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Abstract As civil engineering structures are growing in

dimension and longevity, there is an associated increase in

concern regarding the maintenance of such structures.

Bridges, in particular, are critical links in today’s trans-

portation networks and hence fundamental for the devel-

opment of society. In this context, the demand for novel

damage detection techniques and reliable structural health

monitoring systems is currently high. This paper presents a

model-free damage detection approach based on machine

learning techniques. The method is applied to data on the

structural condition of a fictitious railway bridge gathered

in a numerical experiment using a three-dimensional finite

element model. Data are collected from the dynamic

response of the structure, which is simulated in the course

of the passage of a train, considering the bridge in healthy

and two different damaged scenarios. In the first stage of

the proposed method, artificial neural networks are trained

with an unsupervised learning approach with input data

composed of accelerations gathered on the healthy bridge.

Based on the acceleration values at previous instants in

time, the networks are able to predict future accelerations.

In the second stage, the prediction errors of each network

are statistically characterized by a Gaussian process that

supports the choice of a damage detection threshold.

Subsequent to this, by comparing damage indices with said

threshold, it is possible to discriminate between different

structural conditions, namely between healthy and dam-

aged. From here and for each damage case scenario,

receiver operating characteristic curves that illustrate the

trade-off between true and false positives can be obtained.

Lastly, based on the Bayes’ Theorem, a simplified method

for the calculation of the expected total cost of the pro-

posed strategy, as a function of the chosen threshold, is

suggested.

Keywords Structural health monitoring � Damage

detection � Model-free-based method � Artificial neural

networks � Statistical model development � Receiver

operating characteristic curve � Bayes’ theorem �
Probability-based expected cost

1 Introduction

The present time is without doubt the most appropriate for

the development of robust and reliable structural damage

detection systems as ageing civil engineering structures,

such as bridges, are being used past their life expectancy

and well beyond their original design loads. Often, when a

significant damage to the structure is discovered, the

deterioration has already progressed far, and required

repair work is substantial and costly. Seldom will the

structure be demolished and a new one constructed in its

place. This entails substantial expenditures and has nega-

tive impact on the environment and traffic during

replacement. The ability to monitor a structure in real-time

and detect damage at the earliest possible stage supports
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clever maintenance strategies and provides accurate

remaining life predictions. For the exposed reasons, the

demand for such smart structural health monitoring (SHM)

systems is currently high.

The existing methods implemented in damage detection

can be essentially divided into model-based and model-

free. The first approach presupposes an accurate finite

element model of the target structure, following that one

obvious advantage of this approach is that the damage

detected has a direct physical interpretation. Yet, it may be

difficult to develop an accurate model of a complex

structure and it can be intricate as well to obtain and update

the parameters defining the structure. On the contrary, the

model-free approach allows circumventing the problem of

having to develop a precise structural model, mostly by

means of artificial intelligence, but it is more difficult to

assign a physical meaning to the detected damage. The

model-free approach consists in training an algorithm on

some acquired data, usually in an unsupervised manner, so

that at the end it is able to tell apart different condition

states of the structure. These algorithms are referred to as

outlier or novelty detection methods: if there are significant

deviations between measured and expected values, the

algorithm is said to indicate novelty, meaning that the

structure has departed from its normal condition and is

probably damaged.

This paper presents a model-free damage detection

approach based on artificial neural networks. The method is

applied to data gathered from simulations of train passages

on the finite element model of a fictitious railway bridge.

The data sets are obtained from one healthy and two

damage case scenarios of the bridge. This data would in

reality be obtained directly from measurements performed

on the real structure of interest, without the need to develop

a complex numerical model. In the first stage of the pro-

posed method, artificial neural networks are trained in an

unsupervised manner with input data composed of gathered

accelerations on the healthy bridge. Based on the acceler-

ation values at previous instants in time, the networks are

able to predict future accelerations. In the second stage, the

prediction errors of each network are statistically charac-

terized by a Gaussian process that supports the choice of a

damage detection threshold. Then, by comparing damage

indices with the threshold, the system is able to point out

damage on the bridge. To evaluate the performance of the

system, receiver operating characteristic curves that illus-

trate the trade-off between true and false positives are

generated. Finally, based on the Bayes’ theorem, a sim-

plified method for the calculation of the expected total cost

of the proposed strategy, as a function of the chosen

threshold, is suggested.

1.1 Literature review

A review of some of the most recent developments within

SHM and damage detection that resulted in published

articles in scientific peer-reviewed journals is here pre-

sented. Regarding optimal sensor placement (OSP), a

crucial part of any damage detection system, mention can

be made to the work of Huang et al. [1] using genetic

algorithms, where the proposed algorithm uses the sensor

types as input and criteria about the desired measurement

accuracy to deliver the optimal number of sensors and their

location. The method was validated with experimental

analysis on a single-bay steel frame structure case study. Li

et al. [2] proposed a novel approach termed dual-structure

coding and mutation particle swarm optimization (DSC-

MPSO) algorithm. Using a numerical example of a three-

span pre-stressed concrete cable-stayed bridge, this

approach was demonstrated to have increased convergence

speed and precision when compared to the other state-of-

the-art methods (e.g. genetic algorithm). Still within the

OSP topic, Yi et al. [3] proposed a new optimal sensor

placement technique in multi-dimensional space since most

available procedures for sensor placement only guarantee

optimization in an individual structural direction, which

results in an ineffective optimization of the sensing net-

work when employing multi-axial sensors. A numerical

study was conducted on a benchmark structure model.

