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Abstract

In this paper, we introduce the concept of the rectangular M-metric spaces, along with its topology and we prove some
fixed-point theorems under different contraction principles with various techniques. The obtained results generalize some
classical fixed-point results such as the Banach’s contraction principle, the Kannan’s fixed-point theorem and the Chat-

terjea’s fixed-point theorem. Also we give an application to the fixed-circle problem.

Keywords Rectangular M-metric space - Fixed point

Mathematics Subject Classification Primary 54E35 - Secondary 54E40 - 54H25 - 47H10

Introduction

The well-known Banach contraction principle has been
studied and generalized in many different directions such
as generalizing the used metric spaces. Recently, new
generalized metric spaces have been presented for this
purpose. For example, M-metric spaces, rectangular metric
spaces, partial rectangular metric spaces have been intro-
duced and studied (see [2, 3, 7]). Branciari in [3] defined
rectangular metric spaces as follows:

Definition 1.1 [3] (Rectangular metric space (Branciari
metric space)) Let X be a nonempty set. A mapping d :
X x X — R" is said to be a rectangular metric on X if for
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any x,y € X and all distinct points u,v € X\ {x,y}, it
satisfies the following conditions:

(R1) x=yif and only if d(x,y) = 0;

(R2) d(x,y) =d(y,x);

(R3) d(x,y) <d(x,u) +d(u,v) +d(v,y) (rectangular
inequality).

In this case the pair (X, d) is called a rectangular metric
space.

Inspired by the work of Branciari, Shukla in [7] defined
rectangular partial metric spaces which are generalizations
of rectangular metric spaces.

Definition 1.2
X be a nonempty set. A mapping p : X x X — R7 is said to
be a partial rectangular metric on X if for any x,y € X and
all distinct points u,v € X \ {x,y}, it satisfies the following
conditions :

[7] (Partial rectangular metric space) Let

(RPy) x =y if and only if p(x,y) = p(x,x) = p(y,y);
(RP2)  p(x,x) < p(x,y);
(RP3)  p(x,y) = p(y,x);
(RP4) p(xay)gp(xvu)+p(uvv)+p(v7y)
—p(mu) - p(v, v)'

In this case, the pair (X, p) is called a partial rectangular
metric space.

Asadi et al. in [2] gave an extension to the partial metric
spaces, called M-metric spaces, defined as follows.
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Notation 1.3 [2]

1. myy :=min{m(x,x),m(y,y)}.
2. M., :=max{m(x,x),m(y,y)}.

Definition 1.4 [2] Let X be a nonempty set. If the function
m:X x X — R satisfies the following conditions for all
x,y,z€X

(M)  m(x,x) = m(y,y) = m(x,y) if and only if x =y,
(M) myy<m(x,y),
(M3) m(x’y) = m(y,x),
(Ma)  (m(x,y) = myy) < (m(x,2) —my)
+(m(z7y) - mZAy)’

then the pair (X, m) is called an M-metric space.

On these new spaces, some generalized fixed-point
results have been obtained (see [1-3, 6, 7]). In this paper,
we introduce the concept of a rectangular M-metric space,
along with proving some fixed-point theorems for self-
mappings in rectangular M-metric spaces. In Sect. 2, we
define the notion of a rectangular M-metric space and
investigate some basic properties of this new space. In
Sect. 3, we present some topological concepts about open
balls and convergence in rectangular M -metric spaces. In
Sect. 4, we prove new generalizations of classical fixed-
point results such as the Banach’s contraction principle, the
Kannan’s fixed-point theorem and the Chatterjea’s fixed-
point theorem. In Sect. 5, we define the notions of a circle
and a fixed circle. Using these concepts, we present an
application to fixed-circle problem.

Rectangular M-metric spaces

At first, we need to present the following notation.

Notation 2.1

1' mrx._v = min{mr(xvx)a mr(yay)}
2' er.y = max{m,(x, x),mr(%)’)}

Definition 2.2 Let X be a nonempty set and m, : X x X —
[0,00) be a function. If the following conditions are sat-
isfied for all x, y in X

(RMI) mr(x7Y) = mrxyy = er.,v > X=),

(RMZ) mr,\._v S my (‘x? y)?

(RM3) mr(x7y) zm,.(y,x),

(RMy)  my(x,y) — my, < my(x,u) — my,_, +m.(u,v)

—my,, +m,(v,y) —m,, forall u,v e X\ {x,y},

’r @ Springer

then the pair (X,m,) is called a rectangular M-metric
space.

Notice that every M-metric is also a rectangular M-
metric.

Remark 2.3 Let (X,m,) be a rectangular M-metric space.
Clearly, we have

(€)) OSMr,_) ""‘mrm = mr(x7x) +mr(y=y)7
2 0<M,, —m, = |m(x,x)—m(y,y)|
for every x,y € X.
Also it can be easily verified the following
inequality under some cases:
3 M, —m, <M, —m,)+ M, —m,)

+ (M,w — m,)
For example, if we consider the case
my (%, x) 2 mp(u, 1) 2 me(v,v) = m(y, y),
then we get

M, —my, =m(x,x) = m(y,y)
=my(x,x) — me(y,y) + my(u,u) — m(u, u)
+ mp(v,v) —m;(v,v)
= (m,(x,x) — m,(u,u)) + (m,(u,u) —m,(v,v))
+ (me(v,v) —m(y,y))
= (M - mrm) + (Mm - mrw) + (Mrm - mrw).

rXJl

Now we give some examples.

