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Abstract We develop the Benkhettou–Hassani–Torres fractional (noninteger order) calculus on timescales by
proving two chain rules for the α-fractional derivative and five inequalities for the α-fractional integral. The
results coincide with well-known classical results when the operators are of (integer) order α = 1 and the
timescale coincides with the set of real numbers.
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1 Introduction

The study of fractional (noninteger order) calculus on timescales is a subject of strong current interest [1–4].
Recently, Benkhettou, Hassani and Torres introduced a (local) fractional calculus on arbitrary timescales T
(called here the BHT fractional calculus) based on the Tα differentiation operator and the α-fractional integral
[5]. The Hilger timescale calculus [6] is then obtained as a particular case, by choosing α = 1. In this paper,
we develop the BHT timescale fractional calculus initiated in [5]. Precisely, we prove two different chain rules
for the fractional derivative Tα (Theorems 3.1 and 3.3) and several inequalities for the α-fractional integral:
Hölder’s inequality (Theorem 3.4), Cauchy–Schwarz’s inequality (Theorem 3.5), Minkowski’s inequality
(Theorem 3.7), generalized Jensen’s fractional inequality (Theorem 3.8) and a weighted fractional Hermite–
Hadamard inequality on timescales (Theorem 3.9).

The paper is organized as follows. In Sect. 2, we recall the basics of the the BHT fractional calculus. Our
results are then formulated and proved in Sect. 3.
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2 Preliminaries

We briefly recall the necessary notions from the BHT fractional calculus [5]: fractional differentiation and
fractional integration on timescales. For an introduction to the timescale theory we refer the reader to the book
[6].

Definition 2.1 (See [5]) Let T be a timescale, f : T → R, t ∈ T
κ , and α ∈ (0, 1]. For t > 0, we define

Tα( f )(t) to be the number (provided it exists)with the property that, given any ε > 0, there is a δ-neighbourhood
Vt = (t − δ, t + δ) ∩ T of t , δ > 0, such that | [ f (σ (t)) − f (s)] t1−α − Tα( f )(t) [σ(t) − s] | ≤ ε |σ(t) − s|
for all s ∈ Vt . We call Tα( f )(t) the α-fractional derivative of f of order α at t , and we define the α-fractional
derivative at 0 as Tα( f )(0) := limt→0+ Tα( f )(t).

If α = 1, then we obtain from Definition 2.1 the Hilger delta derivative of timescales [6]. The α-fractional
derivative of order zero is defined by the identity operator: T0( f ) := f . The basic properties of the α-fractional
derivative on timescales are given in [5], together with several illustrative examples. Here we just recall the
item (iv) of Theorem 4 in [5], which is needed in the proof of our Theorem 3.1.

Theorem 2.2 (See [5]) Let α ∈ (0, 1] and T be a timescale. Assume f : T → R and let t ∈ T
κ . If f is

α-fractional differentiable of order α at t , then

f (σ (t)) = f (t) + μ(t)tα−1Tα( f )(t).

The other main operator of [5] is the α-fractional integral of f : T → R, defined by
∫

f (t)�αt :=
∫

f (t)tα−1�t,

where the integral on the right-hand side is the usual Hilger delta-integral of timescales [5, Def. 26]. If
Fα(t) := ∫

f (t)�αt , then one defines the Cauchy α-fractional integral by
∫ b
a f (t)�αt := Fα(b) − Fα(a),

where a, b ∈ T [5, Def. 28]. The interested reader can find the basic properties of the Cauchy α-fractional
integral in [5]. Here we are interested to prove some fractional integral inequalities on timescales. For that, we
use some of the properties of [5, Theorem 31].