Another common topic of research is the separation of

the changes in structural response caused by operational

and environmental variability from the changes triggered

by damage. This is indeed one of the principal challenges

to transit SHM technology from research to practice. Jin

et al. [4] proposed an extended Kalmar filter-based artificial

neural network for damage detection in a highway bridge

under severe temperature changes. The time-lagged natural

frequencies, time-lagged temperature and season index are

selected as the inputs for the neural network, which pre-

dicts the natural frequency at the next time step. The

Kalmar filter is used to estimate the weights of the neural

network and the confidence intervals of the natural fre-

quencies that allow for damage detection. The method was

tested with a numerical case study of an existing bridge.

The published work regarding machine learning methods

applied in SHM is continuously expanding.

Machine learning algorithms have been implemented to

expose structural abnormalities from monitoring data. These

algorithms normally belong to the outlier detection category,

which considers training data coming exclusively from the

normal condition of the structure (unsupervised learning).

Worden and Farrar [5] have contributed with reputable work

on monitoring of structures using machine learning tech-

niques, such as neural networks, genetic algorithms, and

support vector machines. Rao and Lakshmi [6] proposed a
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novel damage identification technique combining proper

orthogonal decomposition (POD) with time-frequency

analysis using Hilbert Huang transform (HHT) and dynamic

quantum particle swarm optimization (DQPSO). The algo-

rithm was tested with two numerical examples with single

and multiple damages. Diez et al. [7] proposed a Clustering-

based data-driven machine learning approach, using the k-

mean clustering algorithm, to group joints with similar

behavior on the bridge to separate the ones working in nor-

mal condition from the ones working in abnormal condition.

The feasibility of the approach was demonstrated using data

collected during field test measurements of the Sydney

Harbour Bridge. Zhou et al. [8] proposed a structural damage

detection method based on posteriori probability support

vector machine (PPSVM) and Dempster-Shafer (DS) evi-

dence theory adopted to combine the decision level fusion

information. The proposed damage detection method was

verified by means of experimental analysis of a benchmark

structure model. All the mentioned latter combined methods

revealed to improve the accuracy and stability of the damage

detection system when compared to other popular data

mining methods.

There are several published works regarding the detec-

tion of structural damage with the aid of Machine Learning

techniques. Still, most of the proposed methods are based

on a supervised learning approach, which requires data of

the damage condition of the structure to be available. This

poses a difficulty to the practical implementation of these

methods because, as it is known, the data in damaged

condition does not normally exist. The method presented in

this paper consists in an updated mode-free damage

detection algorithm using Machine Learning techniques

based on the work of González [9]. The primary step in this

study involves the development of a three-dimensional

finite element model of a railway bridge. The vertical deck

accelerations at different positions of the bridge are gath-

ered using simulations of train passages and assuming that

the bridge behaves in both normal and abnormal condi-

tions, considering one baseline model and two damaged

models, respectively. The first stage of the proposed

method consists in the design and training of artificial

neural networks (ANNs) which, given any input features,

are trained to predict future values of the features. Fol-

lowing the validation of the best trained network, the

second stage of the proposed algorithm consists in using

the predicted acceleration errors to fit a Gaussian process

(GP) that enables to perform a statistical analysis of the

errors’ distributions. After this process, damage indices

(DIs) can be obtained and compared to a defined detection

threshold for the system, allowing for one to study the

probability of true and false detection events. From these

results, a receiver operating characteristic (ROC) curve is

generated and used to obtain information about the

performance of the algorithm. Finally, a simplified method

for the calculation of the expected total cost of the strategy

based on the Bayes’ Theorem is proposed.

1.2 Background in SHM

Visual inspections are regarded as the basic technique for

the assessment of condition of in-service bridges, as this

technique is intuitive and provides information in a direct

way exclusively based on observation. However, this

technique used alone has many shortcomings due to the

growing complexity in the design of modern structures.

One can mention as disadvantages the fact that the tech-

nique may not be practicable if the structure has restricted

accessibility or if the traffic is excessively disturbed, its

application is time-discrete and the conclusion of the visual

inspection is inevitably subjective. In this sense, effort was

placed in developing damage detection techniques that

handle measurement data to find structural changes [10].

Structural health monitoring techniques comprise non-

physically and physically based methods. The former uses a

system model to study a physical structure and predict the

responses; examples of methods that fall into this category are

the probabilistic, non-parametric and autoregressive models

(AR) methods [11]. The physically based methods perform

damage identification by comparing natural frequencies and

mode shapes data between the healthy and damaged structural

model [12]; examples of methods that fall into this category

are the vibration-based damage identification methods

(VBDIM), such as frequency response [13], mode shape and

strain energy methods [14], modal flexibility and modal

stiffness methods. Many broad classes of damage detection

algorithms have emerged, most dealing with vibration mea-

surements and modal analysis of the structural system.

Although structural properties like damping, modal shapes

and frequencies are not directly measurable, they can be

inferred from other measured data. These properties have

somewhat clear definitions and allow the relatively easy

design of algorithms that define them, therefore being good

candidates for parameters of a damage detection technique.