Example 2.4 Let C be the set of all complex numbers, and
consider the set Xy = {z € C:arg(z) =0} U{0} for a
fixed 0,0 < 0 <2nx. If we define the self-mapping m, on Xy
given by m,(x,y) = MZM for all x,y € Xp, then (Xg, m,)
is a rectangular M-metric space.

We will only show that the following triangular
inequality holds since the other conditions of the metric
are satisfied (easy to check).

my(x,y) = my, <mp(x,u) = my, +m(u,v) =m,,

+me(v,y) —my, . (2.1)
Let x,y,u,v € Xyp. We suppose without loss of generality
that || < Il Then, m, () = T2, () = bzl

iy (,v) = Jul + v

cases:

. We need to consider the following
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Case 1:

Case 2:

Case 3:

Case 4-:

Case 5:

Case 6:

|u] < ] < x| <|yl:

We have m, = |x|, m,_, = |u|, m,,, = |u| and
m,, = |v|. Therefore, (2.1) holds. Indeed, (2.1)
can be written as follows:

SR O e R R
Lt I 4 < PR Lt LN A S
T E g
X+ Iy
— = Ju] = ] = E 2,

2

which is correct since |u| < |x]|.

|u| < |x| <|v|<|y| : It follows as in the previous
case.

ul < Jx| < [y[ < vl

We obtain
LR R R W TR
vl + 1yl
R ||
x| + [yl
= BBl + ol = ),

which is correct given that |u| + |y| — |v] <|x]|.
x| < ul <<y

x| + Iyl x| + [ul Jul + VI
el ILIN U B Pl AL il IO Ll BN i}
DT g by e
v+ [y] _ 1yl
— |u| + 7~ [v] = 5

+ Juaf A V] = Jua] = Jua = ]v]

|X| |y‘
< — — |x|.

x| < ful < |y[<|v]:

R A 7N EX T
bl D
= E
vl = el = Jul = Iy
1+ b
e (RERV R )}

Since |x| + |y| — |v| < |x], therefore the

inequality holds.

|x] <|y| <|u| <|v| : It follows as in the previous
case.

We note that if we permute u and v in all the precedent
cases, (2.1) is still valid. Hence, (Xp,m,) is a rectangular
M -metric space.

Proposition 2.5 Let (X, d) be a rectangular metric space
and a function £ :[0,00) — [0,00) be a one-to-one and
nondecreasing function with £(0) = o such that

Ex+y+2) <Ex)+ &) + &(z) — 2a,

for all x,y,7 € [0,00). Then, the function m, : X x X —
[0,00) is defined as

mr(x7y) = é(d(xa y))a
for all x,y € X is a rectangular M-metric.

Proof From the hypothesis, it can be easily checked that
the conditions (RM,) , (RM;) and (RM3) are satisfied. Now
we show that the condition (RM,) is satisfied. Using the
condition (R3), we obtain

<(d(x,y)) < ¢(d(x,u) + d(u,v) +d(v,y))
<E(dlx,u)) + &(d(u,v) + E(d(v,y)) — 20

and

Therefore, we get

my(x,y) = my <me(xu) = my, 4 mp(u,v) —my,,
+m(v,y) — my, ..

Consequently, m, is a rectangular M-metric. O

Example 2.6 Let (X, d) be a rectangular metric space and
a function ¢ : [0,00) — [0, 00) be defined as

() = mt +n,

with £(0) = « for all 7 € [0, c0). From Proposition 2.5, the
function m, (x,y) = md(x,y) + n is a rectangular M-metric.

Note that we can obtain a rectangular metric space from
a rectangular M -metric space as seen in the following
examples.

Example 2.7 Let (X, m,) be a rectangular M-metric space
and m? : X x X — [0, 00) be a function defined as

m‘r,‘v('x7y) = mr('x7y) - 2mrx,y + er.y’

for all x,y € X. Then, m is a rectangular metric and the
pair (X,m) is a rectangular metric space.

Now we show that the conditions (R;), (R,) and (R3)
are satisfied as follows:

(Ry) Using the conditions (RM;) and (RM,), we get

Y
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m)(x,y) =0 < m,(x,y) —2m, +M, =0
e m(x,y) =2m,  —M,

FXJ.
and

My, Smp(x,y) =2m =M, & M, <mp <M

rX,V

<:>mr(x7y) = mr(-xyx) = mr(yvy) S X=Y,

for all x,y € X.
(Ry) Using the conditions (RM3), we have
m:v‘(x’ y) = mr(x7 y) - Zm").y + er,_v
=m(y,x) = 2my, 4+ M, = m(y,x),
for all x,y € X.
(R3) Using the conditions (RM4) and the inequality (3)
given in Remark 2.3, we get
m;v(x7y) :mr(x7y) - 2"/nrm + Mrw
= (me(x,y) = my,) + My, —m, )
< [m,(x, u) —my, +m(u,v) —my,, +m(v,y) — m,v_y]
+ (M, —mp,) + (M, —my,) + (M, —my,,)]

=m (x,u) +m? (u,v) +m?(v,y),

for all u,v € X\ {x,y}. Consequently, (X,m") is a rect-
angular metric space.