Theorem 2.3 (Cf. Theorem 31 of [5]) Let α ∈ (0, 1], a, b, c ∈ T, γ ∈ R, and f, g be two rd-continuous
functions. Then,

(i)
∫ b
a [ f (t) + g(t)]�αt = ∫ b

a f (t)�αt + ∫ b
a g(t)�αt ;

(ii)
∫ b
a (γ f )(t)�αt = γ

∫ b
a f (t)�αt ;

(iii)
∫ b
a f (t)�αt = − ∫ a

b f (t)�αt ;

(iv)
∫ b
a f (t)�αt = ∫ c

a f (t)�αt + ∫ b
c f (t)�αt ;

(v) if there exist g : T → R with | f (t)| ≤ g(t) for all t ∈ [a, b], then ∣∣ ∫ b
a f (t)�αt

∣∣ ≤ ∫ b
a g(t)�αt .

3 Main results

The chain rule, as we know it from the classical differential calculus, does not hold for the BHT fractional
calculus. A simple example of this fact has been given in [5, Example 20]. Moreover, it has been shown in [5,
Theorem 21], using the mean value theorem, that if g : T → R is continuous and fractional differentiable of
order α ∈ (0, 1] at t ∈ T

κ and f : R → R is continuously differentiable, then there exists c ∈ [t, σ (t)] such
that Tα( f ◦ g)(t) = f ′(g(c))Tα(g)(t). In Sect. 3.1, we provide two other chain rules. Then, in Sect. 3.2, we
prove some fractional integral inequalities on timescales.

3.1 Fractional chain rules on timescales

Theorem 3.1 (Chain Rule I) Let f : R → R be continuously differentiable, T be a given timescale and
g : T → R be α-fractional differentiable. Then, f ◦ g : T → R is also α-fractional differentiable with
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Tα( f ◦ g)(t) =
[∫ 1

0
f ′ (g(t) + hμ(t)tα−1Tα(g)(t)

)
dh

]
Tα(g)(t). (1)

Proof We begin by applying the ordinary substitution rule from calculus:

f (g(σ (t))) − f (g(s)) =
∫ g(σ (t))

g(s)
f ′(τ )dτ

= [g(σ (t)) − g(s)]
∫ 1

0
f ′(hg(σ (t)) + (1 − h)g(s))dh.

Let t ∈ T
κ and ε > 0. Since g is α-fractional differentiable at t , we know from Definition 2.1 that there exists

a neighbourhood U1 of t such that∣∣[g(σ (t)) − g(s)]t1−α − Tα(g)(t)(σ (t) − s)
∣∣ ≤ ε∗|σ(t) − s| for all s ∈ U1,

where

ε∗ = ε

1 + 2
∫ 1

0

∣∣ f ′(hg(σ (t)) + (1 − h)g(t))
∣∣ dh

.

Moreover, f ′ is continuous on R and, therefore, it is uniformly continuous on closed subsets of R. Observing
that g is also continuous, because it is α-fractional differentiable (see item (i) of Theorem 4 in [5]), there exists
a neighbourhood U2 of t such that

| f ′(hg(σ (t)) + (1 − h)g(s)) − f ′(hg(σ (t)) + (1 − h)g(t))| ≤ ε

2(ε∗ + |Tα(g)(t)|)
for all s ∈ U2. To see this, note that

|hg(σ (t)) + (1 − h)g(s) − (hg(σ (t)) + (1 − h)g(t))| = (1 − h)|g(s) − g(t)|
≤ |g(s) − g(t)|

holds for all 0 ≤ h ≤ 1. We then define U := U1 ∩U2 and let s ∈ U . For convenience, we put

γ = hg(σ (t)) + (1 − h)g(s) and β = hg(σ (t)) + (1 − h)g(t).