Damage identification is far from being a forthright

process, from the basic step of defining what damage is up

to decoding it in mathematical terms. Due to the random

variability in experimentally measured dynamic response

data, statistical approaches are desired to make sure that the

perceived changes in the structure’s response are coming

from existing damage and not from variations in the

operational and environmental conditions. The careful

integration of recent sensing technology with traditional

inspection and avant-garde diagnostic techniques will

provide essential information that engineers and policy-

makers need to manage the structures that serve our

society.
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2 Method

2.1 Artificial neural networks

The first stage of damage identification uses methods

which provide a qualitative indication of the presence of

damage in the structure, which can be accomplished

without prior knowledge of how the system behaves when

damaged. These algorithms are referred to as outlier or

novelty detection methods. To solve the task of novelty

detection, one can use learning algorithms, such as artificial

neural networks (ANNs).

Artificial neural networks are a family of mathematical

models inspired by the structure of biological neural net-

works (Fig. 1) in which the basic processing unit of the

brain is the neuron. Neurons interact with each other by

summing stimuli from connected neurons. Once the total

stimuli exceed a certain threshold, the neuron fires—a

phenomenon called activation—and it generates a new

stimulus that is passed onto the network. Knowledge is

encoded in the connection strengths between the neurons in

the brain.

Each node i is connected to each node j in the previous

and following layers over a connection of weight wij. In

layer k, a weighted sum is performed at each node i of all

the signals x
k�1ð Þ
j from the preceding layer k � 1, giving the

excitation z
kð Þ
i of the node; this sum is then passed through

a nonlinear activation function f to emerge as the output of

the node x
kð Þ
i to the next layer. The process can be

expressed as [5]:

x
kð Þ
i ¼ f z

kð Þ
i

� �
¼ f

X
j

w
kð Þ
ij x

k�1ð Þ
j

 !
: ð1Þ

During the training phase of the network, the connection

weights wij are continuously adjusted. The type of training

can involve unsupervised and supervised learning

approaches depending on the nature of the problem being

solved and the type of training data available. In unsu-

pervised learning, the aim is to discover groups of similar

instances within the data while having no information

concerning the class label of the instance or how many

classes exist. In supervised learning, the instances are given

with known labels, the corresponding correct outputs. In

every training step, a set of inputs is passed forward in the

network giving trial outputs that can be compared to the

desired outputs. If it happens that the error is small, the

weights are not adjusted; otherwise, the error is passed

backwards and the training algorithm uses it to adjust the

weights trying to decrease the error—this algorithm is

known as the back propagation algorithm.

ANNs are a powerful tool for SHM in the aid of prob-

lems in sensor data processing that require parallelism and

optimization due to the high complexity of the variables’

interactions. Generally, the ANNs offer solutions to four

different problems: auto association, regression, classifi-

cation and novelty detection. Prosaic examples of potential

applications of ANNs are speech recognition and genera-

tion, optimization of chemical processes, manufacturing

process control, cancer cell analysis, transplant time opti-

mizer, recognition of chromosomal abnormalities, solution

of optimal routing problems, such as the Traveling Sales-

man Problem, et cetera.

2.2 Performance of a classifier

The damage detection process concerning civil engineering

structures involves a significant amount of uncertainty,

which can determine whether damage is discovered or not.

The uncertainties can stem from many causes but are

generally due to [15]: inaccuracy in the FEM discretiza-

tion; uncertainties in geometry and boundary conditions;

non-linearity in material properties, environmental settings

(e.g. variations in temperature and traffic); errors associ-

ated with measurements (e.g. noise) and signal post-pro-

cessing techniques.

The consequences of false detection can be more or less

stern and it is, thus, imperative to carefully investigate the

sources of uncertainties, quantify and control their influ-

ence. The analysis of Type I (false positive) and Type II

(false negative) errors is a frequent practice of reporting the

performance of a binary classification, where there are four

possible outcomes (Table 1) from an inspection event in a

structure. Two statistical tools that enable the evaluation of

these errors, in terms of unwanted results (false positives

and negatives) and desired results (true positives and

negatives), are the probability of detection (POD) curve

[16] and the receiver operating characteristic (ROC) curve

[17], the latter used in this paper.

Fig. 1 The artificial neuron
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A ROC curve is a two-dimensional graphic in which the

true positive rate (TPr) is plotted against the false positive

rate (FPr) for a given threshold. The graphic demonstrates

thus relative trade-offs between benefits and costs,

respectively, TPr and FPr, depending on a threshold that is

selected (Fig. 2). A very high (strict) threshold will never

indicate damage since the classifier finds no positives,

resulting in 0% of false and true positives, whereas a very

low (lenient) threshold will always indicate damage since

everything is classified positive, resulting in 100% of false

and true positives. One common way to define the best

threshold is by fixing an acceptable FPr and then trying to

maximize the TPr.

The ROC curve provides a tool for cost-benefit analysis

assisting the practitioner in the selection among different

available classifiers and their detection threshold. The

optimal detection threshold will commonly be the one that

minimizes the total expected cost, which will be connected

with the odds of false detection. The accepted idea is that

one point in the ROC space is considered better than

another if it is associated with a higher TPr for the same

FPr. The closer the curve is to the left and top borders of

the ROC space, resembling an inverted L shape, the

superior the performance of the classifier; the closer the

curve is to a 45� diagonal in the ROC space, the less

accurate is the classifier.

