; Wang and Wei 2009).

The study of non-Newtonian fluids has obtained the

attention of many researchers with the fact that most of the

industrial used fluids are non-Newtonian in nature and

exhibit nonlinear attitude between stress and deformation

rate (see Refs. Naz et al. 2008; Hameed and Nadeem 2007;

Patel and Timol 2009; Mekheimer and Abdelmaboud

2008; Mitra and Prasad 1973).

In the field of fluid mechanics, the phenomenon of

peristalsis has been considered by a number of researchers

due to its valuable applications in medical, physiology,

chemical industries and bioengineering. Kothandapani and

Srinivas (2008) have analyzed the peristaltic transport of a

Jeffrey fluid under the effect of magnetic field in an

asymmetric channel. They have discussed the problem in

wave frame moving with a constant axial velocity under

the approximations of long wavelength and low Reynolds

number. Peristaltic flow of visco-elastic fluid with frac-

tional Maxwell model through a channel has been inves-

tigated by Tripathi et al. (2010). They have obtained the

analytical solutions with the help of homotopy perturbation

method and Adomian decomposition method. Nadeem and

Maraj (2012) have more recently described the mathe-

matical analysis for peristaltic flow of nanofluid in a curved

channel with compliant walls. Mekheimer et al. (2011)

have recently obtained the effect of lateral walls on peri-

staltic flow through an asymmetric rectangular duct. Reddy

et al. (2005) have considered the influence of lateral walls

on peristaltic flow in a rectangular duct and observed that

the sagittal cross-section of the uterus may be better

approximated by a tube of rectangular cross-section than a

two-dimensional channel. Mathematical model for the

peristaltic transport through an eccentric cylinders has been

presented by Mekheimer et al. (2013). Recently, Nadeem

et al. (2013) have derived the effects of heat and mass

transfer on peristaltic flow of a nanofluid between eccentric

cylinders. Keeping in mind the present information,

authors come to know that peristaltic flow of nanofluid

with non-Newtonian base fluid has not been discussed in a

three-dimensional rectangular channel.

So the main idea of the present analysis contains the

analysis of peristaltic flow of non-Newtonian Jeffrey fluid

model with nanoparticles phenomenon in a rectangular duct.

The flow is observed in a wave frame moving with a constant

speed c in the axial direction of the flow. The governing

equations are formulated under the approximations of long

wavelength and low Reynolds number. All the relations for

conservation of momentum, energy and nanoparticles

concentration are made dimensionless after introducing

suitable relative non-dimensional parameters. The conse-

quent expressions consist of highly non-linear and coupled

partial differential equations which are solved analytically

with the help of homotopy perturbation method (HPM). The

influences of all emerging parameters are imported through

presenting the graphs of velocity profile, temperature dis-

tribution, nanoparticles concentration, pressure rise and

pressure gradient variations. Three-dimensional graphs are

also presented for velocity profile. In the end, stream func-

tions are also configured with the help of streamlines which

reveal the trapping bolus phenomenon.

Mathematical structure

We consider the peristaltic flow of an incompressible Jef-

frey fluid with nanoparticles concentration in a cross-sec-

tion of three-dimensional uniform rectangular channel

(Reddy et al. 2005). The flow is produced by the propa-

gation of sinusoidal waves having wavelength k travelling

along the axial direction of the channel with constant speed

c (Fig. 1). The equations for the conservation of mass,

momentum, energy and nanoparticles concentration for

Jeffrey fluid are described as (Nadeem et al. 2013):

Equation of mass conservation

div V ¼ 0: ð1Þ

Equation of momentum conservation

qf

DV

Dt

� �
¼ �rP þ divSþqf gaf

�T � T0ð Þ

þ qf gaf
�C � C0ð Þ: ð2Þ

Equation of energy conservation

qf cf

D�T

Dt

� �
¼ r � Kr�T

þ qpcp DB r�C � r�Tð Þ þ DT

T0

r�T � r�Tð Þ
� �

:

ð3Þ

Equation of nanoparticles concentration

D�C

Dt
¼ DBr2C þ DT

T0
r2T; ð4Þ

where S represents the constitutive relations for Jeffrey

fluid model which is defined as (Kothandapani and Srinivas

2008):

S ¼ l
1 þ k1

c
� þ k2c

��� �
: ð5Þ

In above expression, l is the viscosity of the fluid, c
�

is the

symmetric part of velocity gradient and k1 is the constant

Jeffrey parameter.
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The peristaltic waves on the walls are represented as

(Reddy et al. 2005)

Z ¼ �HðX; tÞ ¼ �a � b cos
2p
k

X � ctð Þ
� �

;

where a and b are the amplitudes of the waves, t is the time

and X is the direction of wave propagation.

