
EURO J Comput Optim (2014) 2:279–296
DOI 10.1007/s13675-014-0023-6

ORIGINAL PAPER

A Lagrangian-ACO matheuristic for car sequencing

Dhananjay Thiruvady · Andreas Ernst ·
Mark Wallace

Received: 2 April 2013 / Accepted: 17 June 2014 / Published online: 10 July 2014
© EURO - The Association of European Operational Research Societies 2014

Abstract In this study, we investigate a hybrid Lagrangian relaxation ant colony
optimisation for optimisation version of the car sequencing problem. Several cars
are required to be scheduled on an assembly line and each car requires a number
of options such as sunroof and/or air conditioning. These cars are required to be
sequenced such that sub-sequences of specific sizes may only include a limited number
of any option. While this is usually a hard constraint, in this study we treat it as
a soft constraint and further require the utilisation of options be modulated across
the sequence leading to the optimisation problem. We investigate various Lagrangian
heuristics, ant colony optimisation (ACO) and hybrids of these methods. The results
show that the Lagrangian-ACO hybrid is the best performing method for up to 300 cars.

Keywords Ant colony optimisation · Lagrangian relaxation · Hybrid methods · Car
sequencing

Mathematics Subject Classification 90B99

D. Thiruvady (B) · A. Ernst
CSIRO Computational Informatics, Melbourne, Australia
e-mail: Dhananjay.Thiruvady@csiro.au

A. Ernst
e-mail: Andreas.Ernst@csiro.au

D. Thiruvady
Australia and Clayton School of Information Technology, Monash University, Melbourne, Australia

M. Wallace
Caulfield School of Information Technology, Monash University, Caulfield East, Australia
e-mail: Mark.Wallace@monash.edu

123

280 D. Thiruvady et al.

Introduction

Hybrid methods involving meta-heuristics and exact methods have recently proved to
be effective for combinatorial optimisation (Blum et al. 2008; Glover and Kochen-
berger 2003; Maniezzo et al. 2010; Puchinger and Raidl 2005). Recently, hybrids
of meta-heuristics and mathematical programming have become popular with dedi-
cated workshops and journals. Meta-heuristics are known to be effective on problems
with large search spaces but often break-down when dealing with non-trivial hard
constraints. Such problems are typical of those that appear in the real world and to
tackle such problems the traditional approach has been to employ penalty-based meth-
ods (Coello 2002). Such methods typically require problem-specific tuning and can
suffer from performance issues. More recently, hybrids involving meta-heuristics with
constraint and integer programming have demonstrated the effectiveness of such inte-
grations (Ernst 2010; Meyer and Ernst 2004; Puchinger and Raidl 2004; Thiruvady
et al. 2009, 2012). In this paper we demonstrate how an effective matheuristic can be
created by combining Lagrangian relaxation and ant colony optimisation (ACO) and
apply this hybrid method to the car sequencing problem.

Lagrangian relaxation (LR) is a technique that has been used effectively with inte-
ger programming problems (Fisher 2004). This technique is based on identifying con-
straints in the integer programming formulation, which if relaxed, results in a simpler
problem which maybe solved efficiently. The solution to the relaxed problem provides
bounds on the original problem, allowing performance guarantees on the quality of
feasible solutions obtained. In a minimisation problem, the relaxed problem provides
lower bounds. The LR method adds a penalty to the objective for all components
where the relaxed constraint is violated. By appropriately modifying the penalties, the
algorithm is guided towards feasible regions.

Ant colony optimisation (ACO) was proposed by Dorigo (1992) for combinatorial
optimisation. This procedure is based on the foraging behaviour of real ants. When
ants look for food they mark the paths they use with a chemical called pheromones.
These pheromone deposits are used by other ants in the future when looking for food
by favouring those paths with a higher amount of pheromone. These ants, in turn,
deposit pheromones thereby creating a positive feedback loop leading to ants con-
verging on better paths to food sources over-time (Camazine et al. 2001). Using these
principles, an algorithm can be designed to solve combinatorial optimisation problems
and several studies have shown how ACO can be successfully designed for a partic-
ular problem (Dorigo and Stűtzle 2004). Various hybrids involving ACO have been
investigated. These include integrations with other meta-heuristics (Blum 2005; Blum
et al. 2008; López-Ibáñez et al. 2009) and exact methods such as integer programming
(Anghinolfi et al. 2011) and constraint programming (Khichane et al. 2008; Meyer
and Ernst 2004; Thiruvady et al. 2009, 2012). An LR–ACO hybrid was examined on
the multi-choice multi-dimensional problem (Ren et al. 2012). This study used the
LR solution information as a guide in the ACO procedure through the heuristic infor-
mation. A second study considers Lagrangian relaxation within ACO for an optimal
overlay communication network in peer-to-peer computing (Maniezzo et al. 2004).

We consider the car sequencing problem of scheduling cars on an assembly line
(Dincbus et al. 1988; Gent 1998; Hentenryck et al. 1992; Parrello et al. 1986). The

123

Lagrangian-ACO matheuristic for car sequencing 281

cars require one or many options such as air conditioning, sunroof, radio, etc. Each
option is installed at specialised stations which may only handle a limited number
of cars at a time. The aim of this problem is to produce a sequence (or permutation)
of the cars such that when they pass through the stations the station’s capacities are
not exceeded. Thus, car sequencing is a satisfiability problem and determining the
sequence is known to be NP-hard (Kis 2004).

Approaches to car sequencing as a satisfiability problem include constraint and
integer programming (Dincbus et al. 1988; Gravel et al. 2004; Hentenryck et al. 1992).
Dincbas et al. (1988) considered a pure constraint programming (CP) approach and
showed that it is very effective. Their algorithm was able to sequence as many as 200
cars within 5 min. This was also the case for instances where the utilisation of options
was up to 90 %. Gravel et al. (2004) developed an integer programming approach
based on violation of the constraints where the objective was to minimise the number
of violations.