Example 2.8 Let (X, m,) be a rectangular M-metric space
and m} : X x X — [0,00) be a function defined as

mi(xvy) = mr(x7y) - My,

for all x,y € X such that if m}(x,y) = 0 then x = y. Then,
m} is a rectangular metric and the pair (X,m}) is a rect-
angular metric space.

Now we show that the conditions (R;), (R,) and (Rj3)
are satisfied as follows :

(R1) Using the hypothesis and the definition of m}, we
get
x =y = m(x,x) =m(x,x) —my,

=m,(x,x) — min{m, (x,x),m,(x,x)} =0
and
my(x,y) =0=x=y,

for all x,y € X.
(Rz) Using the condition (RM3), we have

my(x,y) = me(x,y) = my = my(y,x) —my, .= m(y,x),

for all x,y € X.
(R3) Using the condition (RMy), we obtain

m;(xv y) = m,.(x, y) - mrx,,\'
< mp(x,u) —m,  +me(u,v) —m, +m(v,y) — my,

= m (o, 1) + m(u, v) + mi (v, y),

Y4
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for all u,v € X\ {x,y}. Consequently, (X,m}) is a rect-
angular metric space.

In the following proposition, we see the relationship
between a rectangular partial metric and a rectangular M-
metric.

Proposition 2.9 FEvery partial rectangular metric is a
rectangular M-metric.

Proof Let m, be a partial rectangular metric. Let us con-
sider the following cases:

(M m(x,x) = my(y,y) = m,(u,u) = m.(v,v),

2)  m(x,x)<m(y,y) <m,(u,u) <m,(v,v),
3 m(x,x) =m.(y,y) = m(u,u) <m.(v,v),
@ me(x,x) = m.(y,y) <m(u,u) <m,(v,v),
S m(x,x) =m.(y,y) <m(u,u) <m.(v,v),
©)  m(x,x)<m.(y,y)<m,(u,u) = m(v,v),
@ me(x,x) <m.(y,y) = my(u,u) <m,(v,v),
®)  my(x,x) <m.(y,y) = my(u,u) = m,(v,v),
) m(x,x) >m(y,y) > m(u,u) > m.(v,v),
(10)  my(x,x) = mp(y,y) = my(u,u) > m(v,v),
(1D me(x,x) = my(y,y) > m,(u,u) = m,(v,v),
12y my(x,x) = m.(y,y) > m,(u,u) > m,(v,v),
(13)  my(x,x) > m(y,y) > m,(u,u) = m,(v,v),
(14 my(x,x) > m.(y,y) = m;(u,u) > m,(v,v),
(15)  my(x,x) > m,(y,y) = my(u,u) = m,(v,v)

Under the above cases, the condition (RMy) is satisfied. For
example, if we consider case (2), then we get

’nr(x»y)(S m)r(xa u) +m(u,v) +m(v,y) — m(u,u)

and so

me(x,y) — Mpcy =my(x,y) — m.(x,X)
< m,(x,u) + m,(u,v) +m,(v,y)
—m,(u,u) — m,(v,v) — m(x,x)
< [my(x,u) — mp(x,x)] + [m,(u,v)
—my(u,u)] + [m,(v,y) — m.(y,y)]
= my(x,y) = my +m(u,v) = m,,

+ mr(vvy) — My,

for all u,v € X \ {x,y}. Using the similar arguments, it can
be easily seen that the condition (RMjy) is satisfied under
the other cases. Therefore, the partial rectangular metric m,
is a rectangular M -metric. O

The converse statement of Proposition 2.9 is not always
true as seen in the following example.

Example 2.10 Let X = {1,2,3,4} and the function m, :
X x X — [0,00) be defined by
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my(1,1) = m,(2,2) = m,(3,3) = landm,(4,4) = 8,

m(1,2) = m,(2,1) =4,
m(1,3) = m,(3,1) =4,
mo(1,4) = my(4,1) = 4,
m,(2,3) =m,(3,2) =5,
my(2,4) = m,(4,2) = 6
my(3,4) =m,(4,3) =17,

for all x,y € X. Then, m, is a rectangular M-metric, but it is
not a rectangular partial metric on X. Indeed, for x =4,
y =3, we have

m,(4,4) =8<m,(4,3) =1,

which is a contradiction. Therefore, the condition (RP,) is
not satisfied.

It is known that every metric space is a rectangular
metric space (see [4]) and that every rectangular metric
space is a partial rectangular metric space with zero self-
distance (see [7]). Also every metric space is a partial
metric space and every partial metric space is an M -metric
space (see [2, 5]). Consequently, we can give the following
diagram. Here, arrows stand for inclusions.

(3) A rectangular M-metric space is said to be m,-
complete if every m,-Cauchy sequence {x,} con-
verges to a point x such that

lim (m,(x,,x) —m, )= 0and lim (M, , —m; )
n—oo n—oo ’ n
=0.