Then we have∣∣∣∣[( f ◦ g)(σ (t)) − ( f ◦ g)(s)]t1−α − Tα(g)(t)(σ (t) − s)
∫ 1

0
f ′(β)dh

∣∣∣∣
=

∣∣∣∣t1−α[g(σ (t)) − g(s)]
∫ 1

0
f ′(γ )dh − Tα(g)(t)(σ (t) − s)

∫ 1

0
f ′(β)dh

∣∣∣∣
=

∣∣∣∣
(
t1−α[g(σ (t)) − g(s)] − (σ (t) − s)Tα(g)(t)

)

×
∫ 1

0
f ′(γ )dh + Tα(g)(t)(σ (t) − s)

∫ 1

0
( f ′(γ ) − f ′(β))dh

∣∣∣∣
≤ ∣∣t1−α[g(σ (t)) − g(s)] − (σ (t) − s)Tα(g)(t)

∣∣
∫ 1

0
| f ′(γ )|dh

+ ∣∣Tα(g)(t)
∣∣|σ(t) − s|

∫ 1

0
| f ′(γ ) − f ′(β)|dh

≤ ε∗|σ(t) − s|
∫ 1

0
| f ′(γ )|dh + [

ε∗ + ∣∣Tα(g)(t)
∣∣]|σ(t) − s|

∫ 1

0
| f ′(γ ) − f ′(β)|dh

≤ ε

2
|σ(t) − s| + ε

2
|σ(t) − s|

= ε|σ(t) − s|.
Therefore, f ◦ g is α-fractional differentiable at t and (1) holds. 	
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Let us illustrate Theorem 3.1 with an example.

Example 3.2 Let g : Z → R and f : R → R be defined by

g(t) = t2 and f (t) = et .

Then, Tα(g)(t) = (2t + 1)t1−α and f ′(t) = et . Hence, we have by Theorem 3.1 that

Tα( f ◦ g)(t) =
[∫ 1

0
f ′(g(t) + hμ(t)tα−1Tα(g)(t))dh

]
Tα(g)(t)

= (2t + 1)t1−α

∫ 1

0
et

2+h(2t+1)dh

= (2t + 1)t1−αet
2
∫ 1

0
eh(2t+1)dh

= (2t + 1)t1−αet
2 1

2t + 1

[
e2t+1 − 1

]

= t1−αet
2[
e2t+1 − 1

]
.

Theorem 3.3 (Chain Rule II) Let T be a timescale. Assume ν : T → R is strictly increasing and T̃ := ν(T)

is also a timescale. Let w : T̃ → R, α ∈ (0, 1], and T̃α denote the α-fractional derivative on T̃. If for each
t ∈ T

κ , T̃α(w)(ν(t)) exists and for every ε > 0, there is a neighbourhood V of t such that

|σ̃ (ν(t)) − ν(s) − Tα(ν)(t)(σ (t) − s)| ≤ ε|σ(t) − s| for all s ∈ V,

where σ̃ denotes the forward jump operator on T̃, then

Tα(w ◦ ν)(t) = [
T̃α(w) ◦ ν

]
(t)Tα(ν)(t).

Proof Let 0 < ε < 1 be given and define ε∗ := ε[1 + |Tα(ν)(t)| + |T̃α(w)(ν(t))|]−1. Note that 0 < ε∗ < 1.
According to the assumptions, there exist neighbourhoods U1 of t and U2 of ν(t) such that

|σ̃ (ν(t)) − ν(s) − Tα(ν)(t)(σ (t) − s)| ≤ ε∗|σ(t) − s|
for all s ∈ U1 and∣∣[w(σ̃ (ν(t))) − w(r)]t1−α − T̃α(w)(ν(t))(σ̃ (ν(t)) − r)

∣∣ ≤ ε∗|σ̃ (ν(t)) − r |
for all r ∈ U2. Let U := U1 ∩ ν−1(U2). For any s ∈ U , we have that s ∈ U1 and ν(s) ∈ U2 with

∣∣[w(ν(σ (t))) − w(ν(s))]t1−α − (σ (t) − s)
[
T̃α(w)(ν(t))

]
Tα(ν)(t)

∣∣
= ∣∣[w(ν(σ (t))) − w(ν(s))]t1−α − [σ̃ (ν(t)) − ν(s)]T̃α(w)(ν(t))