Here, we investigate the optimisation version of the car sequencing problem
(Bautista et al. 2008). In previous studies with the optimisation problem, the focus
was still on feasibility where once feasibility is obtained, then the modulation of util-
isation of sub-sequences can be considered (Bautista et al. 2008; Thiruvady et al.
2011). Bautista et al. (2008) consider a Beam search (Blum 2005; Valente et al. 2008)
approach and make use of effective lower bounds to expand the search trees. This
study effectively solves problems with 100 cars but their algorithm struggles to find
feasibility for instances with 200 or more cars. Thiruvady et al. (2011) use a hybrid
approach based on ACO, Beam search and constraint programming (Marriott and
Stuckey 1998). Compared to the pure feasibility problem, the aim in this study is
to trade-off feasibility for utilisation of options within sub-sequences. The algorithm
suggested in this study is currently the best performing method for the optimisation
version of car sequencing.

In this study, we aim to determine good solutions (upper bounds) to a number of hard
problem instances known in the literature. We investigate LR and ACO approaches
including hybrids of these methods.1 We propose two integrations, one being a rela-
tively loose integration where ACO is used to improve the upper bounds. Secondly, by
keeping a history of the solutions obtained by the LR method, the pheromone trails of
ACO are initialised with this history which are used to improve the best LR solution
with ACO. In principle, such integrations can be devised with any integer program
where relaxed problem solutions may be used to guide ACO. For example, solution
information obtained from a root relaxation can be used to guide ACO towards feasible
and/or optimal regions.

This paper is organised as follows. The problem is formally stated in Sect. 2 includ-
ing the original version and the integer programming formulation of optimisation ver-
sion to be tackled here. Section 3 discusses potential relaxations and provides the
outline of the LR heuristic. This section also describes ACO and how ACO and LR
can be combined. Section 5 details the experiments carried out and the results that
follow with a discussion of the results. Section 6 concludes this paper.

1 Note that the hybrids proposed here are different to the one suggested in Ren et al. (2012).

123

282 D. Thiruvady et al.

Problem definition

The formal definition of the car sequencing problem is as follows, based on Solnon et
al. (2008). A number of cars D and a number of options O are given. Each car requires
a number of these options specified by ri j ∈ {0, 1},∀i ∈ {1, . . . , D}, j ∈ {1, . . . , O}
where ri j = 1 states that car i requires option j . We are also given (p j , q j), j ∈
{1, . . . , O} which impose constraints that require that at most p j cars may use option
i in a subsequence of length q j satisfying the capacity of a station. The cars are grouped
into C classes with di cars per class i ∈ {1, . . . , C}. Every car in the same class requires
the same options such that k, l ∈ di , j ∈ {1, . . . , O} : rk j = rl j . Hence with a slight
abuse of notation we will write ri j when i is a class of cars. A solution to the problem
may be represented by a permutation π . There are n decision variables π1, . . . , πn

where each variable πi ∈ {1, . . . , C} such that the option constraints are satisfied.
Like any satisfiability problem, the car sequencing problem can be framed as an

optimisation problem. Essentially, for constructive methods, the objective is to max-
imise the number of decision variables assigned such that constraints are satisfied. The
search terminates when all decision variables are assigned, i.e., all cars are sequenced.
Additionally, departing from satisfiability only, Bautista et al. (2008) considers fur-
ther aspects of the problem which can be optimised. They define two different but
related measures based on feasibility and how well the options are modulated across
sub-sequences.

The first measure is the upper over-assignment of a sequence which is the number
of times an option appears over the allowed number when the sub-sequence constraint
is violated:

uoa(π) =
O∑

i=1

D∑

j=pi

ai j yi j (π) (1)

where for j ≥ pi

yi j (π) = max

{
0,−pi +

j∑

k=ui (j)

rπk i

}
(2)

and ui (j) = max(1, j+1−qi). The ai j terms can be seen as penalties for violating the
constraints. Essentially, the sum in the equation above adds up the number of options
that are used in a subsequence from j+1−qi to j . Of course, if we have not sequenced
qi cars yet we only consider the smaller size subsequence. uoa(π) = 0 implies that
a feasible solution to the problem has been found since we are only summing over
the quantity of the violations. Similarly, upper under-assignment of a sequence can
be defined as

uua(π) =
O∑

i=1

D∑

j=pi

bi j zi j (π) (3)

where

zi j (π) = max

{
0, pi −

j∑

k=ui (j)

rπk i

}
(4)

123

Lagrangian-ACO matheuristic for car sequencing 283

and ui (j) is as defined earlier. Via bi j we are able to modulate the usage of options in
the sub-sequences. For our experiments, we randomly select ai j and bi j ∈ (0, 1]. This
in effect imposes preferences on those sub-sequences where all the allowed options
should be sequenced or as many of them as possible. Given these two measures, we
can define the optimisation version of the problem to minimise

uoa(π)+ uua(π) (5)

Integer programming formulation

Bautista et al. (2008) provided an integer programming formulation which we make
use of in this study. In addition to the y and z variables, we use xit to represent a car
class i at position t . For further details please refer to Bautista et al. (2008).

min
O∑

j=1

D∑

t=p j

(a jt y j t + b jt z j t) (6)

subject to

C∑

i=1

xit = 1 ∀t = 1, . . . , D (7)

D∑

t=1

xit = di ∀i = 1, . . . , C (8)