Formulation of the problem

The walls parallel to XZ-plane remain undisturbed and are

not subject to any peristaltic wave motion. We assume that

the lateral velocity is zero as there is no change in lateral

direction of the duct cross-section. The governing equa-

tions for flow velocity V ¼ U; 0;Wð Þ of the nanofluid in

three-dimensional flow problem will have the following

form:

oU

oX
þ oW

oZ
¼ 0; ð6Þ

qf

oU

ot
þ U

oU

oX
þ W

oU

oZ

� �
¼ � oP

oX
þ o

oX
SXX þ o

oY
SXY

þ o

oZ
SXZþqf gaf

�T � T0ð Þ þ qf gaf
�C � C0ð Þ; ð7Þ

0 ¼ � oP

oY
þ o

oX
SYX þ o

oY
SYY þ o

oZ
SYZ ; ð8Þ

qf

oW

ot
þ U

oW

oX
þ W

oW

oZ

� �
¼ � oP

oZ
þ o

oX
SZX

þ o

oY
SZY þ o

oZ
SZZ ; ð9Þ

o�T

ot
þ U

o�T

oX
þ W

o�T

oZ
¼ a

o2�T

oX2
þ o2�T

oY2
þ o2�T

oZ2

� �

þ s DB

o�C

oX

o�T

oX
þ o�C

oY

o�T

oY
þ o�C

oZ

o�T

oZ

� ��
:

þDT

T0

o�T

oX

� �2

þ o�T

oY

� �2

þ o�T

oZ

� �2
 !!

; ð10Þ

o�C

ot
þ U

o�C

oX
þ W

o�C

oZ
¼ DB

o2 �C

oX2
þ o2 �C

oY2
þ o2 �C

oZ2

� �

þ DT

T0

o2�T

oX2
þ o2�T

oY2
þ o2�T

oZ2

� �
; ð11Þ

where s ¼ qcð Þp= qcð Þf is the ratio of the effective heat

capacity of the nanoparticle material to the heat capacity of

the base fluid. Let us analyze the flow in a wave frame

x; y; zð Þ moving with a constant velocity c away from the

fixed frame X; Y; Zð Þ by the transformation

x ¼ X � ct; y ¼ Y; z ¼ Z; u ¼ U � c; w ¼ W ;

pðx; zÞ ¼ PðX; Z; tÞ; T ¼ �T ;C ¼ �C: ð12Þ

To reduce the number of extra parameters, we define the

following non-dimensional quantities:

�x ¼ x

k
; �y ¼ y

d
; �z ¼ z

a
; �t ¼ c

k
t; �u ¼ u

c
; �w ¼ w

cd
;

h ¼ T � T0

T1 � T0

; r ¼ C � C0

C1 � C0

; �h ¼ H

a
; b ¼ a

d
;

d ¼ a

k
; / ¼ b

a
; Br ¼

qf gaf a
2

lc
C1 � C0ð Þ;

Gr ¼
qf gaf a

2

lc
T1 � T0ð Þ; a ¼ K

qcð Þf

; �p ¼ a2p

lck
;

Nb ¼ sDB

a
C1 � C0ð Þ; Nt ¼

DT

T0a
T1 � T0ð Þ;

Sc ¼
l

qDB

; Pr ¼
l
qa

; �S ¼ a

lc
S; Re ¼ qac

l
:

Therefore, the non-dimensional governing equations (after

exempting the bar symbols) for Jeffrey nanofluid in a wave

frame will obtain the subsequent form:

ou

ox
þ ow

oz
¼ 0; ð13Þ

Red u
ou

ox
þw

ou

oz

� �
¼�op

ox
þ 1

1þk1

d2 o
2u

ox2
þb2 o

2u

oy2
þo2u

oz2

� �

þBrrþGrh; ð14Þ

0 ¼ op

oy
; ð15Þ

Re d u
ow

ox
þ w

ow

oz

� �
¼ � op

oz
þ Re d

1 þ k1

� d2 o
2w

ox2
þ b2 o

2u

oy2
þ o2u

oz2

� �
; ð16Þ

Re dPr u
oh
ox

þ w
oh
oz

� �
¼ d2 o

2h
ox2

þ b2 o
2h
oy2

þ o2h
oz2

þ Nb d2 oh
ox

or
ox

þ b2 oh
oy

or
oy

þ
�

oh
oz

or
oz

�

þ Nt d2 oh
ox

� �2

þb2 oh
oy

� �2

þ oh
oz

� �2
 !