+ [σ̃ (ν(t)) − ν(s) − Tα(ν)(t)(σ (t) − s)]T̃α(w)(ν(t))
∣∣

≤ ε∗|σ̃ (ν(t)) − ν(s)| + ε∗|σ(t) − s||T̃α(w)(ν(t))|
≤ ε∗[|σ̃ (ν(t)) − ν(s) − (σ (t) − s)Tα(ν)(t)|

+ |σ(t) − s||Tα(ν)(t)| + |σ(t) − s||T̃α(w)(ν(t))|]
≤ ε∗[ε∗|σ(t) − s| + |σ(t) − s||Tα(ν)(t)| + |σ(t) − s||T̃α(w)(ν(t))|]
= ε∗|σ(t) − s|[ε∗ + |Tα(ν)(t)| + |T̃α(w)(ν(t))|]
≤ ε∗[1 + |Tα(ν)(t)| + |T̃α(w)(ν(t))|]|σ(t) − s|
= ε|σ(t) − s|.

This proves the claim. 	
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3.2 Fractional integral inequalities on timescales

The α-fractional integral on timescales was introduced in [5, Section 3], where some basic properties were
proved. Here we show that the α-fractional integral satisfies appropriate fractional versions of the fundamental
inequalities of Hölder, Cauchy–Schwarz, Minkowski, Jensen and Hermite–Hadamard.

Theorem 3.4 (Hölder’s fractional inequality on timescales) Let α ∈ (0, 1] and a, b ∈ T. If f, g, h : [a, b] →
R are rd-continuous, then

∫ b

a
| f (t)g(t)||h(t)|�αt ≤

[∫ b

a
| f (t)|p|h(t)|�αt

] 1
p
[∫ b

a
|g(t)|q |h(t)|�αt

] 1
q

, (2)

where p > 1 and 1
p + 1

q = 1.

Proof For nonnegative real numbers A and B, the basic inequality

A1/p B1/q ≤ A

p
+ B

q

holds. Now, suppose, without loss of generality, that
[∫ b

a
| f (t)|p|h(t)|�αt

] [∫ b

a
|g(t)|q |h(t)|�αt

]
�= 0.

Applying Theorem 2.3 and the above inequality to

A(t) = | f (t)|p|h(t)|∫ b
a | f (τ )|p|h(τ )|�ατ

and B(t) = |g(t)|q |h(t)|∫ b
a |g(τ )|p|h(τ )|�ατ

,

and integrating the obtained inequality between a and b, which is possible since all occurring functions are
rd-continuous, we find that

∫ b

a
[A(t)]1/p[B(t)]1/q�αt

=
∫ b

a

| f (t)||h(t)|1/p[∫ b
a | f (τ )|p|h(τ )|�ατ

]1/p
|g(t)||h(t)|1/q[∫ b

a |g(τ )|q |h(τ )|�ατ
]1/q �αt

≤
∫ b

a

[
A(t)

p
+ B(t)

q

]
�αt

=
∫ b

a

[
1

p

| f (t)|p|h(t)|∫ b
a | f (τ )|p|h(τ )|�ατ

+ 1

q

|g(t)|q |h(t)|∫ b
a |g(τ )|q |h(τ )|�ατ

]
�αt

= 1

p

∫ b

a

[
| f (t)|p|h(t)|∫ b

a | f (τ )|p|h(τ )|�ατ

]
�αt + 1

q

∫ b

a

[
|g(t)|q |h(t)|∫ b

a |g(τ )|q |h(τ )|�ατ

]
�αt

≤ 1

p
+ 1

q
= 1.

This directly yields the Hölder inequality (2). 	

As a particular case of Theorem 3.4, we obtain the following inequality.