C∑

i=1

t∑

k=l j (t)

r̄i j xik = p j + y jt − z jt

∀ j = 1, . . . , O; ∀t = p j , . . . , D; (9)

z jt , y jt ≥ 0∀ j = 1, . . . , O; ∀t = p j , . . . , D (10)

xit ∈ {0, 1}∀i = 1, . . . , C; ∀t = 1, . . . , D (11)

where l j (t) = max{1, t + 1− q j }.
Lagrangian relaxation

There are three potential relaxations for the above formulations, i.e., relaxing Eqs. (7),
(8) or (9). Relaxing Eq. (7) yields the following objective subject to the other remaining
constraints:

LLR1(λ) = min
O∑

j=1

D∑

t=1

(a jt y j t + b jt z j t)+
D∑

t=1

λt

C∑

i=1

(xit − 1) (12)

Here, we have a Lagrangian multiplier or penalty associated with every position and
this relaxation allows more than one car to be sequenced at a position. Now relaxing

123

284 D. Thiruvady et al.

Eq. (8) yields:

LLR2(λ) = min
O∑

j=1

D∑

t=1

(a jt y j t + b jt z j t)+
C∑

i=1

λi

D∑

t=1

(xit − di) (13)

where a penalty for each car class exists. In this formulation we may have more or
less than the allowed cars per class. Finally, Eq. (9) yields:

LLR3(λ) = min
O∑

j=1

D∑

t=1

(a jt y j t + b jt z j t)

+
O∑

j=1

D∑

t=1

λ j t

⎛

⎝z jt − y jt +
C∑

i=1

t∑

k=l j (t)

ri j xik − p j

⎞

⎠ (14)

which can be re-arranged to obtain:

LLR3(λ) = min
O∑

j=1

D∑

t=p j

[
y jt (a jt − λ j t)+ z jt (b jt − λ j t)− p jλ j t

]

+
C∑

i=1

D∑

k=1

⎛

⎝
O∑

j=1

ri j

min{D,k+q j}∑

t=p j

λ j t

⎞

⎠ xik (15)

To ensure that the Lagrangian dual remains finite, the multipliers have to be constrained
to be in some interval, for example, −b jt ≤ λ j t ≤ a jt .

We carried out a preliminary investigation into each of these alternative Lagrangian
relaxations and found the first to be most effective. The problem in Eq. (13) requires
large time overheads compared to the problems in Eqs. (12) or (15). Additionally,
the problem in Eq. (15) was solved very quickly but did not provide effective lower
bounds. Hence, for this study we focus on the problem associated with Eq. (12) and
in the remainder of this paper we shall refer to LLR(λ) = LLR1(λ).

The Lagrangian heuristic

A Lagrangian heuristic (Boschetti and Maniezzo 2009) for car sequencing can be
defined as follows. An LR algorithm is presented in Algorithm 1. Here we use the
model obtained from relaxing Eq. (12). The algorithm is first initialised with various
parameters and multipliers. The main loop starts at line 5 and executes for 1,000
iterations while the gap and γ are above a specified threshold. Each procedure is
described in detail below.

The relaxed problem is solved in Solve(λi , LB). This involves minimising the
Lagrangian function, i.e., Eq. (12) subject to the remaining constraints (8)–(11). The
lower bound LB is set to

LB = LB(LLR(λi)) (16)

123

Lagrangian-ACO matheuristic for car sequencing 285

Algorithm 1 LR for the car sequencing problem
1: input: A car sequencing instance
2: πbs := null (best solution)
3: initialize λ0

t = 0, ∀t ∈ {1, . . . , D}
4: γ := 2.0, k := 0, gap := ∞, U B∗ := ∞, L B∗ := −∞
5: while γ > 0.01 & gap > 0.01 & i < 1000 do
6: x = Solve(λi , L B)
7: π = GenerateSequence(x)
8: ImproveUB(π)
9: UpdateBest(πbs ,π ,γ)
10: L B∗ = f (πbs)

11: UpdateMult(λi , L B∗, U B∗, x , γ)

12: gap = U B∗−L B∗
U B∗

13: i← i + 1
14: end while
15: output: πbs

which is a lower bound on LLR(λ).2 The above procedure returns a sequence of cars,
where more than one may be sequenced at a single position and none sequenced at
others.

A sequence of cars can be obtained from x in a straight-forward manner
(GenerateSequence(x)). For each position t , consider whether a car class has been
sequenced here and if it has, then append this car class to π . If there are multiple car
classes in position t , they can be sequenced in different ways including the order in
which they are found or randomly. We test both these options here. By continuing this
for the entire sequence, a complete sequence of the cars is obtained.

The sequence π can be improved by various methods in the procedure ImproveUB
(π). For example, local search may be used to improve these solutions. The best
solution obtained using an improvement or not is updated using UpdateBest (πbs ,π ,γ)
which does two things. Firstly, πbs = π if f (π) < f (πbs). Secondly, if πbs has not
been updated in the last ten iterations, γ ← γ ÷ 2.

Finally, the procedure UpdateMult(λi , LB∗, UB∗, x , γ) uses subgradient optimisa-
tion (Bertsekas et al. 2003) to update the multipliers for all positions t ∈ {1, . . . , D},
k ∈ R

λi+1
t = λi

t +
γ (UB∗ − LB∗)�t∑D

t̂=1 �2
t̂

(17)

where �t =∑P
i=1 xit − 1 and x are the variables from the model in Sect. 2.1.

Ant colony optimisation

We use the ACO implementation in Thiruvady et al. (2011) with minor differences
which are detailed below. For the sake of completeness we provide the algorithm and
the relevant details. ACS is the variant of ACO used in this study (Dorigo and Stűtzle
2004) and is presented in Algorithm 2. The pheromones τi j represent the desirability

2 Since LLR(λ) is itself a hard problem to solve, we allow it to be solved to a gap or a time limit. To ensure
a valid lower bound, we use the lower bound of LLR(λ) as the final lower bound.