;

ð17Þ

Re dSc u
or
ox

þ w
or
oz

� �
¼ d2 o

2r
ox2

þ b2 o
2r
oy2

þ o2r
oz2

þ Nt

Nb

d2 o
2h
ox2

þ b2 o
2h
oy2

þ o2h
oz2

� �
;

ð18Þ

where Pr, Nb, Nt, Gr and Br represent the Prandtl number,

the Brownian motion parameter, the thermophoresis para-

meter, local temperature Grashof number and local

nanoparticle Grashof number, respectively. The boundaries

of the channel will obtain the dimensionless form as follows:
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z ¼ �hðxÞ ¼ �1 � / cos 2px: ð19Þ

Under the assumption of long wavelength d B 1 and low

Reynolds number Re �! 0 (Reddy et al. 2005), Eqs. (13)–

(18) simplify to the following form:

b2 o
2u

oy2
þ o2u

oz2

� �
þ 1 þ k1ð Þ Brr þ Grhð Þ ¼ 1 þ k1ð Þ dp

dx
;

ð20Þ

b2 o
2h
oy2

þ o2h
oz2

þ Nb b2 oh
oy

or
oy

þ oh
oz

or
oz

� �

þ Nt b2 oh
oy

� �2

þ oh
oz

� �2
 !

¼ 0; ð21Þ

b2 o
2r
oy2

þ o2r
oz2

þ Nt

Nb

b2 o
2h
oy2

þ o2h
oz2

� �
¼ 0: ð22Þ

The corresponding boundary conditions are

u ¼ �1 at y ¼ �1; u ¼ �1 at z ¼ �h xð Þ; ð23Þ

h ¼ a1 at y ¼ 1; h ¼ b1 at y ¼ �1; h ¼ 0

at z ¼ hðxÞ; h ¼ 1 at z ¼ �hðxÞ; ð24Þ

r ¼ a2 at y ¼ 1; r ¼ b2 at y ¼ �1; r ¼ 0

at z ¼ hðxÞ; r ¼ 1 at z ¼ �hðxÞ: ð25Þ

The expressions for the non-dimensional stream functions

can be described as u = qw /qz, w = - qw /qx, where w
represents the stream function.

Solution of the problem

Solution by homotopy perturbation method

The solutions of the above non-linear partial differential

Eqs. (20)–(22) have been calculated by optimized series

solution technique. The deformation equations for the

problem are defined as (He 2006, 2010; Rafiq et al. 2010;

Saadatmandi et al. 2009; Ma et al. 2012)

H v; qð Þ ¼ 1 � qð Þ£ v � ev0½ �

þq £ v½ � þ b2 o
2v

oy2
þ 1 þ k1ð Þ BrX þ GrH � dp

dx

� �� �
¼ 0;

ð26Þ

H H; qð Þ ¼ 1 � qð Þ£ H � eh0

h i

þ q £ H½ � þ b2 o
2H
oy2

þ Nb b2 oX
oy

oH
oy

þ
��

oX
oz

oH
oz

�

þ Nt b2 oH
oy

� �2

þ oH
oz

� �2
 !!

¼ 0; ð27Þ

H X;qð Þ ¼ 1� qð Þ£ X� er0½ �

þ q £ X½ � þ b2 o
2X
oy2

þ Nt

Nb

b2 o
2H
oy2

þ o2H
oz2

� �� �
¼ 0: ð28Þ

Here, q is embedding parameter which has the range

0 B q B 1, under the condition that for q = 0, we get the

initial solution and for q = 1, we seek the final solution.

Here, £ is the linear operator which is taken here as £ = q2/

qz2. We choose the following initial guesses

ev0 y; zð Þ ¼ �1 þ z2 � h2
� 	

þ 1

b2
1 � y2
� 	

; ð29Þ

eh0 ¼ b2 z2 � h2
� 	

þ h � z

2h
¼ er0: ð30Þ

Let us define

v x; y; zð Þ ¼ v0 þ qv1 þ q2v2 þ � � �

H x; y; zð Þ ¼ H0 þ qH1 þ q2H2 þ � � � ð31Þ

X x; y; zð Þ ¼ X0 þ qX1 þ q2X2 þ � � �

Substituting Eq. (31) into Eqs. (26)–(28) and then com-

paring the like powers of q, one gets the following prob-

lems with the corresponding boundary conditions, i.e.,

For q0:

£ v0ð Þ � £ eu0ð Þ ¼ 0;
v0 ¼ �1 at y ¼ �1; v0 ¼ �1 at z ¼ �hðxÞ; ð32Þ

£ H0ð Þ� £ eh0

� �
¼ 0;H0 ¼ a1 at y ¼ 1; H0 ¼ b1 at y ¼�1;

H0 ¼ 0at z ¼ hðxÞ; H0 ¼ 1at z ¼�hðxÞ; ð33Þ

£ X0ð Þ � £ er0ð Þ ¼ 0;X0 ¼ a2 at y ¼ 1; X0 ¼ b2 at y ¼ �1;

X0 ¼ 0 at z ¼ hðxÞ; X0 ¼ 1 at z ¼ �hðxÞ: ð34Þ

For q:

o2v1

oz2 þ b2 o2v0

oy2 þ o2v0

oz2 þ 1 þ k1ð Þ BrX0 þ GrH0 � dp
dx

� 	
¼ 0;

v1 ¼ 0 at y ¼ �1; v1 ¼ 0 at z ¼ �hðxÞ;
ð35Þ

o2H1

oz2
þb2 o

2H0

oy2
þ o2H0

oz2
þNb b2 oX0

oy

oH0

oy
þ oX0

oz

oH0

oz

� �

þNt b2 oH0

oy

� �2

þ oH0

oz

� �2
 !

¼ 0;

H1 ¼ 0 at y ¼�1; H1 ¼ 0 at z ¼�hðxÞ; ð36Þ

o2X1

oz2 þ b2 o2X0

oy2 þ o2X0

oz2 þ Nt

Nb
b2 o2H0

oy2 þ o2H0

oz2

� �
¼ 0;

X1 ¼ 0 at y ¼ �1; X1 ¼ 0 at z ¼ �hðxÞ:
ð37Þ

For q2:

o2v2

oz2 þ b2 o2v1

oy2 þ 1 þ k1ð Þ BrX1 þ GrH1ð Þ ¼ 0;

v2 ¼ 0 at y ¼ �1; v2 ¼ 0 at z ¼ �hðxÞ;
ð38Þ
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o2H2

oz2
þ b2 o

2H1

oy2
þ Nb b2 oX0

oy

oH1

oy
þ oX1

oy

oH0

oy

� ��

þ oX0

oz

oH1

oz
þ oX1

oz

oH0

oz

�

þ2Nt b2 oH0

oy

oH1

oy
þ oX0

oz

oX1

oz

� ��
¼ 0;

H2 ¼ 0 at y ¼ �1; H2 ¼ 0 at z ¼ �hðxÞ;

ð39Þ

o2X2

oz2 þ b2 o2X1

oy2 þ Nt

Nb
b2 o2H1

oy2 þ o2H1

oz2

� �
¼ 0;

X2 ¼ 0 at y ¼ �1; X2 ¼ 0 at z ¼ �hðxÞ:
ð40Þ

The resulting series solutions after three iterations are

determined using Eq. (31) as (when q �! 1Þ and are

evaluated as

u x; y; zð Þ ¼ 1

1440h2Nbb
2

15GrNbðNb þ NtÞz4

�
b2ð1 þ k1Þ

� 56Grh
5NbðNb þ NtÞzb4ð1 þ k1Þ

þ 224Grh
8NbðNb þ NtÞb6ð1 þ k1Þ

þ 24hNbz3b2 5ðBr þ GrÞ � GrðNb þ NtÞz2b2
� 	

ð1 þ k1Þ

þ 40h3Nbzb2 �3ðBr þ GrÞ þ 2GrðNb þ NtÞz2b2
� 	

� ð1 þ k1Þ � 120h6b4 5ðBr þ GrÞNbð � 5BrNt þ 2GrNb

� Nb þ NtÞz2b2
� 	

ð1 þ k1Þ þ 15h4b2 5GrN
2
bð1 þ k1Þ

�

� 48BrNtz
2b2ð1 þ k1Þ þ Nb 24Br

�
ð1 þ 2z2b2Þð1 þ k1Þ

þ Grð24 þ 5Nt þ 48z2b2Þð1 þ k1Þ

� 48 4 þ dp

dx
þ dp

dx
k1

� ���
þ 2h2 60BrNtz

4b4ð1 þ k1Þ
�

þ GrN
2
b z2b2ð�45 þ 8z4b4Þð1 þ k1Þ � Nbð�720

þ 720y2 þ 60ðBr þ GrÞðz4Þðb4Þð1 þ k1Þ � 8GrNtz
6b6

� ð1 þ k1Þ þ 45b2ð16 þ z2ð4Brð1 þ k1Þ þ Grð4 þ NtÞ

� ð1 þ k1Þ � 8 4 þ dp

dx
þ dp

dx
k1

� �����
;