2.3 Expected cost of the damage detection strategy

Even though the ROC curve constitutes a helpful tool for

the determination of the best classifier, it is difficult to

decide among thresholds solely based on their correspon-

dent pair TPr/FPr. To assign a worth to each trade-off, the

criterion was decided as that the best threshold will yield

the minimum expected cost of the damage detection

strategy. This cost will be given as the sum of several

expenses, such as the ones associated with the flawed

performance of the damage detection system, i.e. associ-

ated with false positives and negatives. The first type of

error is often associated with extraneous inspections and

repairs while the second is associated with accumulation of

damage by the lack of action, which can eventually lead to

life-safety implications in the long run.

The total expected cost, CT, specified a certain thresh-

old, can be given as [9] a linear combination of the prob-

abilities, po, of four potential outcomes o multiplied by the

associated costs, Co, multiplied by the a priori probability

of the real condition c of the structure, p cð Þ. The following

expression is obtained.

CT ¼
X

po � Co � p cð Þ
¼ pd hjeð Þ � Cd hjeð Þ þ pd djeð Þ � Cd djeð Þ½ � � p dð Þ

þ ph hjeð Þ � Ch hjeð Þ þ ph djeð Þ � Ch djeð Þ½ � � p hð Þ;
ð2Þ

where in the presence of the real condition of damage (d),

pd hjeð Þ and pd djeð Þ are the probabilities of health and

damage given evidence, respectively; in the presence of the

real condition of health (h), ph hjeð Þ and ph djeð Þ are the

probabilities of health and damage given evidence,

respectively; p dð Þ is the priori probability that the structure

is damaged; p hð Þ is the a priori probability that the struc-

ture is healthy. The evidence, in reference to the proposed

damage detection approach, is given by the SHM system

after measurements on the structure, acquired during aFig. 2 ROC curves: blue line, exceptional; green line, good; red line,

worthless

Table 1 Damage detection hypothesis test inference matrix

Damage detection hypothesis test inference

matrix

Reality

H0—null hypothesis structure is not damaged H1—alternative hypothesis structure is damaged

Inference Structure is not damaged TN no error FN type II error

Structure is damaged FP type I error TP no error
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certain time, are analyzed. It all boils down to whether

evidence suggests that the structure is healthy or damaged.

The costs C that appear in (Eq. 2) are multiplied by the

respective associated probabilities p. In this way, one can

establish an equilibrium concerning the consequences of

damage accumulation or potential structural failure and the

expenses with safety measures to mitigate those conse-

quences. It is however thought that the calculation process

of the total expected cost (Eq. 2) can be simplified given

the following assumptions:

• there are no costs associated with true negatives, as this

corresponds to an ideal situation where damage does

not exist and is not detected;

• the costs related to true positives are disregarded as that

is what is sought from the system (to detect existing

damage), meaning that these are ‘‘desired’’ costs;

• the costs related to false positives rely in inspections

only. It is assumed that after detection and consequent

inspection, no damage is found and therefore there is no

need to proceed with repair. The costs of inspection

will vary depending on several factors: the inspection

technique, the frequency of inspections, the implica-

tions of performing inspection in the normal use of the

structure (e.g. causing disturbances in the traffic flow),

the restoration cost saved by earlier inspection, the

difficulty in the access to the element to be inspected, et

cetera;

• the costs related to false negatives are the most

penalizing taking into account the potential tragic

consequences that can result from missing damage.

These costs are established based on risk assessment

and valuation of material costs given the occurrence of

a traffic accident. The values of human life loss, degree

of injury resulting in inpatient and outpatient care, and

of property damage are estimated reflecting their cost to

society.

After the above mentioned assumptions are considered,

(Eq. 2) can be simplified into

CT ¼ pFN � CFN � p dð Þ þ pFP � CFP � p hð Þ: ð3Þ

The probabilities found in (Eq. 3) are calculated through

the Bayes’ Theorem. This theorem provides a mean of

understanding how the probability that a theory or

hypothesis (t) is true is affected, strengthened or weakened,

by a new piece of evidence (e) that can confirm or not the

theory, respectively. This is equivalent to saying that, in the

present study, the probability of detection is updated after

each new train passage. Bayes’ theorem is mathematically

expressed as:

p tjeð Þ ¼ p ejtð Þ � p tð Þ
p ejtð Þ � p tð Þ þ p ej�tð Þ � p �tð Þ ; ð4Þ

where p tð Þ is the estimated probability that the theory is

true before taking into account the new piece of evidence;

p �tð Þ is the probability that the theory is not true; p ejtð Þ is

the probability of obtaining the new evidence e given that

the theory is true; p ej�tð Þ is the probability of obtaining the

new evidence e given that the theory is not true. In this

sense, we can say that p tð Þ is the prior probability of t and

that p tjeð Þ is the posterior probability of t. Probabilities

p ejtð Þ and p ej�tð Þ are read straightforward from the ROC

curve, for a given threshold. Applying the Bayes’ theorem

in the context of damage detection, for example for the

probability of damage given detection, yields the ensuing

expression:

p djeð Þ ¼ p ejdð Þ � p dð Þ
p ejdð Þ � p dð Þ þ p ejhð Þ � p hð Þ ; ð5Þ

where d stands for damaged condition; h stands for healthy

condition; p dð Þ is the probability of damaged condition;

p hð Þ is the probability of healthy condition; p ejdð Þ is the

probability of getting the evidence given damaged condi-

tion; p ejhð Þ is the probability of getting the evidence given

healthy condition. The probabilities for the other three

scenarios are obtained in an analogous way and the prob-

abilities of detection, p ejdð Þ and p ejhð Þ, are straightfor-

wardly read from the ROC curve giving a specific detection

threshold. Equation 5 can also be written as:

p djeð Þ ¼
TPD � FNH
� �

� p dð Þ
TPD � FNH
� �

� p dð Þ þ FPD � TNH
� �

� p hð Þ
;

ð6Þ

where D is the number of train passages that indicates the

presence of damage in the structure, H is the number of

train passages that does not indicate the presence of dam-

age in the structure, and TP, FN, FP and TN (Table 1) are

the probabilities read directly from the ROC curve for a

defined threshold.