123

286 D. Thiruvady et al.

Algorithm 2 ACO for the car sequencing problem

1: input: A car sequencing instance, T , πbs

2: while termination conditions not satisfied do
3: S := ∅
4: for j = 1 to nants do
5: π j := ConstructSequence()
6: S := S ∪ {π j }
7: end for
8: π ib := argmin{ f (π)|π ∈ S}
9: πbs = Update(π ib)
10: T = PheromoneUpdate(πbs)
11: end while
12: output: πbs

of picking car class j in position i of the sequence (i.e., πi = j). There is no distinction
between cars within the same class.

A car sequence π is constructed by incrementally adding car classes to π (Con-
structSequence()). A solution is complete when all cars from all classes have been
sequenced. A car class is selected as follows. A random number q ∈ (0, 1] is generated
and compared to the parameter q0. For the i th variable, πi , if q < q0, a car class k is
deterministically selected at variable i according to

k = argmax
j∈C

τi j × η j (18)

otherwise, πi = k is selected with probability

p(πi = k) = τik × ηk∑
j∈C

(
τi j × η j

) (19)

where ηk is a heuristic factor that may be used to bias the selection. While Thiruvady
et al. (2011) use the dynamic sum of utilisation rates (Gottlieb et al. 2003) as the
heuristic, we find that the latter heuristic is not as effective for this study. This heuristic
essentially leads the solution construction towards feasibility3 which is not the primary
objective in this study where the aim is to achieve the ideal utilisation of the options.
Ideal utilisation is an optimisation goal, and experience with local search methods has
shown that improvement towards an optimal solution is often achieved by admitting
infeasible candidate solutions en route to the optimum.

All solutions are stored in the set S. The solution with minimum cost (f (π) =
uua(π) + uoa(π)) from this set is the iteration best (π ib). If π ib is an improvement
over πbs , πbs is set to π ib (πbs = Update(π ib)).

The pheromone trails are updated corresponding to the solution components in πbs

(T = PheromoneUpdate(πbs)) as follows

τi j = τi j × ρ + δ (20)

3 Note that feasibility requires that yi j = 0, ∀i ∈ V, j ∈ O.

123

Lagrangian-ACO matheuristic for car sequencing 287

where δ = δ̂/(1.0+ f (πbs)), δ̂ is determined such that δ ∈ [0.01, 0.1]. ρ is a learning
rate which is set to be relatively large (0.1) for this study and was found through tuning
by hand.

Hybrid Lagrangian-ACO matheuristic

We suggest two different hybrids of LR and ACO. The first is obtained as follows. On
line 8 of the LR algorithm (Algorithm 1) we have the option of improving the upper
bounds. Here, we use the ACO procedure described above leading to LR–ACO.4 The
modified algorithm works as follows. The current best solution and the pheromone
trails are given as input. This essentially biases the search towards promising regions
that have been see already in the past.5

To apply improvements, a feasible solution needs to be constructed from the solution
to the relaxed problem. In Sect. 3.1 we show how this can be achieved. Essentially, we
can start at the first position and incrementally add car classes to π where they appear
in the solution to the relaxed problem. If there are two or more cars sequenced at a
particular position they are appended to π by index. Alternative ways to determine π

can also be used, for example, if there are two or more cars sequenced at a position,
randomly select from amongst these to append to π and proceed to select randomly
from the reduced number of cars.

A second hybrid is one where ACO is executed after the LR algorithm completes
(LR+ACO). We suggest two possible schemes here. Firstly, the best LR solution can
be given as input to ACO which is executed as described above. Secondly, a history of
the best solutions could be kept which can be used to provide ACO with a pheromone
matrix which has already partially converged. This would allow ACO to bias its search
to all promising areas seen in the past.

Determining the pheromone matrix in second LR+ACO scheme can be done as
follows. The matrix is initialised as follows τi j = 1.0∀i ∈ 1, . . . , D and j ∈ 1, . . . , C .
During every iteration, ∀i, j : τi j ← τi j + xi j . This update essentially favours picking
sequences according to the solution of the relaxed problem. Note that there is no
bias introduced if two car classes were selected at a single position as they are both
favoured equally. When the LR scheme is complete, the matrix is normalised so that
the distribution for each variable in the sequence sums to 1.0. It is well known that
under appropriate conditions the average of the primal solutions to the Lagrangian
subproblems converges to an optimal LP relaxation solution, see Kurt et al. (2009).
Hence, this approach effectively uses an approximation of the fractional LP solution
as a starting value for the pheromones.

Considering the two LR+ACO schemes suggested above, we find that the second
option provides improved results. Hence, LR+ACO refers to the second implementa-
tion in the remainder of this paper.

4 Note that this may be done in several ways including a local search algorithm.
5 This scheme is similar to the one proposed by Ren et al. (2012). While we could incorporate the LR
solution information in ACO as a heuristic bias, we found that this was not so effective.

123

288 D. Thiruvady et al.

Experiments and results

Experiments were conducted with the LR heuristic (also a randomised version), ACO,
LR−ACO and LR+ACO on instances obtained from Gent and Walsh (1999), Gravel
et al. (2004), and Perron and Shaw (2004). Additional experiments were conducted
with a subset of instances from Perron and Shaw (2004) which is considered to be one
of the datasets with the hardest instances to solve (Khichane et al. 2008). To further
understand the algorithms, we consider a subset from Perron and Shaw (2004) which
is the same subset of instances used by Thiruvady et al. (2011). Here, we also compare
the lower bounds obtained by the LR-based methods to the ILP root relaxation of the
problem obtained by Gurobi. This study generated ai j and bi j values in the interval
(0, 1] and we generate these values in exactly the same fashion. Using the same seed,
these values are generated once at the beginning of each run. Hence for each instance,
the values are always equal.