Lemma 3.2 Assume that x, — x and y, — y as n —
oo in a rectangular M-metric space (X, m,). Then,

(3.1)

Proof Using the triangular inequality of the rectangular
M-metric, we obtain

nlijgo(mr (xila yn) - mrx,,.yn) = mr(xa y) = My -

mr(xnayn) —my, < mr(xnax) —my,  + mr(xay) - My,
+ m, (yv))n) - m"}n}'n .

Then,

mr(xnayn) =My, m,(x,y) + my, < mr(xnvx) - My, .
+ my (y?yn) - mry,y” .
(3.2)

metric spaces ——————————— partial metric spaces ——————————— M-metric spaces

|

|

rectangular metric spaces —— partial rectangular metric spaces — rectangular M-metric spaces

Some topological notions of rectangular M-
metric spaces

In this section, we investigate some topological properties
of rectangular M-metric spaces.

Convergence in rectangular M-metric spaces

Definition 3.1 Let (X,m,) be a rectangular M-metric
space. Then, we have

(1) A sequence {x,} in X converges to a point x if and
only if

lim (mr(-xn7x) - mr,mx) =0.

n—oo

(2) A sequence {x,} in X is said to be m,-Cauchy
sequence if and only if

lim (m,(x,,%n) —m,, Jand lim (M

Txnxm man.Xm)
n,m—0o0 n,m—o0

exist and finite.

Knowing that (x,) converges to x and (y,) converges to y,
we obtain the result from (3.2), that is,

me(x,y) — my <mp(x,x,) — my A m(Xa,yn) —my,
+ My (Y, y) — My,
and then
my(x,y) = my,, < lim (1 (X, y0) = 1y, )
O

From Lemma 3.2, we can deduce the following lemma.

Lemma 3.3 Assume that x, — x as n — 00 in a rect-
angular M-metric space (X, m,). Then

lim (m,(x,,y) — m,}tn__v) =m,(x,y) — m,  forall y € X.
(3.3)

Lemma 3.4 Assume that x, — x and y, — y as n —
oo in a rectangular M-metric space (X,m,). Then,
my(x,y) = m,, . Further if m,(x,x) = m,(y,y), then x = y.

’r @ Springer
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Proof From Lemma 3.2, we have

0= nlinolc(mr(xm)’n) - mrx,,y,,) = m,(x,y) — my,,

and then
m(x,y) = m,,.

From the condition (RM;) and the hypothesis

my(x,x) = m,(y,y), we get x = y. O

Lemma 3.5 Let {x,} be a sequence in a rectangular M-
metric space (X, m,), such that

there existsr € [0, 1) such that m, (X1, x,) < rmy(x,, X,-1)
foralln € N. (3.4)

Then,

(A)  lim My (X, X,-1) = 0,

B)  lim m,(51,5,) = 0.

© Tim m, =0,

n,m—o0

(D) {xn} is an m,-Cauchy sequence.

Fxn xm

Proof Using the definition of convergence and inequality
(3.4), the proof of the condition (A) follows easily. From
the condition (RM,) and the condition (A), we get

lim min{m, (x,,x,), m,(Xp—1,%,—1)} = limm,

Foo
n—o0 -l

< lim m,(x,,x,—1) = 0.

n—oo

Therefore, the condition B) holds. Since
limy, o0 M, (X4, X, ) = 0, the condition (C) holds. Using the
previous conditions and Definition 3.1, we see that the
condition (D) holds. l

Lemma 3.6 Let (X,m,) be a rectangular M-metric space.
Then, we get

(1) {x,} is an m,-Cauchy sequence in (X, m,) if and only
if {x,} is a Cauchy sequence in (X,m)) (resp.
(X, m).

2) (X, m,) is m,-complete if and only if (X,m)) ( resp.
(X,m3)) is complete.

Proof Using Examples 2.7 and 2.8, the proof follows
easily. O

Topology of rectangular M-metric spaces

Let m, be a rectangular M-metric on X. For all x € X and
¢ > 0, the open ball with the center x and the radius ¢ is

B(x,e) = {y € X i m,(x,y) — m,  <e}.

Notice that we have x € B(x,¢) for all ¢ > 0. Indeed, we
get

’r @ Springer

my(x,x) —m, = m.(x,x) —m(x,x) = 0<e.

Similarly, the closed ball with the center x and the radius ¢
is

Blx,e] = {y € X :m,(x,y) —m,  <e&}.

Lemma 3.7 Let m, be a rectangular M-metric on X. The
collection of all open balls on X

Ba, = {Bx.e) 1.5,

forms a basis on X.

Proof Lety € B(x,¢). Then, we have
me(x,y) —m,  <e,

for all x € X and ¢ > 0. If we take

o=¢e—mx,y)+m,, (3.5)
then we get 6 > 0. Now we show that

B(y,d) C B(x,¢).

Let z € B(y, d). Then, we obtain

m(y,z) —my, <. (3.6)

From the conditions (RMy), (3.5) and (3.6), we get

my(x,2) = my <mp(x,y) =y A me(y,y) = my,

+mp(y,2) —m, <e—06+0=¢.