Theorem 3.5 (Cauchy–Schwarz’s fractional inequality on timescales) Let α ∈ (0, 1] and a, b ∈ T. If f, g, h :
[a, b] → R are rd-continuous, then

∫ b

a
| f (t)g(t)||h(t)|�αt ≤

√[∫ b

a
| f (t)|2|h(t)|�αt

] [∫ b

a
|g(t)|2|h(t)|�αt

]
.
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Proof Choose p = q = 2 in Hölder’s inequality (2). 	

Using Hölder’s inequality (2), we can also prove the following result.

Corollary 3.6 Let α ∈ (0, 1] and a, b ∈ T. If f, g, h : [a, b] → R are rd-continuous, then

∫ b

a
| f (t)g(t)||h(t)|�αt ≥

[∫ b

a
| f (t)|p|h(t)|�αt

] 1
p
[∫ b

a
|g(t)|q |h(t)|�αt

] 1
q

,

where 1
p + 1

q = 1 and p < 0 or q < 0.

Proof Without loss of generality, we may assume that p < 0 and q > 0. Set P = − p
q and Q = 1

q . Then,
1
P + 1

Q = 1 with P > 1 and Q > 0. From (2) we can write that

∫ b

a
|F(t)G(t)||h(t)|�αt

≤
[∫ b

a
|F(t)|P |h(t)|�αt

] 1
P

[∫ b

a
|G(t)|Q |h(t)|�αt

] 1
Q

(3)

for any rd-continuous functions F,G : [a, b] → R. The desired result is obtained by taking F(t) = [ f (t)]−q

and G(t) = [ f (t)]q [g(t)]q in inequality (3). 	

Next, we use Hölder’s inequality (2) to deduce a fractional Minkowski’s inequality on timescales.

Theorem 3.7 (Minkowski’s fractional inequality on timescales) Let α ∈ (0, 1], a, b ∈ T and p > 1. If
f, g, h : [a, b] → R are rd-continuous, then

[∫ b

a
|( f + g)(t)|p|h(t)|�αt

]1/p

≤
[∫ b

a
| f (t)|p|h(t)|�αt

] 1
p

+
[∫ b

a
|g(t)|p|h(t)|�αt

] 1
p

. (4)

Proof We apply Hölder’s inequality (2) with q = p/(p − 1) and items (i) and (v) of Theorem 2.3 to obtain
∫ b

a
|( f + g)(t)|p|h(t)|�αt

=
∫ b

a
|( f + g)(t)|p−1|( f + g)(t)||h(t)|�αt

≤
∫ b

a
| f (t)||( f + g)(t)|p−1|h(t)|�αt +

∫ b

a
|g(t)||( f + g)(t)|p−1|h(t)|�αt

≤
[∫ b

a
| f (t)|p|h(t)|�αt

] 1
p
[∫ b

a
|( f + g)(t)|(p−1)q |h(t)|�αt

] 1
q

+
[∫ b

a
|g(t)|p|h(t)|�αt

] 1
p
[∫ b

a
|( f + g)(t)|(p−1)q |h(t)|�αt

] 1
q

=
[∫ b

a
|( f + g)(t)|p|h(t)|�αt

] 1
q

×
⎛
⎝

[∫ b

a
| f (t)|p|h(t)|�αt

] 1
p

+
[∫ b

a
|g(t)|p|h(t)|�αt

] 1
p

⎞
⎠ .

Dividing both sides of the obtained inequality by
[ ∫ b

a |( f + g)(t)|p|h(t)|�αt
] 1
q , we arrive at the Minkowski

inequality (4). 	
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Jensen’s classical inequality relates the value of a convex/concave function of an integral to the integral of
the convex/concave function. We prove a generalization of such relation for the BHT fractional calculus on
timescales.

Theorem 3.8 (Generalized Jensen’s fractional inequality on timescales) Let T be a timescale, a, b ∈ T with
a < b, c, d ∈ R, α ∈ (0, 1], g ∈ C ([a, b] ∩ T; (c, d)) and h ∈ C ([a, b] ∩ T;R) with

∫ b

a
|h(s)|�αs > 0.