For the complete set of runs we conducted one run per instance. However, for the
subset of instances we conducted 30 runs per instance for all ACO-based algorithms
to demonstrate significance of the results obtained. Each run was given 2 h of CPU
time and the experiments were conducted on three resources. The first was a quad
core i5-2400 3.10 GHz machine running Linux 64 bit operation system and the sec-
ond and third resources were two clusters including the Monash Sun Grid and the
Enterprisegrid using Nimrod (Abramson et al. 2000). To solve the relaxed problem,
Gurobi 5.0 (Gurobi Optimization 2010) was used. Note that Eq. (12) was relaxed in
all the results to follow.

The parameters for ACO and the LR hybrids with ACO were set by considering
the previous study (Thiruvady et al. 2011) and through tuning by hand. The number
of solutions per iteration, na, was set to 10. ρ was chosen as a high learning rate equal
to 0.1 and q0 = 0.9 was chosen to favour high deterministic selection.

Results

A single run was conducted per instances over all instances from Gent and Walsh
(1999), Gravel et al. (2004) and Perron and Shaw (2004). First we examine the upper
bounds by dataset (see Fig. 1). The results are averaged for all instances within the
dataset and % difference to the best performing algorithm is computed. LR+ACO
performs best across all the datasets and all the LR-based algorithms outperform
ACO on its own. This demonstrates that ACO is greatly aided by the relaxed problem
solutions provided by LR.

Secondly, we examine lower bounds by dataset (see Fig. 2). Here, LR is the best
performing algorithm and while the algorithm with the ACO components is competi-
tive, clearly the CPU cycles used up by the ACO components result in fewer iterations
for the lower bound to improve.

From amongst the datasets considered above, Perron and Shaw (2004) are known
to contain the hardest instances (Khichane et al. 2008). Furthermore, since ACO is
stochastic, several runs with the ACO algorithms are required to determine statistical
significance. Thus, we consider a subset of instances (those from Thiruvady et al.

123

Lagrangian-ACO matheuristic for car sequencing 289

CSPLIB Gravel et al. Perron & Shaw0.
0

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

2.
0

%
 d

iff
er

en
ce

 to
 b

es
t

LR
ACO
LR−ACO
LR+ACO

Fig. 1 A comparison of the upper bounds obtained by LR, ACO, LR−ACO and LR+ACO. The graph
shows the % difference obtained by each algorithm across all runs on every instances compared to the best
solution obtained for that instance. Note, LR+ACO does not appear since it provides the best results for all
the instances

CSPLIB Gravel et al.

Datasets
Perron & Shaw

0.
05

0.
10

0.
15

0.
00

%
 d

iff
er

en
ce

 to
 b

es
t

LR
LR−ACO
LR+ACO

Fig. 2 A comparison of the lower bounds obtained by LR, LR−ACO and LR+ACO. There are no lower
bounds associated with ACO. The graph shows the % difference obtained by each algorithm across all runs
on every instances compared to the best solution obtained for that instance. Note, LR does not appear since
it provides the best results for all the instances

(2011)) and repeat these experiments in the following sections. We also compare our
algorithms to CP-Beam-ACO of Thiruvady et al. (2011).

We analyse upper and lower bounds for the subset of instances provided by all
algorithms in the following sections. In the tables to follow, the first column shows
the instance number. Lower bounds (LB), upper bound (UB) and time in terms of
CPU cycles (time) are also provided where applicable. Note that for the LR-based
algorithms and ACO, 2 h of run-time was allowed. The best results obtained for any
instance are highlighted in boldface.

123

290 D. Thiruvady et al.

Table 1 Upper bounds obtained by the LR-based algorithms and ACO

Instance LR LR-rand ACO LR−ACO LR+ACO

UB UB Best Mean Best Mean Best Mean

100-22 283.5 279.28 260.43 270.57 260.89 265.79 267.01 281.85

100-35 250.2 250.52 225.02 233.97 223.41 230.8 232.75 239.9

100-64 284.71 270.1 252.78 257.83 248.73 256.01 262.45 262.4

100-77 208.22 200.59 174.15 180.28 174.00 179.29 186.04 190.32

100-82 272.48 260.56 240.06 246.94 239.81 249.26 244.29 251.47

100-94 206.37 196.14 182.53 189.4 177.61 187.14 189.24 191.49

300-8 719.11 677.59 782.82 903.75 690.06 724.25 631.89 653.23

300-14 898.92 886.88 990.17 996.87 882.32 933.53 817.59 830.58

300-53 756.77 751.61 985.83 995.2 760.99 792.79 712.07 716.45

300-56 651.61 632.1 705.77 810.2 650.31 684.22 573.98 597.84

300-62 918.32 886.3 992.73 997.25 910.28 934.72 819.32 839.02

300-78 742.96 700.97 780.08 951.13 706.88 752.3 629.69 633.03

500-14 841.4 870.45 1,041.29 1,070.61 912.29 950.69 775.85 776.59

500-27 1,777.1 1,719.01 1,898.05 1,924.96 1,840.19 1,857.6 1,623.70 1,673.9

500-65 1,084.62 1,076.87 1,202.29 1,222.22 1,078.18 1,098.82 998.05 998.64

500-74 991.07 958.78 1,122.82 1,146.07 1,003.83 1,042.96 906.95 912.57

500-79 1,748.65 1,689.54 1,780.57 1,807.41 1,650.52 1,761.08 1,581.90 1,582.66

500-88 1,460.42 1,374.24 1,492.12 1,516.33 1,424.76 1,482.79 1,292.23 1,320.94

Investigating upper bounds

Table 1 compares the upper bounds obtained by all the methods. LR-rand is similar
to LR but randomises the selection of car classes at a position when there are two
or more to choose from. It can be seen here that for the small problems with 100
cars, LR−ACO is the best performing algorithm. ACO finds the best solution on the
instance 100-22 on one run but is on average worse than LR−ACO even for this
instance. Overall, LR+ACO is the best performing algorithm by achieving the best
results for every instance with 300 cars or more.