Consequently, we find B(y, d) C B(x,¢) and B, is a basis
on X. |

Definition 3.8

a) Let m, be a rectangular M-metric on X and 7, be the
topology generated by the open balls B(x,¢). Then,
the pair (X, 1,,) is called a rectangular M -space.

b) Let (X,t,,) be a rectangular M- space. (X, 1,,) is
called a Ty-space if for any distinct pair of points
x,y € X, there exists an open ball containing x but
not y or an open ball containing y but not x.

Theorem 3.9 A rectangular M-space is a Ty-space.

Proof Let (X,1,,) be a rectangular M-space and x,y € X
with x # y. Without loss of generality, let us consider the
following cases:

Case 1 If m,(x,x) = m,(y,), then using the hypothesis,
the conditions (RM) and (RM,), we get

mr,\.v = mr(xax) = mr(yay) <mr(xay)
and

my(x,y) —m, = m.(x,y) —m.(x,x) > 0.
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Hence, if we take & = m,(x,y) — m,(x,x), then we obtain my(Tx, Ty) < km,(x, y) forall x,y € X, (4.2)
y & B(x, ). then T has a unique fixed point u in X, where
Case 2 If my(x,x) <m,(y,y), then using the conditions () = 0.
(RM) and (RM,), we get
Proof Let x in X be arbitrary. Using (4.2), we have
m(x,y) —my,, >0
) m,.(T”x, T”Hx) < km, (T"il)c7 T”x) <o <k'my(x, Tx),

and (4.3)

my(x,y) —m, = m.(x,y) —m.(x,x) > 0.

Hence, if we take ¢ = m,(x,y) — m,(x,x), then we obtain

y € B(x,¢).
Consequently, (X, 1, ) is a Tp-space. O

Some fixed-point results

At first, we prove the following useful lemma.

Lemma 4.1 Let (X, m,) be a rectangular M-metric space
and T be a self-mapping on X. If there exists k € [0, 1)
such that

m,(Tx, Ty) < km,(x,y) forall x,y € X

(4.1)

and consider the sequence {x,},~ o defined by x,1\ = Tx,.
If x, — uas n — oo, then Tx, — Tu as n — oo.

Proof  First, note that if m,(Tx,, Tu) = 0, then m,, , =0
and that is due to the fact that m,, , <m,(Tx,, Tu), which
implies that

my(Tx,, Tu) — m,, . — 0 as n — oo andthatis

JTu

Tx, — Tu as n — oo.

So, we may assume that m,(Tx,, Tu) > 0, since by (4.1) we
have m,(Tx,, Tu) <m,(x,,u), then we have the following
two cases:

If m,(u,u) <m,(x,,x,), then it is easy to see that
my(xy,x,) — 0, which implies that m,(u,u) = 0, and since
m(Tu, Tu) <m,(u,u) = 0, we deduce that m,(Tu,Tu) =
m,(u,u) =0, and m,(x,,u) — 0; on the other, we have
my(Tx,, Tu) <m,(x,,u) — 0.

Hence, m,(Tx,, Tu) — m,, , — 0 and thus Tx, — Tu.

JTu
If m,(u, u) > m,(x,,x,), and once again it is easy to see
that m,(x,,x,) — 0, which implies that m,_ , — 0. Hence,
my(x,,u) — 0
and since m,(Tx,, Tu) <m,(x,,u) — 0, we
my(Tx,, Tu) —m,, , — 0 and thus Tx, — Tu as

desired. O

have

Now we give some fixed point theorems.

Theorem 4.2 Let (X,m,) be a complete rectangular M-
metric space and T a self-mapping on X. If there exists
0<k<1 such that

for all n > 1. We distinguish two cases.

Case 1 Let T"x = T™x for some integers n # m. For
example, take m > n . We have T""(T"x) = T"x. Choose
y=T"x and p = m — n. Then,

T’y =y,

that is, y is a periodic point of 7. By (4.2) and (4.3), we
have

my(y, Ty) = m, (T’y, T"*'y) <K'm, (v, Ty).

Since k € (0, 1), we get m,(y, Ty) = 0. On the other hand,
we have

me(y,y) = m.(T?y, T’y) <km,(T""'y, " 'y)
< o<my(Ty, Ty) <km,(y,y) <m,(y,y).

Thus,
m,(y,y) = m.(Ty, Ty) = 0.

Hence, y = Ty, that is, y is a fixed point of T.
Case 2 Suppose that T"x # T™x for all integers n # m.
We rewrite (4.3) as

n

m, (T”x, T”Hx) <k'm,(x,Tx) < 1 (4.4)

km,(x, Tx).