Supposing that the costs related to the different out-

comes are known fixed numbers, the following approach is

pursued each time a new observation takes place for the

calculation of the expected total cost:

(For a specific ROC curve)

1. Select detection threshold;

2. Select length of the measurement vector (i.e. the

number of observed train passages), m;

694 J Civil Struct Health Monit (2017) 7:689–702

123



3. Stochastically generate realistic Dd and Hd, within m,

based on the ROC curve and supposing that the

structure is damaged:

(a) Obtain pd hjeð Þ according to (Eq. 6);

4. Stochastically generate realistic Dh and Hh, within m,

based on the ROC curve and supposing that the

structure is healthy:

(a) Obtain ph djeð Þ according to (Eq. 6);

5. Calculate the expected total cost according to (Eq. 3).

3 Numerical case study

3.1 Bridge and FE model

The method here proposed has the potential to be readily

used once plenty of data are collected on the real structure

of interest, meaning that there is no need to develop a

complex structural model. While the damage detection

method is a model-free method, in the lack of measure-

ments from an existing bridge that could be used as a case

study, the authors decided to obtain the data from a Finite

Element model of a fictitious, yet realistic, bridge.

A numerical 3D finite element (FE) model of a single-

track railway bridge was developed using FEM software

ABAQUS [18]. The structure consists of the following

parts: the concrete deck of constant thickness, the two steel

girder beams that support the deck and the steel cross

bracings that connect the girders. The deck and the girder

beams were modelled as shell elements and the cross

bracings were modelled as truss elements. All the elements

of the bridge are assumed to be rigidly connected to each

other. The relevant material and geometric properties of the

structural parts are shown in Tables 2 and 3, respectively.

In Table 2, Econcrete is the Elastic modulus for concrete,

Esteel is the Elastic modulus for steel, qconcrete is the density

for concrete, qsteel is the density for steel, mconcrete is the

Poisson ratio for concrete and msteel is the Poisson ratio for

steel. Rayleigh damping was considered with damping

ratio n of 0.5% for the first mode, as prescribed by the

Eurocode [19] for composite bridges with spans exceeding

30 m. In Table 3, Lbridge is the bridge length, wdeck is the

width of the deck, hdeck is the thickness of the deck, wflange

is the width of the flange, eflange is the thickness of the

flange, hweb is the height of the web and eweb is the

thickness of the web.

Damage in the bridge is simulated considering two

damage scenarios: in damage case 1 (DC1), a section of the

bottom flange of one girder beam is removed (Fig. 3), in an

attempt to represent a damage situation where a fatigue

crack exists. The cut-out section has the dimensions of the

flange width by some longitudinal length l, reflecting a

situation when a propagating crack has reached its critical

depth (about 30% of the flange’s width or less) which

causes a sudden rupture through the whole flange width; in

damage case 2 (DC2), one bracing is removed (Fig. 4),

which equivalently corresponds to reducing to approxi-

mately zero its Elastic modulus in the model. Assuming

that the girder beam and bracings are connected by high-

tension bolts, this can reflect a situation where there is

looseness in the bolted connections [20], with resulting

inefficiency of the bracing. Both these fictitious damage

scenarios are likely situations to be encountered in reality,

namely fatigue, as it is one of the most common failure

mechanisms occurring in steel and composite steel-con-

crete bridges. The numbers 1–6 in the figures below rep-

resent the locations of the accelerometers that are installed

on the top of the bridge deck: three aligned with the train

track and three aligned with the girder beam in which

damage in DC1 takes place. These correspond to specific

Table 2 Material properties of the FE model

Econcrete

(GPa)

qconcrete

(kg/m3)

mconcrete

–

Esteel

(GPa)

qsteel

(kg/m3)

msteel

–

30 2300 0.2 210 7800 0.3

Table 3 Geometric properties of the FE model

Lbridge

(m)

wdeck

(m)

hdeck

(m)

wflange

(m)

eflange

(m)

hweb

(m)

eweb

(m)

42 7.7 0.3 0.90 0.05 2.45 0.03

Fig. 3 Damage case 1 (DC1). Light blue line, track; pink line,

bracing; red line, damage location; circle 1–6 sensor number and

position
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nodes in the bridge FE model where the response of the

structure will be measured.

The proposed method for structural assessment is

intended to detect existing damage from the measured

vibration of the bridge. The most common dynamic loads

come from traffic, which is expected to be continuous

while the bridge is in service. Therefore, traffic-induced

vibration was obtained by simulating the passage of a train

with a certain constant configuration, crossing the bridge at

speeds ranging within [70–100] km/h, in increments of

0.1 km/h. Data was collected at a sampling frequency of

about 130 Hz during 4 s, yielding a total of 300 different

train passages and corresponding measurement data sets.

The moving axle loads were modelled as series of impulse

forces with short-time increments conforming to vehicle

motion. Figure 5 depicts the configuration of the train,

whose properties are found in Table 4.