These results are also plotted in Fig. 3. Here, it can be clearly seen that while ACO is
effective on the small problems it increasingly worsens in performance with increasing
problem size. For 300 cars or more, LR and LR-rand improve over ACO. However,
overall the hybrids LR−ACO and LR+ACO are clearly the best performing.

We compare LR+ACO to CP-Beam-ACO of Thiruvady et al. (2011). A straight-
forward comparison is not meaningful since this study required that the uoa values
(see Sect. 2) were 0 and hence infeasible solutions were not considered at all. Thus,
this study solved a slightly different problem. Additionally, the CP-based algorithms
required very large run-times (15 h) and to compare LR+ACO with CP-Beam-ACO,
we run LR+ACO for an increased run-time.

123

Lagrangian-ACO matheuristic for car sequencing 291

10
0−

22

10
0−

35

10
0−

64

10
0−

77

10
0−

82

10
0−

94

30
0−

80

30
0−

14

30
0−

53

30
0−

56

30
0−

62

30
0−

78

50
0−

14

50
0−

27

50
0−

65

50
0−

74

50
0−

79

50
0−

88

0
10

2
0

3
0

40

Instance

%
 d

iff
er

en
ce

 to
 b

es
t U

B
LR
LR−rand
ACO
LR−ACO
LR+ACO

Fig. 3 A comparison of the upper bounds obtained by all methods tested in this study. The graph shows the
% difference obtained by each algorithm across all runs on every instances compared to the best solution
obtained for that instance

Table 2 presents the results for experiments with LR+ACO with additional run-times
(3 h each) for the LR component and the ACO component with a total of 6 h. This
table also shows the results for CP-Beam-ACO which was run for 15 h per instance.
We can see here LR+ACO is the best performing algorithm for all the instances with
100 cars and nearly all the instances with 300 cars except for 300-56. Therefore, with
a shorter run-time, LR+ACO is superior to CP-Beam-ACO for up to 500 cars. For the
instances with 500 cars, CP-Beam-ACO fails often but is almost always superior if
solutions are found.

We also conducted experiments for LR+ACO with 3 and 10 h for the LR component
and ACO to compare more closely with run-times of CP-Beam-ACO. However, we
still find no significant improvements for the instances with 500 cars. Thus, 300 cars
appears to be the limit where ACO can improve upon the solutions obtained by the LR
scheme. This is also verified by looking more closely at CP-Beam-ACO (Thiruvady
et al. 2012). There are very few iterations conducted for all instances with more than
100 cars in 15 h. Thus, there is very little learning here for the ACO component and
the solution quality obtained can be attributed to the CP component.

Investigating lower bounds

The lower bounds obtained are compared in Table 3. Here, LP is the bound obtained
from the linear programming relaxation, Root reports root relaxation or the bounds

123

292 D. Thiruvady et al.

Table 2 Upper bound comparisons for larger run-times

Instance LR+ACO (3 h + 3 h) CP-Beam-ACO

Best Mean UB Fail

100-22 258.05 263.1 268.95 0

100-35 220.92 229.69 231.16 0

100-64 244.90 250.55 258.35 0

100-77 174.59 179.58 181.37 0

100-82 234.22 239.29 30

100-94 172.38 178.58 183.56 0

300-8 608.21 616.72 614.42 28

300-14 801.60 808.73 818.12 0

300-53 681.93 698.27 686.07 0

300-56 553.04 562.72 534.74 0

300-62 798.06 805.49 838.84 2

300-78 597.58 617.08 610.7 16

500-14 774.78 785.69 687.00 0

500-27 1,600.67 1,618.96 30

500-65 996.95 998.5 783.42 29

500-74 849.01 863.29 776.93 2

500-79 1,505.64 1,539.91 1,474.83 0

500-88 1,229.11 1,285.95 30

determined when a single node in the search tree has been instantiated and ILP is
the bound obtained when the equivalent integer program is solved to a pre-defined
time limit, i.e., 720 s in these experiments. All time limits in Gurobi are based on
wall clock times and hence we also report the equivalent time requirements in terms
of CPU cycles. Additionally, the bounds obtained by the LR-based algorithms are
also provided. It can be seen here that ILP relaxations provide the best lower bounds.
The LR-based algorithms are typically superior to the LP relaxation for the smaller
problems but are consistently worse for the problems with 500 cars. This indicates
that close to optimal Lagrangian multipliers may be found for the smaller problems
but not for the larger instances.6

The lower bounds are also compared in Fig. 4. For each instance, the % differ-
ence to the best lower bound obtained across all instances is plotted. The Root or
ILP relaxations always provide the best lower bounds which are due to cuts gen-
erated by the Gurobi solver. Since we do not have access to the underlying meth-
ods, we are unable to investigate this more thoroughly. Experimental results using
commercial integer-linear solvers have shown that even for small problems with
100 cars, the upper bounds found within a reasonable time period are uncompeti-

6 Optimal integer solutions to the Lagrangian relaxation often provide better lower bounds than optimal
solutions to the linear relaxation. Thus, if optimal multipliers are found the lower bounds of the Lagrangian
will be at least as good as LP relaxation bounds.