Similarly, by (4.2), we have
m, (T”x, T”+2x) <km, (T"_')c7 T"+1x) < ...
kn
<
STz

<k'm, (x, sz)

km, (x, sz).
(4.5)

Now, if m > 2 is odd, then consider m = 2p + 1 with
p>1. By (4.2) and (4.4), we have

m,(T"x, T""x) <m, (T"x, T”“x) + m, (T”“x, T””x)
e (T, L)
<K'm,(x, Tx) 4+ K" 'm, (x, Tx) + - - -
+ K" P m, (x, Tx)
= K'm,(x, Tx)[1 + k + k> + - + k|

n

< — .
S1C kmr(xv Ix)

On the other hand, if m > 2 is even, then consider m = 2p
with p > 2. Again, by (4.2), (4.4) and (4.5),
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m,(T"x, T""x) <m,(T"x, T””x) + m, (T"”x, T”Hx)
e (T )
<k'm, (x, sz) + k’”zm,(x, Tx)
+ K" m(x, Tx) + - - - + K m (x, Tx)
n+2
1—k

<k'm, (x, sz) + %m, (x, Tx).

<k'"m, (x, sz) +

m,(x, Tx)

We deduce from all cases that

m, (T”x, T'H'"x) <k'm, (x, sz) +

T km,(x, Tx)

for all n,m>0.
(4.6)

The right-hand side tends to 0 as n — oo, and since
my (T, T %) =y, <y (T7, T ),

we deduce that the sequence {7"x} is m,-Cauchy in the m,-
complete rectangular M-metric space (X,m,). Hence, there
exists some u € X such that

lim m,(T”x, u) = lim m,(T”x, T”‘x) = m,(u,u).

n—oo n,m—oo
In view (4.6), we get

my(u,u) = )Lngc m,(T"x,u) = lim m,(T"x,T"x) = 0.

n,m—00

(4.7)

We shall prove that Tu = u. Mention that we are still in
case 2, that is, T"x # T™x for all integers n # m. Now, we
distinguish three subcases.

Subcase 1 If for all n > 0, T"x & {u, Tu}, the rectangular
inequality implies that

my (u, Tu) < m,(u, T"x) + m.(T"x, T" "' x) + m,(T"'x, Tu)
<m(u, T"x) + mp(T"x, T"'x) + km, (T"x, u).

Taking limit as n — oo and using (4.4) and (4.7 ), we get
m,(u, Tu) = 0 that is, Tu = u.

Subcase 2 If there exists an integer N such that TVx = u.
Due to case 2, T"x # u for all n > N. Similarly, T"x # Tu
for all n > N. We reach subcase 1, so u is a fixed point of
T.

Subcase 3 If there exists an integer N such that
TNx = Tu. Again, necessarily T"x # u and T"x # Tu for
all n > N. Similarly, we get Tu = u.

We deduce that u is a fixed point of 7. To show the
uniqueness of the fixed point u, assume that 7" has another
fixed point v. By (4.2),

my(u,v) = m,(Tu, Tv) < km,(u,v),

’r @ Springer

which holds unless m,(u,v) =0, so u = v. O

Example 4.3 Taking 0 = 0, we consider the rectangular

M-metric space (Xo,m,) introduced in Example 2.4 where
xX+y

Xo = [0,00) and m,(x,y) = for all x,y € Xo. Define

the mapping T,

T : X() — X()
X

X — —~.

2

Let x,y € [0,00), we have

m,(Tx, Ty) = m,(x/2,y/2) = (x/2 +y/2)/2
_x +y < gx +y '
4 —3 2
Then, T satisfies m, (Tx, Ty) < km,(x,y) with 0<k =3 <1.
Finally, all the conditions of Theorem 4.2 are satisfied.
Therefore, T has u = 0 as a fixed point in Xj.

Theorem 4.4 Let (X,m,) be a complete rectangular M-
metric space and T be a self-mapping on X. If there exists
0<k<1 such that

m,(Tx, Ty) <kmax{m,(x,y),m,(x, Tx),m,(y,Ty)} for all x,y
eX,

(4.3)
then T has a unique fixed point u in X, where m,(u,u) = 0.

Proof Let xo € X and the sequence {x,} be defined as in
the proof of Theorem 4.2. So, we may assume that x,, #
Xpy1 for all n.

For all natural number n, we have

my, = my (X, Xp11) = my(Txy—1, Tx,) < kmax{m,(x,, xp11),
mr(xnfhxn)}“

Hence, if max{m,(x,,x,11), m,(Xy—1,%)} = m(Xp, Xp11),

then inequality (8) implies

mr(xn;xn+l) <mr(xi17xn+l)

which leads to a contradiction. Therefore,

max{m, (X, Xy41), My (Xy—1, %) } = my(xn—1,x,) forall n.

(4.10)

Thus, the sequence {x,} satisfies the hypothesis of Theo-
rem 4.2. So, similarly to the proof of Theorem 4.2, we can
easily deduce that 7 has a unique fixed point u in X, where
my(u,u) = 0. U

Theorem 4.5 Let (X,m,) be a complete rectangular M-
metric space and T be a self-mapping on X. If there exists
0<k< % such that
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m(Tx, Ty) < k[m,(x, Tx) + m,(y, Ty)] forall x,y € X,
(4.11)

then T has a unique fixed point u in X, where m,(u,u) = 0.

Proof Let xo € X and define the sequence {x,} by

X, =Tx,_; foralln=1,2,...