The train model was based on the HSLM (high-speed

load model) train with two assumptions: the train has the

dimensional properties (coach length, D, and bogie axle, d)

of the HSLM-A4 train but is composed of only two

intermediate coaches (NÞ instead of the 15 accordingly to

[19]; maintaining the train configuration above described,

three different axle loads [170, 180, 190] kN were

assumed, even though the HSLM-A4 train model only

considers a point force of 190 kN. This model was chosen

under the belief that such vehicle model is more complex

and hence realistic than the one used in the previous study

and nonetheless more simple than the HSLM train model,

allowing for instance to reduce the computation time dur-

ing the simulations. The train–bridge interaction was left

out of this study, for the sake of simplification, but should

be considered in further studies.

3.2 ANN model

In this work, the ANNs were developed and trained by

means of the Neural Network Toolbox available in

MATLAB [21]. The architecture of the network is some-

thing to be decided ahead of the training phase and it

depends mainly on the available amount of data, which for

this study was generated by simulations of the FE model

above described for 300 train passages. The choice of

certain architecture has important consequences in regard

to how well the network will make the predictions. In an

initial trial, the data from 150 train passages was used for

training the network and the 150 remaining ones were used

for testing and validation of the trained network. The

measured signal is in reality distorted by various sources of

error and, to consider that fact, Gaussian white noise with a

constant standard deviation of 0.0005 m/s2 was added to

the uncorrupted acceleration time histories obtained from

the FE model (Fig. 6), before these were used to train the

ANN. Despite appearing little, considering the acceleration

magnitude under the moving load, this level of noise is

actually substantial. This level of noise corresponds to

approximately 2% of the standard deviation of the mea-

sured signals, a value that is commonly considered for such

analysis. Another measurement uncertainty considered was

the axle load magnitude and, in that sense, 5% random

oscillations of the axle load were considered. Different

groups of ANNs were trained with controlled variation of

input variables. In each group, six different networks were

trained, ANNn with n 2 1; . . .; 6f g, each predicting for one

of the six sensors. The chosen training algorithm was the

Levenburg–Marquardt backpropagation algorithm [22].

The design process of the ANN implies defining the

number of layers of each type and the number of nodes

contained in each of these layers. Some empirical rules-of-

thumb [23–25] provide indication of how many neurons

should constitute each layer, depending on factors, such as

the complexity of the function to be learned, the type of

activation function, the training algorithm, and the number

Fig. 4 Damage case 2 (DC2). Light blue line, track; pink line,

bracing; red line, damage location; circle 1–6 sensor number and

position

Fig. 5 Sketch of the train model. 1 Power car; 2 end coach; 3

intermediate coach

Table 4 HSLM–A4 train configuration properties [19]

Universal Train Number of intermediate coaches, N Coach length, D (m) Bogie axle spacing, d (m) Point force, P (kN)

A4 15 21 3 190
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of input and output features. The following configuration of

the neural network was explored and proved to work out

well:

• 49 input neurons: the number of neurons equals the

number of features, which are the 30 accelerations ant�i

registered by the 6 sensors n 2 1; . . .; 6f g in the last 5

samplings i 2 1; . . .; 5f g, the 18 axle loads and 1 axle

position relative to a reference point;

• 30 neurons for the hidden layer;

• 1 output neuron: the current acceleration ant at time t

predicted by sensor n.

All the input parameters were assembled into one single

input matrix. The only input variable that is kept present in

all the trials of ANN configurations is the acceleration a,

since that is also the feature that we desire the network to

predict. Any other relevant parameter v can also be given

as input. What the network does is to predict a new

acceleration at a certain instant in time based on i previous

accelerations. This quantity i, the number of delays, has to

be chosen before the training phase. Perceptibly, while i

can’t be too small as that will give little information for the

training of the network, it cannot also be a large number

since that leads to the increase in computation time. One

possibility for the input matrix could resemble the structure

indicated in the scheme of Fig. 7, where in this case five

delays i of the feature acceleration were used.

4 Results

4.1 Evaluation of the prediction errors

One way of evaluating the performance of the trained

network is by determining the deviation in the predictions.

The use of the Root Mean Squared Error (RMSE) is very

common and makes an outstanding general purpose error

metric for numerical predictions. Compared to the simple

Mean Absolute Error, the RMSE magnifies and severely

penalizes large errors. For each sensor and for each train

passage (or each speed), in a similar way for both healthy

and damaged scenarios, one can estimate the RMSE as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT
i¼1

outputi � targetið Þ2

T

vuuut
; ð7Þ

where for a certain instant i, targeti is the expected accel-

eration in healthy condition of the bridge, outputi is the

acceleration predicted by the network and T is the time

interval during which the accelerations were recorded.

Figure 8 illustrates the RMSE of the predicted accelera-

tions by the six sensors, in the presence of an undamaged

structure (blue circle) and for a damaged structure (red

square), reflecting damage case 1 with a 0:9 � 0:4 m2

section reduction. An axle load of 180 kN was considered

and the train passages in the x-axis are ordered by

increasing speed.