123

Lagrangian-ACO matheuristic for car sequencing 293

Table 3 Lower bounds obtained by LP, Root, ILP relaxation (after 720 s of wall clock time) and the
LR-based algorithms

Instance LP Root ILP (720 s) LR LR-rand LR−ACO LR+ACO

LB Time LB Time LB LB LB LB LB

100-22 233.28 1 237.27 7 240.78 234.60 234.4 234.11 234.26

100-35 198.30 1 200.96 18 203.08 199.33 198.59 198.77 199.07

100-64 222.62 1 225.67 28 228.18 222.57 223.3 222.56 223.11

100-77 150.50 1 153.11 5 155.88 151.62 150.86 151.38 151.62

100-82 206.88 1 208.90 8 211.11 205.66 207.24 205.73 205.66

100-94 152.94 1 155.90 6 159.23 153.70 153.69 153.29 153.49

300-8 482.41 1 492.26 39 492.57 468.93 471.73 469.51 468.93

300-14 674.30 1 682.26 40 688.41 675.10 675.93 667.56 675.76

300-53 580.95 1 587.43 229 591.80 582.12 582.17 575.13 581.31

300-56 417.69 1 428.99 424 429.34 419.29 416.61 410.37 418.95

300-62 679.09 1 688.31 54 691.64 673.66 675.9 661.47 679.09

300-78 470.45 1 478.97 720 479.18 459.87 463.29 457.74 468.94

500-14 489.30 2 503.32 1,125 503.49 491.35 488.79 471.28 491.35

500-27 1,266.03 3 1,276.66 160 1,276.77 1,249.09 1,251.43 1,236.99 1,244.65

500-65 588.96 2 607.19 243 607.55 569.66 569.66 569.66 569.66

500-74 568.05 2 585.40 161 585.79 558.55 561.2 551.97 558.55

500-79 1,218.18 3 1,229.03 98 1,229.31 1,199.98 1,201.33 1,186.37 1,199.98

500-88 935.74 2 947.60 114 947.93 904.26 905.14 904.32 904.26

tive. Thus, the partial solutions provided by the LR scheme are very useful for this
purpose.

Conclusion

In this study we examine how to create a matheuristic by combining Lagrangian
relaxation and ACO. The method is evaluated on the optimisation version of the car
sequencing problem. Such hybrids have become popular recently and we show here
that ACO can benefit from the accumulated information of the solution to the relaxed
problems obtained from the Lagrangian heuristic. The matheuristic developed in this
paper is problem independent and could be applied to any problem where ACO and/or
Lagrangian relaxation methods are useful. The results across three different bench-
marks show that the hybrid of LR+ACO is the best performing algorithm. Considering
the more detailed analysis, we see that for small problems (100 cars), LR–ACO and
ACO are competitive. However, with increasing problem size, the two-phase LR+ACO
method where ACO uses the Lagrangian solutions to seed its pheromone matrix is the
best performing method considering solution quality, i.e., upper bounds. Importantly
the combined matheuristic performs better than either heuristic on its own.

123

294 D. Thiruvady et al.

10
0−

22

10
0−

35

10
0−

64

10
0−

77

10
0−

82

10
0−

94

30
0−

80

30
0−

14

30
0−

53

30
0−

56

30
0−

62

30
0−

78

50
0−

14

50
0−

27

50
0−

65

50
0−

74

50
0−

79

50
0−

88

0
1

2
3

4
5

6
7

Instance

%
 d

iff
er

en
ce

 to
 b

es
t L

B
LP
Root
Root(720)
LR
LR−rand
LR−ACO
LR+ACO

Fig. 4 A comparison of the lower bounds obtained by all algorithms relative to the best performing
algorithm

Ren et al. (2012) previously investigated a hybrid of LR and ACO. They made use
of the LR solution information as heuristic information in ACO. We investigated this
option in this study but found that this type of hybrid is not effective here. Nonetheless,
hybrids such as this one and the ones suggested in this study could be relatively easily
implemented for future problems in a generic framework.

We see that the lower bounds obtained from the LR heuristics improve upon the LP
relaxation for small problems but are not as competitive as the ILP relaxations. There
is certainly room for improvement here. We are currently investigating methods based
on cutting planes (bundle methods) and the volume algorithm to determine if these
lower bounds will improve with improving search directions.

Furthermore, we have used the LR scheme to improve the upper bounds. However,
we have not attempted to provide the LR scheme with information obtained from
ACO. We are currently working on an implementation where the pheromone trails
may be used to update the Lagrangian multipliers along the lines of the hybrid LR-
PSO approach by Ernst (2010). In addition to improving the lower bounds, this could
in turn help provide improved upper bounds.

Finally, we have focused on one particular relaxation in this study where more than
one car class can be scheduled at a position. However, the other relaxations may also
prove to be useful with further investigation. In particular, the third relaxation (see
Eq. 14, Sect. 3) is solved efficiently as it amounts to solving an assignment problem.
Thus, more time could be spent on the upper bounds.

123

Lagrangian-ACO matheuristic for car sequencing 295

References

Abramson D, Giddy J, Kotler L (2000) High performance parametric modeling with Nimrod/G: killer
application for the global grid? In: International Parallel and Distributed Processing Symposium (IPDPS).
IEEE Computer Society, Washington, DC, USA, pp 520–528

Anghinolfi D, Paolucci M, Sacone S, Siri S (2011) Integer programming and ant colony optimization for
planning intermodal freight transportation operations. In: 2011 IEEE Conference on Automation Science
and Engineering (CASE), pages 214–219

Anstreicher KM, Wolsey LA (2009) Two “well-known” properties of subgradient optimization. Math Progr
120(1):213–220

Bautista J, Pereira J, Adenso-Díaz B (2008) A beam search approach for the optimization version of the
car sequencing problem. Ann Oper Res 159:233–244

Bertsekas DP, Nedić A, Ozdaglar AE (2003) Convex analysis and optimization. Athena Scientific, Cam-
bridge

Blum C (2005) Beam-ACO: hybridizing ant colony optimization with beam search: an application to open
shop scheduling. Comput Oper Res 32:1565–1591

Blum C, Blesa M, Roli A, Sampels M (eds) (2008) Hybrid metaheuristics: an emerging approach to
optimization. Studies in Computational Intelligence, vol 114. Springer, Berlin