ð41Þ

h x; y; zð Þ ¼ 1

720h3
15 6h3ð4 þ Nb þ NtÞ
��

þ h2 �24 þ ðNb þ NtÞðNb þ 2NtÞð Þz
� 6h Nb þ Ntð Þz2�ðNb þ NtÞðNb þ 2NtÞz3

	
� 60hðh � zÞðh þ zÞ 12h2 þ 2hð2Nb þ NtÞz

�
þ ðNb þ NtÞðNb þ 2NtÞz2

	
b2 þ 16h2ðh � zÞ

� ðh þ zÞ 15h3Nb

�
þ h2ðNb þ NtÞðNb þ 2NtÞz

þ 15hNbz2 þ 6ðNb þ NtÞðNb þ 2NtÞz3
	
b4

� 64h3ðNb þ NtÞðNb þ 2NtÞ h6 � z6
� 	

b6
	
; ð42Þ

r x; y; zð Þ ¼ 1

24h2Nb

3NtðNb þ NtÞð z2 � 24h4ðNb � NtÞb2

þ 8h3NtðNb þ NtÞzb2 � 8h6NtðNb þ NtÞb4

� 4h 2N2
t z3b2

�
þ Nbz 3 þ 2Ntz

2b2
� 		

þ h2 Nt �3Nt � 24z2b2þ
��

8Ntz
4b4
	

þ Nb 12 � 3Nt þ 24z2b2 þ 8Ntz
4b4

� 			
: ð43Þ

The volumetric flow rate q is calculated as

q ¼
Zh xð Þ

0

Z1

0

u x; y; zð Þdydz: ð44Þ

The average volume flow rate over one period T ¼ k
c

� 	
of

the peristaltic wave is defined as

Q ¼
Zh xð Þ

0

Z1

0

u x; y; zð Þ þ 1ð Þdydz ¼ q þ h xð Þ: ð45Þ

The pressure gradient dp/dx is obtained after solving Eqs.

(44) and (45) and is found as

dp

dx
¼ 1

1680h3ð1 þ k1Þ

� �5040Q þ ð3360hÞ
b2

�
þ 512Grh

7 Nb þ Ntð Þb4 1 þ k1ð Þ

þ 21h3ð�320 þ 35Brð1 þ k1Þ þ Grð35 þ 8Nb þ 8NtÞð1 þ k1ÞÞ

�
42h5 32BrðNb � NtÞð
�

þ GrNbð32 þ Nb þ NtÞÞb2ð1 þ k1Þ
	

Nb

!
:

ð46Þ

The pressure rise Dp is evaluated by numerically

integrating the pressure gradient dp/dx over one

wavelength, i.e.,

Dp ¼
Z1

0

dp

dx
dx: ð47Þ

Results and discussions

The analytical solutions are obtained for the equations of

momentum, energy and nanoparticles concentration with

the help of well-known homotopy perturbation technique

up to third order deformation. All the obtained solutions

are discussed graphically under the variations of various

pertinent parameters in the present section. The effects of

lateral walls (aspect ratio b), Jeffrey fluid parameter k1,

average volume flow rate Q, amplitude ratio /, the

Brownian motion parameter Nb, the thermophoresis
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parameter Nt, local temperature Grashof number Gr and

local nanoparticle Grashof number Br on the profiles of

velocity u, temperature h, nanoparticles concentration

r, pressure gradient dp/dx and pressure rise Dp are pre-

sented by drawing graphs for two and three dimensions.

The trapping bolus phenomenon is also incorporated

through sketching graphs of streamlines for various phys-

ical parameters.

Figure 2 contains the behavior of velocity profile under

the variation of b and Jeffrey fluid parameter k1. It is

mentioned here that velocity profile is rising up with the

increasing effects of both the parameters and attains its

maximum height at z = 0. This reveals the fact that when

we increase the magnitude of lateral walls either by

increasing vertical height a or by decreasing the horizantal

distance d, the fluid velocity starts increasing and tends to

be constant at the peristaltic walls �h xð Þ as specified by the

boundary conditions. One can observe the variation of Br

and Gr for the velocity distribution versus vertical height

z in Fig. 3. One can depict here that velocity is varying

directly with the corresponding change in both the

parameters. It is also measured that when value of

z increases, velocity also increases and reaches its peak at

z = 0 after that it starts declining and becomes stable at the

boundary to meet the physical boundary conditions. From

Figs. 4 and 5, we derive the consequence that velocity

profile gives inverse behavior with the variation of Nb but

similar attitude is observed for Nt and Q.