If there exists a natural number k such that x; = x;, then

Xi is a fixed point of T. Indeed, we have

X = Txp—1 = X1 = Ty

and x; is the desired point. Therefore, we can assume that
X, # x,41 for all n. By (4.11), we have

mr(xnv xn-H) = mr(Txn—l ) Txn) S k[mr(xn—l »xn) + m}‘(xilyxll+l )]
and so

mr(xn;xlﬁ—l) S 1 mr(xn—17xn) = rmr(xn—lyxn)a

—k
where 0 <r = IL—k < 1. Then, by the completeness of X and

Lemma 3.5, we obtain x, — x for some x € X. Hence, we
find

lim [m, (x,, x)

n—oo

—m,, | =0and lim [M;  —m, |=0

- n—00
and since m,, — 0 we have m,(x,,x) — Oand M,  — O.
By Remark 2.3, we get m,(x,x) = 0 = m,_, and by (4.11)

My (Xni1, Tx) = my(Txy, Tx) < k[my (%, Xn1) + my(x, Tx)].

Using the fact m, (x,,x,41) — 0, we get

lim supm, (%11, Tx) = lim supm,(Tx,, Tx) < km,(x, Tx).

n—oo n—oo

On the other hand,

my(x, Tx) — my, . <m,(x,%,) + m,(x,, Tx)
implies that

m, (x, Tx) < lim supfm, (x, ,) + m, (x,, Tx)] < o, (x, Tx)

n—oo

since and  m,(x,,x) — 0. Consequently,

m,(x, Tx) = 0. By contradiction (4.11), we have

m,(Tx, Tx) < k[m,(x, Tx) + m,(x, Tx)] = 2km,(x, Tx)

my . =0

and so
m,(Tx, Tx) = 0 = m,(x,x) = m,(x, Tx).
This shows that x = Tx by the condition (RM;). Unique-

ness of the fixed point follows by (4.12). Assume that 7 has
two fixed points u, v. We have

my(u,v) = m,(Tu, Tv) < klm,(u, Tu) + m,(v,Tv)] = 0
and
my(u,v) = 0.

Using the fact m,(u,u) =0 =m,(v,v), we get u=v as
required. 0

Theorem 4.6 Let (X,m,) be a complete rectangular M-
metric space and T be a self-mapping on X. If there exists

0<k< @ such that
m,(Tx, Ty) < k[m,(x, Ty) + m,(y, Tx)], (4.12)

for all x,y € X, then T has a unique fixed point u in X,
where m,(u,u) = 0.

Proof Suppose that xy € X and T"xy = x,,. Now we show
that

My (Xpy Xp1) — 0 as n — oo.

Using inequality (4.12), we get

My (X, Xn) = my(Top—1, Txp—1) < 2kmy(xp—1, %), (4.13)

for all n € N. From the inequality (4.13) and the condition
(RM,), we obtain

mr(xnyxn+l) = mr(Txnfh Txn) < k[mr(xnflyxrwl) + mr(xnaxn)]

<k My (X1, %) — L My (X, Xn) — My

B +mr(xn7xn+l) M + My + mr(xnyxn)
If we take
Ry = my(xn, xn) — My g~ Mg TP s

then we get the following cases:
Case 1 Let us consider

mr(xn—laxn—l) < mr(xnaxn) < mr(xn-H 7xn+l)~
Then, we get

- n’lr(xmxn)yInr,(nil_xn - mr(xn—l 5 Xn—l)am

Ten X TXn—1%n+1

= mr(xn—] s Xn—1 )
and so
R, =0.
Case 2 Let us consider
mr(xn+l ;xn-‘rl) S mr(xm xn) S mr(xn—l y Xn—1 )

By the similar arguments used in Case 1, we get
R, =0.

Case 3 Let us consider

Y
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mr(xnaxn) S mr(xn+laxn+l) S mr(xn717xn71)~
Then, we get

= mr(xnaxn)»mrxn,l.xn = m;(Xn, Xn)vmrxn,l,xnﬂ

M1
= My (Xn 41, %n11)

and so

R, = mr(xn+1>xn+1) - mr(x,,,xn) < mr(anrhanrl)‘

Case 4 Let us consider

My (X1 X0 -1) < (15 K1) <1y (X, %)

By the similar arguments used in Case 3, we get

Ry = mp(Xn, Xn) — M (X1, Xn1) <y (X, %)

Case 5 Let us consider

My (X, Xn) <1 (X1, Xn—1) < e (X1, Xns1)-

By the similar arguments used in Case 3, we get

Ry = my (X1, Xn—1) — mp (X, X)) <1 (Xg 1, X g 1)

Case 6 Let us consider

My (X1, X)) < (X1, Xnm1) <1 (X X))

By the similar arguments used in Case 3, we get

Ry = my(xn, Xn) = my(Xus1, Y1) < myp(xn, ).