Boschetti M, Maniezzo V (2009) Benders decomposition, Lagrangian relaxation and metaheuristic design.
J Heuristics 15(3):283–312

Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in
biological systems. Princeton University Press, Princeton

Coello C (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algo-
rithms: a survey of the state of the art. Comput Methods in Appl Mech Eng 191:1245–1287

Dincbus M, Simonis H, Hentenryck P (1988) Solving the car-sequencing problem in constraint logic
programming. In: 8th European Conference on Artificial Intelligence-ECAI 88. Pitmann Publishing,
London, pp 290–295

Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis, Dip. Elettronica
Dorigo M, Stűtzle T (2004) Ant colony optimization. MIT Press, Cambridge
Ernst AT (2010) A hybrid Lagrangian particle swarm optimization algorithm for the degree-constrained

minimum spanning tree problem. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2010, Barcelona. IEEE, pp 1–8

Fisher M (2004) The Lagrangian relaxation method for solving integer programming problems. Manag Sci
50(12):1861–1871

Gent I (1998) Two results on car sequencing problems. Technical Report APES02. University of St. Andrews,
St. Andrews, UK

Gent I, Walsh T (1999) CSPLIB: a benchmark library for constraints. Technical Report APES-09-1999.
University of St. Andrews, St. Andrews, UK

Glover FW, Kochenberger GA (eds) Handbook of metaheuristics, International series in operations research
and management science, vol 57. Springer, Berlin

Gottlieb J, Puchta M, Solnon C (2003) A study of greedy, local search and ACO for car sequencing problems.
Lect Notes Comput Sci 2611:245–282

Gravel M, Gagné C, Price W (2004) Review and comparison of three methods for the solution of the
car-sequencing problem. J Oper Res Soc 56:1287–1295

Hentenryck P, Simonis H, Dincbus M (1992) Constraint satisfaction using constraint logic programming.
Artif Intell 58:113–159

Khichane M, Albert P, Solnon C (2008) CP with ACO. Lect Notes Comput Sci 5015:328–332
Kis T (2004) On the complexity of the car sequencing problem. Oper Res Lett 32:331–335
López-Ibáñez M, Blum C, Thiruvady D, Ernst AT, Meyer B (2009) Beam-ACO based on stochastic sampling

for makespan optimization concerning the TSP with time windows. Lect Notes Comput Sci 5482:97–108
Maniezzo V, Boschetti M, Jelasity M (2004) An ant approach to membership overlay design. In: Dorigo M,

Birattari M, Blum C, Gambardella LM, Mondada F, Stntzle T (eds) Ant colony optimization and swarm
intelligence, vol 3172., Lecture Notes in Computer ScienceSpringer, Berlin, pp 37–48

Maniezzo V, Stützle T, Voß S (eds) Matheuristics—hybridizing metaheuristics and mathematical program-
ming, Annals of information systems, vol 10. Springer, Berlin

Marriott K, Stuckey P (1998) Programming with constraints. MIT Press, Cambridge

123

296 D. Thiruvady et al.

Meyer B, Ernst A (2004) Integrating ACO and constraint propagation. Lecture notes in computer science:
ant colony, optimization and swarm intelligence, vol 3172, pp 166–177

Gurobi Optimization (2010) Gurobi optimizer version 5.0. Available from: http://www.gurobi.com/
Parrello B, Kebat W, Wos L (1986) Job-shop scheduling using automated reasoning: a case study of the car

sequencing problem. J Autom Reason 2:1–42
Perron L, Shaw P (2004) Combining forces to solve the car sequencing problem. In: CPAIOR-04, vol 3011.

Springer, Berlin, pp 225–239
Puchinger J, Raidl GR (2004) An evolutionary algorithm for column generation in integer programming:

an effective approach for 2D bin packing. Lect Notes Comput Sci 3242:642–651
Puchinger J, Raidl GR (2005) Combining metaheuristics and exact algorithms in combinatorial optimiza-

tion: a survey and classification. Lect Notes Comput Sci 3562:41–53
Ren Z-G, Feng Z-R, Zhang A-M (2012) Fusing ant colony optimization with Lagrangian relaxation for the

multiple-choice multidimensional knapsack problem. Inf. Sci. 182(1):15–29
Solnon C, Dat V, Cung A, Nguyen, Artigues C (2008) The car sequencing problem: overview of state-

of-the-art methods and industrial case-study of the ROADEF’2005 challenge problem. Eur J Oper Res
191:912–927

Thiruvady D (2012) Hybrids of stochastic metaheuristics and constraint programming for combinatorial
optimization. PhD thesis, Calyton School of Information Technology

Thiruvady D, Blum C, Meyer B, Ernst AT (2009) Hybridizing beam-ACO with constraint programming
for single machine job scheduling. Lect Notes Comput Sci 5818:30–44

Thiruvady D, Singh G, Ernst AT, Meyer B (2012) Constraint-based ACO for a shared resource constrained
scheduling problem. Int J Prod Econ 141(1):230–242

Thiruvady DR, Meyer B, Ernst AT (2011) Car sequencing with constraint-based ACO. In: Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11. ACM, New York,
pp 163–170

Valente JMS, Alves RAFS (2008) Beam search algorithms for the single machine total weighted tardiness
scheduling problem with sequence-dependent setups. Comput Oper Res 35(7):2388–2405

123

http://www.gurobi.com/

	A Lagrangian-ACO matheuristic for car sequencing
	Abstract
	Introduction
	Problem definition
	Integer programming formulation

	Lagrangian relaxation
	The Lagrangian heuristic

	Ant colony optimisation
	Hybrid Lagrangian-ACO matheuristic

	Experiments and results
	Results
	Investigating upper bounds
	Investigating lower bounds

	Conclusion
	References