Figure 6 implies the temperature distribution drawn

along the variation of lateral walls bð Þ with keeping other

parameters constant. It is to be noted here that tempera-

ture curve gives linear behavior at b = 0.1 but after then

for large values of lateral walls, it starts bending and gets

its maximum curvature near z = - 0.1 and vanishes at

z ¼ h xð Þ to meet the physical aspects at the walls. It is

observed from Fig. 7 that temperature distribution is a

decreasing function of Nt and Nb in the region

z 2 �1:5; 0½ Þ, but in the rest of the domain, it shows

opposite variation, i.e., curves start increasing but with a

small extent as compared with their decreasing ratio and

look like almost invariant for the small values of both the

parameters in the region z C 0. The influence of lateral

walls on nanoparticles concentration can be measured

from Fig. 8. It is noticed that the behavior of concentra-

tion profile is almost similar to that of temperature profile

with the variation of b. However, it is depicted that

nanoparticles concentration is directly proportional to the

variation of Nb but inversely related to Nt (see Fig. 9). It

is also an interesting fact that can be noted here that asFig. 1 Schematic diagram for peristaltic flow in a rectangular duct
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one moves from �h xð Þ to 0, the curves are declining, but

as we move forward, those start to rise and get stable at

h xð Þ:

Figure 10 is constructed to see the effects of lateral

walls and amplitude ratio on the pressure rise distribu-

tion. It is concluded that peristaltic pumping region
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Dp [ 0;Q [ 0ð Þ lies between 0 and 0.5, free pumping

Dp ¼ 0ð Þ occurs near Q = 0.2, retrograde pumping

Dp [ 0;Q\0ð Þ is Q 2 �1; 0½ � and reverse pumping area

Dp\0;Q [ 0ð Þ is 0.5 B Q B 2. It is noted here that in

peristaltic and retrograde pumping, Dp is increasing with

increase in amplitude ratio but in reverse pumping (cop-

umping), it gives inverse variation and for the variation of

aspect ratio, it also decreases. It is also observed here that

pressure rise curves are strictly decreasing with the

increase in the numerical values of the flow rate Q. From

Fig. 11, it is depicted that with the increase in Jeffrey fluid

parameter k1, pressure rise curves are diminishing in

peristaltic and retrograde pumping regions while they

behave inversely in the reverse pumping. It is also seen that

peristaltic pumping is reduced with the greater values of Br.

It is observed from Fig. 12 that peristaltic pumping rate

increases with the variation of Gr. Figure 13 reveals that

pressure rise profile declines in peristaltic pumping and

retrograde pumping with k1 but rises up in the reverse

pumping side. It is also concluded that pumping rate

increases to maintain the flow with the increase in Nt.

Pressure gradient curves dp/dx are sketched in Fig. 14

to see the variation of lateral walls and flow rate. It is
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shown here that pressure gradient is a decreasing function

of both the lateral walls and flow rate, and much pressure

change is observed at the centre which implies that much

pressure gradient is needed at the centre to follow the

same flow as compared with the corners where flow

passes more easily without imposition of much pressure

gradient. It is also seen that for x 2 0; 0:5ð Þ; the pressure

gradient profile is increasing but after that it starts

decreasing with the same ratio and becomes minimum at

x = 1. It can be measured from Fig. 15 that as we

increase the values of Gr and Br, pressure gradient gets

decreased in the regions x 2 0; 0:3½ � [ 0:7; 1½ � while in-

versed in the middle of the domain. It is also noted that

pressure gradient variation is greater at the corner regions

as compared with the central area which shows that more

pressure is required at the left and right sides to maintain

the flow. Figure 16 shows totally opposite picture for for

amplitude ratio and fluid parameter with that of seen in

the previous graph for Gr and Br. However, in the current

figure, almost similar variation is seen throughout the

domain. It is derived from Fig. 17 that pressure gradient

is varying directly with Nb and Nt and pressure change
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Fig. 17 Variation of pressure gradient dp/dx with Nb and Nt at

k1 = 0.3, / = 0.05, Gr = 2, b = 0.3, Q = 0.5, Br = 0.2

0.6 0.8 1.0 1.2 1.4
1.5

1.0

0.5

0.0

0.5

1.0

1.5

x

z

0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

x

z

0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

x

z

1.5

1.0

0.5

1.5

1.0

0.5

(a) (b) (c)