If R, = 0, then we obtain

My (X, X)) < K[y (X1, %) + e (X, X1

and so

M (X, Xpp1) < 1 My (Xp—1,Xn)-

—k
If R, <m,(x,,x,), then using inequality (4.13), we obtain
Ry, <2km(xp—1, %)
and so
k(2k + 1)

1—k
If R, <my(x,11,%,+1), then using inequality (4.13), we
obtain

mr(xnaxn-H) S mr(xn—laxn)-

R, < 2kmr(xn7xn+l )

and so
(1) € T (51 5)
my(Xp, Xn S My Xp—1,X,)-
ST k(2k 1) !
Since 0<k< %, then we get ﬁ <1, k_%’j(l) <1,

k

TRETT) <1 and so using Lemma 3.5, we have

Y4
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mr(-xm xn+1) — 0,

as n — oo. Using the completeness hypothesis, we obtain
x, — u for some u € X and so

lim [m, (x,,u) —m,_,] = Oandlim [M; , —m, .| =0.

n—oo n—oo

Since m, , — 0, we have m,(x,,u) — 0 and M, , — 0.
By Remark 2.3, we get
me(u,u) =0=m,,,, .
From inequality (4.12), we obtain
m,(u, Tu) <lim supm, (u, x,) + lim supm,(x,, Tu)
= lim supm,(x,,, Tu)
<lim sup(k[m,(x,—1, Tu) + m, (x,,u)])
< lim supkm, (x,,—1, Tu) + lim supkm, (x,,, u)
< lim supk [m, (Xp—1,u) — my .+ my(u, u)

n—oo

=y, my (e, Tu) —my, ] <k (u, Tu),
which implies m, (4, Tu) =0 since 0<k< @ Using
inequality (4.13), we get
0 <m,(Tu, Tu) < 2km,(u,Tu) =0
and so
m(Tu, Tu) = m,(u, Tu) = m,(u, u).

Using condition (RM), we get u = Tu. Now we prove that
u is a unique fixed point of 7. Let us consider u, v € X with
u # v, Tu =u and Tv = v. Using the condition (4.12), we
have

0<m,(u,v) = m,(Tu, Tv) < k[m,(u, Tv) + m,(v, Tu)]
= 2km,(u,v) <m,(u,v),

which is a contradiction. Therefore, u =v and T has a
unique fixed point u in X. O

An application to fixed-circle problem

The notions of a circle and of a fixed circle on a rectangular
M-metric space are defined as follows:
Let r > 0 and xy € X. The circle C)’C’(’)’_r with the center x

and the radius r is defined by

crro= {x € X 1 my(x,x0) —my,, = r}.

X0,
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Let Ci, be a circle and T : X — X be a self-mapping. If
Tx = x for any x € Cyr, then the circle Cy, is called as the
fixed circle of T.

Now we give the following fixed-circle result.

Theorem 5.1 Let (X, m,) be a rectangular M-metric space
and C"'be any circle on X. Let us define the mapping

X0,

@ X — [0,00),0(x) = m,(x,x0) —my,, ,

for all x € X. If there exists a self-mapping T : X — X
satisfying

(CMy)  m(x, Tx) — my . < @(x) — @(Tx),
(CMZ) m,(Tx, )C()) - mrnm >,
(CM3) My = er.Tx’

Jor each x € Cyr, then the circle Cy, is a fixed circle of
T.

Proof Let x € C\,. Then, we have m,(x,x0) — m =r.
Now we prove that Tx = x whenever x € C}’,. From the
condition (CM;), we obtain

my(x, Tx) = my, ;. < @(x) — @(Tx)
(5.1)
= [m,(x,xo) - m,'xyxo] - [mr(Tx,x()) = My, |-
Using the conditions (RM;) and (CM,), we get

m,(Tx,x0) — My =T

and Tx € Cy,. Using inequality (5.1), we obtain

my(x, Tx) — my .. = 0 = m,(x,Tx) = m, . (5.2)
From conditions (5.2), (CM3) and (RM,), we find
me(x,Tx) = m, , =M, , = x=Tx.

Consequently, the circle Cy, is a fixed circle of T. O

Now we give an illustrative example.

Example 5.2 Let us consider the rectangular M-metric
space (X

z, m,) introduced in Example 2.4, the circle CZ 1

on Xz and define the self-mapping 7" : Xz — Xz as

iz
Tz:{ '
VA

for all z € Xz. Then, the self-mapping T satisfies the con-
ditions (CM), (CM>) and (CM3) for x € C57, such that

2| <4
2| >4’

2
C;';’J = {x € Xz : memzf = 1} = {0,4i}.

Clearly Cy;; is a fixed circle of T.

Conclusion

Let us consider Example 2.6 and the contractive condition
given in Theorem 4.2. Then, we have

m(Tx, Ty) < km,(x,y),

for all x,y € X and k € (0,1). Using the definition of m,
defined in Example 2.6, we get

m,(Tx, Ty) = md(Tx, Ty) + n < kimd(x,y) + n]

= kmd(x,y) + kn 6.1)

=d(Tx, Ty) < kd(x,y) + nk=1)
m

Inequality (6.1) does not satisfy the Banach contraction
principle

d(Tx, Ty) <kd(x,y),

forall x,y € X and k € (0, 1) on a rectangular metric space.
Therefore, it is important to study fixed-point theorems
using different contractive conditions on a rectangular M-
metric space even if a rectangular M-metric and a rectan-
gular metric generate same topology. Furthermore, in the
last section, we have given an introduction to the fixed-
circle problem [8]. On this new space, it is possible to
study some fixed-circle results by various aspects.
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