There seems to be a tendency for the error to increase

with increasing train speed. Moreover, for the highest

speeds in the considered range, it seems like even the

response of the bridge in healthy structural condition is

poorly predicted, yielding large RMSE. This phenomenon

could be justified by the fact that the maximum considered

speeds excite the structure to frequencies close to its nat-

ural frequencies. As a consequence of that, the behavior of

the structure may depart from its expected typical behavior

and the trained network is not able to properly predict the

resulting accelerations anymore. Also noticeable is that the

sensors situated closer to the geometric middle of the

bridge (sensors 2 and 5) seem to be associated with net-

works that yield a better separation between structural

states, whilst sensors placed nearby the end supports

(sensors 1 and 4) are not as efficient in this task. This may

be due to the fact that the response of the structure is more

prominent in the middle of the span than in its extremities

Fig. 6 Acceleration response in sensor 5 (middle span) due to the

passage of a train travelling at dashed line 70 km/h and continuous

line 100 km/h

.

{ } .

Fig. 7 Generic ANN input matrix and output vector
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and, accordingly, measurements registered in the middle of

the span are expected to favour a clearer distinction

between normal and abnormal behavior.

It should be noted that the non-linear input–output

relating function that the network uses can be quite com-

plex and for that reason training an ANN that covers all the

train load cases and speeds is extremely difficult, especially

with the limited amount of data usually available. Thank-

fully, bridges are designed to be routinely crossed by trains

of the same configuration, very similar axle load and

moving consistently within a restricted range of speeds.

Therefore, the ANN is trained to predict accelerations only

for those specific cases of speed and train types. In fact, the

range of speeds (70–100 km/h) considered to train the

network could certainly be reduced, most likely yielding

further accurate predictions of accelerations and, for

example, reducing the disorder observed in the plots of

sensors 1 and 4 in Fig. 8. In any case, even not making this

adaptation, the results turned out to be very satisfactory.

From the shown plots, one has already qualitative evi-

dence that the network can effectively discern structural

states. However, making inferences based only in the plot

from Fig. 8 would be a subjective way of judging what

degree of separation is enough to assert that damage is

indeed present in the structure. Even if the bridge is found

to be in impeccable condition, the recorded dynamic

responses will be different for each train passage, as the

magnitude of the response depends on the speed and axle

load of the train, not to mention the operational and envi-

ronmental conditions. In other words, this means that the

prediction errors will oscillate with each train passage,

even within an unchanged condition of the bridge. Hence

the distribution of errors needs to be characterized

stochastically and it is the errors that significantly depart

from this distribution that will work as an indication that

damage may exist.

The prediction errors from 150 randomly selected train

passages in healthy condition of the bridge are used to fit a

statistical distribution that will work as a baseline for each

sensor. The Gaussian process (GP) [26] consists in

assigning a normally distributed random variable to every

point in some continuous domain. For each train speed, the

associated predicted errors are normally distributed, and

the mean and standard deviation of the error can be dif-

ferent for each speed. New data are then compared against

the baseline: 150 other train passages in healthy condition

and 150 in damaged condition. The idea is to compute

discordancy measures for data and then compare the dis-

cordancy to a threshold, from which one is able to dis-

criminate between healthy and damaged structural

condition.

After the outcome of the prediction error is character-

ized by a GP (Fig. 9), damage detection can be performed

by checking predictions that differ considerably from the

expected values. A discordancy measure for normal con-

dition data is the deviation statistic:

Fig. 8 RMSE against increasing speed of the train. Damage case 1: damage extension of 0:9 � 0:4 m2. Blue circle, data from healthy structural

condition; red square, data from damaged structural condition

698 J Civil Struct Health Monit (2017) 7:689–702

123



z ¼ xn � �xj j
rx

; ð8Þ

where xn is the candidate outlier, and �x and rx are,

respectively, the mean and standard deviation of the data

sample. The Mahalanobis distance [27] is one common

measure of novelty in data and can be used in standard

outlier analysis to provide a Damage Index (DI). To take

into account only the train passages that give high pre-

diction errors, the distance to the mean is given in standard

deviations and the errors’ differences,

RMSEn vð Þ � ln vð Þð Þ, are signed. The DI for each train

speed v is then defined as:

DI vð Þ ¼
X6

n¼1

RMSEn vð Þ � ln vð Þ
rn vð Þ ; ð9Þ

where for each sensor n, RMSEn is the predicted error, ln
is the mean predicted error and rn is the standard deviation

of the predicted error. Ideally, if the feature vector is

related to undamaged condition, then DI � 0; otherwise,

DI 6¼ 0. With the determined DIs for different train pas-

sages, the receiver operating characteristic (ROC) curve

can be constructed.

4.2 Evaluation of the classifier’s performance

Figure 10 shows the obtained ROC curves corresponding

to different damage extents within damage case 1. In the

presence of such a damage scenario and obtained ROC

curve, for example, for a fixed FPr of 8%, we have asso-

ciated TPr of 86, 90.7, 92, 96 and 99.3% with damage

severities of 20, 40, 70, 100 and 160, respectively. Simi-

larly, Fig. 11 depicts the ROC curve of the system in the

manifestation of damage case 2. It is important to note that

each ROC curve is related to a unique damage scenario.

The anticipated enhancement in detection capability

with increasing damage is, however, not always verified.

There are actually some operating points of DI that make

the system more apt to detect damage in the presence of

smaller rather than larger damage. For instance, one can

see in Fig. 10 that the performance of the classifier for very

low values of FPr is worse in the presence of the largest

damage (blue line 160 cm), since it is related to a lower

TPr, when compared to any other smaller damage. The fact

that some ROC curves respecting different extents of

damage intersect each other at certain points makes it more

difficult to choose the best threshold. Furthermore, the

process encompasses statistical reasoning, thus yielding

slightly different results every time a ROC is regenerated.