Fig. 18 Stream lines for different values of Gr, a for Gr = 0.8, b for Gr = 1, c for Gr = 1.2. The other parameters are

Br = 0.2, b = 1.5, Nt = 0.5, k 1 = 0.6, Nb = 0.5, / = 0.15, Q = 2, y = 1

0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

x
0.6 0.8 1.0 1.2 1.4

x
0.6 0.8 1.0 1.2 1.4

x

1.5

1.0

0.5

z 0.0

0.5

1.0

1.5

1.5

1.0

0.5

z 0.0

0.5

1.0

1.5

1.5

1.0

0.5

z

(a) (b) (c)

Fig. 19 Stream lines for different values of k1, a for k 1 = 0.2, b for k 1 = 0.6, c for k1 = 1. The other parameters are

Br = 0.2, Gr = 1, b = 1.5, Nt = 0.5, Nb = 0.5, / = 0.15, Q = 1, y = 1

622 Appl Nanosci (2014) 4:613–624

123



remains continuous and positive throughout for Nb and

Nt.

Trapping bolus phenomenon reads variation of travel-

ling of circulating bolus covered by streamlines as the flow

progresses. Figure 18 contains the streamlines for the

variation of Gr and found that for Gr = 0.8, a very small

bolus is observed in the upper half while a relatively larger

bolus is seen at the lower half, but as we give rise to value

of Gr = 1, the upper bolus is expanded and the lower one is

shrinked and after then the upper one again starts con-

tracting and the lower one expanding. It is also noted that

as the magnitude of Gr varies, the bolus is getting more

streamlines around it. It is observed from Fig. 19 that for

increasing fluid parameter k1, the bolus becomes larger

and more streamlines are obtained in its surroundings.

Figure 20 gives the variation of streamlines for the

increasing effects of Nb and evaluates that the bolus is

contracted at Nb = 0.2 for upper half but expanded for the

lower side but when we approach at Nb = 0.3, inverse

variation is calculated for both lower and upper half. It is

also to be noted that streamlines are decreasing in numbers

as we increase Nb.

Concluding remarks

Peristaltic flow of a non-Newtonian (Jeffrey) nanofluid is

considered in a cross-section of rectangular duct to

describe the mathematical results under convective heat

transfer phenomenon and nanoparticles concentration. All

the governing equations are modeled under the approxi-

mations of long wavelength and low Reynolds number.

The flow is measured in a wave frame of reference moving

with a constant velocity c along axial direction of the

channel. Analytical results are obtained using homotopy

perturbation method and the aspects of all physical

parameters occurring in the phenomenon are discussed

manually. The resulting points obtained from the above

observations are stated as:

1. It is observed that velocity profile is an increasing

function of k1, b, Br, Gr, Nt and Q but decreasing

function of Nb both for two- and three-dimensional

analysis.

2. Temperature distribution is varying inversely with

b, also the above discussion reveals that temperature

curves are diminishing with Nb and Nt in left half while

rising in the right part of the z domain.

3. It is concluded that nanoparticles concentration reveals

opposite relation with lateral walls effects and Nt but

curves are rising up with increase in Nb.

4. One can extract from above analysis that peristaltic

pumping rate increases with the increase in /, Gr and

Nt, however, it reduces for b, k1, Br and Nb.

5. It is mentioned that pressure gradient profile shows

reverse variation with b, Q, k1 and / and direct

relation with Nb and Nt.

6. It is also noted that change in pressure is positive with

Br, Gr, k1 and / in middle part of the channel while

negative in the corner sides.