• If f ∈ C ((c, d);R) is convex, then

f

(∫ b
a g(s)|h(s)|�αs∫ b

a |h(s)|�αs

)
≤

∫ b
a f (g(s))|h(s)|�αs∫ b

a |h(s)|�αs
. (5)

• If f ∈ C ((c, d);R) is concave, then

f

(∫ b
a g(s)|h(s)|�αs∫ b

a |h(s)|�αs

)
≥

∫ b
a f (g(s))|h(s)|�αs∫ b

a |h(s)|�αs
. (6)

Proof We start by proving (5). Since f is convex, for any t ∈ (c, d) there exists at ∈ R such that

at (x − t) ≤ f (x) − f (t) for all x ∈ (c, d). (7)

Let

t =
∫ b
a g(s)|h(s)|�αs∫ b

a |h(s)|�αs
.

It follows from (7) and item (v) of Theorem 2.3 that

∫ b

a
f (g(s))|h(s)|�αs −

(∫ b

a
|h(s)|�αs

)
f

(∫ b
a g(s)|h(s)|�αs∫ b

a |h(s)|�αs

)

=
∫ b

a
f (g(s))|h(s)|�αs −

(∫ b

a
|h(s)|�αs

)
f (t)

=
∫ b

a
( f (g(s)) − f (t)) |h(s)|�αs

≥ at

∫ b

a
(g(s) − t) |h(s)|�αs

= at

(∫ b

a
g(s)|h(s)|�αs − t

∫ b

a
|h(s)|�αs

)

= at

(∫ b

a
g(s)|h(s)|�αs −

∫ b

a
g(s)|h(s)|�αs

)

= 0.

This proves (5). To prove (6), we simply observe that F(x) = − f (x) is convex (because we are now assuming
f to be concave) and then we apply inequality (5) to function F . 	


We end with an application of Theorem 3.8.
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Theorem 3.9 (A weighted fractional Hermite–Hadamard inequality on timescales) Let T be a timescale,
a, b ∈ T and α ∈ (0, 1]. Let f : [a, b] → R be a continuous convex function and let w : T → R be a
continuous function such that w(t) ≥ 0 for all t ∈ T and

∫ b
a w(t)�αt > 0. Then,

f (xw,α) ≤ 1∫ b
a w(t)�αt

∫ b

a
f (t)w(t)�αt ≤ b − xw,α

b − a
f (a) + xw,α − a

b − a
f (b), (8)

where xw,α =
∫ b
a tw(t)�α t∫ b
a w(t)�α t

.

Proof For every convex function one has

f (t) ≤ f (a) + f (b) − f (a)

b − a
(t − a).

Multiplying this inequality with w(t), which is nonnegative, we get

w(t) f (t) ≤ f (a)w(t) + f (b) − f (a)

b − a
(t − a)w(t).

Taking the α-fractional integral on both sides, we can write that∫ b

a
w(t) f (t)�αt ≤

∫ b

a
f (a)w(t)�αt +

∫ b

a

f (b) − f (a)

b − a
(t − a)w(t)�αt,

which implies ∫ b

a
w(t) f (t)�αt

≤ f (a)

∫ b

a
w(t)�αt + f (b) − f (a)

b − a

(∫ b

a
tw(t)�αt − a

∫ b

a
w(t)�αt

)
,

that is,

1∫ b
a w(t)�αt

∫ b

a
f (t)w(t)�αt ≤ b − xw,α

b − a
f (a) + xw,α − a

b − a
f (b).

We have just proved the second inequality of (8). For the first inequality of (8), we use (5) of Theorem 3.8 by
taking g : T → T defined by g(s) = s for all s ∈ T and h : T → R given by h = w. 	


Note that if in Theorem 3.9 we consider a concave function f instead of a convex one, then the inequalities
of (8) are reversed.
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