Fig. 9 Gaussian process fitted by prediction errors against increasing

train speed. Here a log-normal distribution of the error is considered.

Continuous line, mean; grey shaded square, Standard deviation; green

plus sign, data to fit the GP; blue circle, data from healthy condition;

red square, data from damaged condition, considering damage case 1

with a 0:9 � 0:4 m2 section
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In any case, the desired virtues of a good model, such as

reliability and robustness, are proven by the above pre-

sented ROC curves. The model is considered reliable if

damage is early detected with a high probability of

detection, i.e. if small damage is efficiently identified. The

model is considered robust if two conditions are satisfied:

the probability of detection increases with increasing

damage severity and changing an input parameter by a

small amount does not lead to failure or unaccept-

able variation of the outcome but rather to proportional

small changes.

The confidence with which the system is able to identify

the presence of damage depends on the time strategy [28]

defined for the SHM system. In principle, the more mea-

surement data are gathered the more one will be certain

about the outcome of the system, whether it points out

abnormal structural behavior or not. The proposed algo-

rithm performs an evaluation of the structural condition of

the bridge following each new train passage and, for that

reason, the algorithm is expected to be trustworthy over

long periods of time. For a better understanding of the

Bayes’ theorem here implemented, the theorem will be

illustrated with an example (Table 5) where other possi-

bilities of Bayesian inference concerning different thresh-

olds and event labelling can be found. Let’s assume that

four train passages are evaluated and that all make the

system point out damage. The assumed a priori likelihood

of damage is p dð Þ ¼ 10�6 [29]. Keeping in mind, the ROC

curve presented in Fig. 11, a detection threshold associated

with 86% of TPs and 2% of FPs is selected. Replacing

these values in (Eq. 4), we find that the a posteriori prob-

ability of damage is 77.4%. For instance, considering the

same threshold, if we evaluate nine train passages and, by

chance, eight out of the nine points out damage, then one

will be very sure that damage is present in the structure as

the a posteriori probability of damage is very close to

100%.

5 Conclusions and future research

The methodology proposed in this paper provides a rational

fashion for enhancing the damage diagnosis strategy for

damaged structures, allowing for both improvements in

safety and reduction of bridge management cost. The

method proposes the use of past recorded deck accelera-

tions in the bridge as input to an Artificial Neural Network

that, after being properly trained, is able to predict forth-

coming accelerations. The difference between the mea-

sured value and the value predicted by the network will

work as a primary indicator that damage may exist. This

study comprises the statistical evaluation of the prediction

errors of the network by means of a Gaussian Process, after

which one can select the detection threshold in regard to a

Damage Index. Based on the selected threshold, the

expected total cost associated with the damage detection

strategy can be calculated. Within the interval of viable

thresholds, the optimal will be the one that yields the

lowest cost. From the attained results, it is possible to

derive some general conclusions:

• lower vehicle speed seems to overall provide measure-

ments that enable better predictions by the trained

network, in the sense that the prediction errors in both

healthy and damaged structural condition are inferior

than for higher speeds;

• the two sensors placed in the middle of the bridge seem

to be the most efficient in the discrimination between

healthy and damaged data, apparently disregarding

where in the bridge damage takes place. This may be

explained by the fact that the response of the simply

supported bridge is emphasized at half-span;

• the ROC curves associated with scenarios where

damage is more severe generally present a superior

Fig. 10 ROC curves for different damage extensions l of DC1:

damage resulting from cutting off a section of extension l from the

bottom flange of one girder beam. red line, 20 cm; pink line, 40 cm;

green line, 70 cm; light blue line, 100 cm; blue line, 160 cm

Fig. 11 ROC curve for DC2: damage resulting from a malfunction-

ing intermediate bracing
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trade-off TP/FP, since to conserve the same probability

of TP one needs to accept an inferior probability of FP,

when compared to less severe damage;

• the ideal threshold for the damage detection system will

be the one that yields the lowest expected total cost

regarding the detection process, where the costs related

with false detection have particular impact.

The proposed method has although some weaknesses

that can be tackled with additional research. This could

concern the study of environmental and operational effects

on the damage detection process—other relevant parame-

ters than accelerations may be given as input to the neural

networks, such as temperature measurements. The con-

sideration of these will almost certainly produce networks

with higher prediction accuracy, making the algorithm

more shielded against the influence of damage unrelated

factors that can induce significant changes in the behavior

of the structure. This study presents a limited number of

damage scenarios. A wider range of possible locations for

damage in the bridge could be considered, including mul-

tiple damage scenarios. It would also be interesting to

understand the limitations of the proposed method in terms

of the smallest damage that can be detected.

Regarding future research, once damage is detected, a

subsequent step could be to study the correlation between

measurements acquired from the different devices of the

sensing system, in an attempt to pinpoint the location of

damage. At the same time, optimal sensor placement could

be carried out for the system to identify damage in a suf-

ficiently accurate manner while avoiding redundancy in

information. Finally, the suggested calculation of the

expected total cost of the damage detection strategy is

rather basic. Hence, the formulation of a more refined

expression for the cost is desirable. Besides the economic

considerations, some constraints may be considered, such

as the minimum reliability level of the structure usually

defined by the authorities or the limited time the system has

to perform between each gathering of new data. In the end,

it could even be possible to establish a schedule of

inspection/repair based on the cost-benefit trade-off of each

decision in the present and future moments.
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