7. We can declare that trapping bolus is expanding with

Gr and k1 in the upper half while shrinking in the lower

part of the flow domain while reverse attitude is

appeared with Nb.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

0.6 0.8 1.0 1.2 1.4
x
(a) (b) (c)

0.6 0.8 1.0 1.2 1.4
x

0.6 0.8 1.0 1.2 1.4
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5
z

1.5

1.0

0.5

0.0

0.5

1.0

1.5

z

1.5

1.0

0.5

0.0

0.5

1.0

1.5

z

Fig. 20 Stream lines for different values of Nb, (a) for Nb = 0.1, (b) for Nb = 0.2, (c) for Nb = 0.3. The other parameters are

Br = 0.2, Gr = 1, b = 1.5, Nt = 0.5, k 1 = 0.6, / = 0.15, Q = 1, y = 1

Appl Nanosci (2014) 4:613–624 623

123



References

Mishra M (2004) Peristaltic flows with some applications, PhD

Thesis, Indian Institute of Science, Bangalore, India

Khanafer K, Vafai K, Lightstone M (2003) Buoyancydriven heat

transfer enhancement in a two-dimensional enclosure utilizing

nanofluids. Int J Heat Mass Transf 46:3639–3653

Hakan HF, Abu-Nada E (2008) Numerical study of natural convec-

tion in partially heated rectangular enclosures filled with

nanofluids. Int J Heat Fluid Flow 29:1326–1336

Wang L, Wei X (2009) Heat conduction in nanofluids. Chaos Solitons

Fract 39:2211–2215

Naz R, Mahomed FM, Mason DP (2008) Comparison of different

approaches to conservation laws for some partial differential

equations in fluid mechanics. Appl Math Comput 205:212–230

Hameed M, Nadeem S (2007) Unsteady MHD flow of a non-

Newtonian fluid on a porous plate. J Math Anal Appl

325:724–733

Patel M, Timol MG (2009) Numerical treatment of Powell–Eyring

fluid flow using method of satisfaction of asymptotic boundary

conditions (MSABC). Appl Numer Math 59:2584–2592

Mekheimer KS, Abdelmaboud Y (2008) Peristaltic flow of a couple

stress fluid in an annulus: application of an endoscope. Physica A

387:2403–2415

Mitra TK, Prasad SN (1973) On the influence of wall properties and

Poiseuille flow in peristalsis. J Biomech 6:681–693

Kothandapani M, Srinivas S (2008) Peristaltic transport of a Jeffrey

fluid under the effect of magnetic field in an asymmetric channel.

Int J Non-Linear Mech 43:915–924

Tripathi D, Pandey SK, Das S (2010) Peristaltic flow of viscoelastic

fluid with fractional Maxwell model through a channel. Appl

Math Comput 215:3645–3654

Nadeem S, Maraj EN (2012) The mathematical analysis for peristaltic

flow of nanofluid in a curved channel with compliant walls. Appl

Nanosci. doi:10.1007/s13204-012-0165-x

Mekheimer KhS, Husseny SZ, Abdellateef AI (2011) Effect of lateral

walls on peristaltic flow through an asymmetric rectangular duct.

Appl Bion Biomech 8:295–308

Reddy MVS, Mishra M, Sreenadh S, Rao AR (2005) Influence of

lateral walls on peristaltic flow in a rectangular duct. J Fluids

Eng 127:824–827

Mekheimer KS, Abdelmaboud Y, Abdellateef AI (2013) Peristaltic

transport through an eccentric cylinders: mathematical model.

Appl Bion Biomech 10:19–27

Nadeem S, Riaz A, Ellahi R, Akbar NS (2013) Effects of heat and

mass transfer on peristaltic flow of a nanofluid between eccentric

cylinders. Appl Nanosci. doi: 10.1007/s13204-013-0225-x

He JH (2006) Homotopy perturbation method for solving boundary

value problems. Phys Lett A 350:87–88

He JH (2010) A note on the homotopy perturbation method. Therm

Sci 14:565–568

Rafiq A, Malik MY, Abbasi T (2010) Solution of nonlinear pull-in

behavior in electrostatic micro-actuators by using He’s homot-

opy perturbation method. Comput Math Appl 59:2723–2733

Saadatmandi A, Dehghan M, Eftekhari A (2009) Application of He’s

homotopy perturbation method for non-linear system of second-

order boundary value problems. Nonlinear Anal Real World App

10:1912–1922

Ma Y, Bhattacharya A, Kuksenok O, Perchak D, Balazs AC (2012)

Modeling the transport of nanoparticle-filled binary fluids

through micropores. Langmuir 28:11410–11421

624 Appl Nanosci (2014) 4:613–624

123

http://dx.doi.org/10.1007/s13204-012-0165-x
http://dx.doi.org/10.1007/s13204-013-0225-x

	Mathematical model for the peristaltic flow of Jeffrey fluid with nanoparticles phenomenon through a rectangular duct
	Abstract
	Introduction
	Mathematical structure
	Formulation of the problem
	Solution of the problem
	Solution by homotopy perturbation method

	Results and discussions
	Concluding remarks
	Open Access
	References


