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Abstract

The information aggregation operator plays a key rule in the group decision making problems. The aim of this paper is to
investigate the information aggregation operators method under the picture fuzzy environment with the help of Einstein
norms operations. The picture fuzzy set is an extended version of the intuitionistic fuzzy set, which not only considers the
degree of acceptance or rejection but also takes into the account of neutral degree during the analysis. Under these
environments, some basic aggregation operators namely picture fuzzy Einstein weighted and Einstein ordered weighted
operators are proposed in this paper. Some properties of these aggregation operators are discussed in detail. Further, a
group decision making problem is illustrated and validated through a numerical example. A comparative analysis of the
proposed and existing studies is performed to show the validity of the proposed operators.

Keywords Picture fuzzy sets - Einstein aggregation operators - Decision making problem

Introduction

The core idea of the fuzzy set (FS) theory was first
developed by Zadeh [55] in 1965. In this theory, Zadeh
only discussed the positive membership degree of the
function. The core idea of the FS theory has been studied in
many fields of the real world such as clustering analysis
[51], decision making problems [29], medical diagnosis
[12], and also pattern recognition [32]. Unfortunately, the
idea of the FS theory has been failed due to lack of basic
information of the negative membership degree of the
function. Therefore, the Atanassov covered these gaps by
including the negative membership degree of the function
in FS theory. The core idea of the intuitionistic fuzzy set
(IFS) theory has been developed by Atanassov [4], in 1986.
The concept of the IFS theory is the extension of the FS
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theory. In this theory, he discussed both the negative
membership degree of the function and the positive
membership degree of the function of IFS. Hence, the sum
of its positive membership function and negative mem-
bership function is equal to or less than 1. After the
introduction of IFS theory, many researchers attempted the
important role in IFS theory and developed different types
of techniques in processing the information values by uti-
lizing different operators [8, 9, 18, 24, 26, 28, 34], infor-
mation measure [7, 35, 39], score and accuracy function
[25], under these environments. In particular, the infor-
mation aggregation is an interesting and important research
topic in AIFS theory that has been receiving more and
more attention in year 2010 by Xu et al. [52]. Atanassov
[4, 6] defined some basic operations and relations of AIFSs,
including intersection, union, complement, algebraic sum,
and algebraic product, etc., and proved the equality relation
between IFSs [5]. But it has been analyzed that the above
operators used Archimedean t-norm and t-conorm for the
aggregation process. Einstein based t-norm and t-conorm
have a best approximation for sum and product of the
intuitionistic fuzzy numbers (IFNs) as the alternative of
algebraic sum and product. Wang and Liu [44] proposed
some geometric aggregation operators based on Einstein
operations for intuitionistic fuzzy information. Wang and
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Liu [45] proposed averaging operators using Einstein
operations for intuitionistic fuzzy information. Zhao and
Wei [57] defined hybrid averaging and geometric aggre-
gation operators by using Einstein operations. Apart from
this, various researchers pay more attention to IFSs for
aggregating the different alternatives using different
aggregation operators [13, 14, 19-21, 23, 27, 33, 38,
53, 54, 56].

In real life, there is some problem which could not be
symbolized in IFS theory. For example, in the situation of
voting system, human opinions including more answers of
such types: yes, no, abstain, refusal. Therefore, Cuong [10]
covered these gaps by adding the neutral function in IFS
theory. Cuong [10] introduced the core idea of the PFS
(picture fuzzy set) model, and the PFS notion is the extension
of IFS model. In PFS theory, he basically added the neutral
term along with the positive membership degree and nega-
tive membership degree of the IFS theory. The only con-
straint is that in PFS theory, the sum of the positive
membership, neutral and negative membership degrees of
the function is equal to or less than 1. In 2014, Phong et al.
developed some composition of PF relations [37]. Singh in
2015 developed correlation coefficients for the PFS theory.
Cuong et al [11], in 2015, gave the core idea about some
fuzzy logic operations for PFS. Thong et al. [41] developed a
policy to multi-variable fuzzy forecasting by utilizing PF
clustering and PF rules interpolation system. Son [40] pre-
sented the generalized picture distance measure and also
their application. Wei [46] introduced the picture fuzzy
cross-entropy for MADM problem. Wei [47] has been
introduced the PF aggregation operator and also their
applications. The projection model for MADM with picture
fuzzy environment has been presented by Wei et al [50].
Bipolar 2-tuple linguistic aggregation operators in MADM
have been introduced by Lu M, et al [36]. In 2017 Wei [48]
developed the concept about the some cosine similarity
measures for PFS. Wei [49] introduced the basic idea of
picture 2-tuple linguistic Bonferroni mean operation and also
their application to MADM problems. Apart from these,
some other scholars are working in the field of picture fuzzy
sets theory and introduced different types of decision making
approaches (Wang et al. [42],Wang et al. [43]). The different
type of aggregation operators has defined for cubic fuzzy
numbers, Pythagorean fuzzy numbers [31] and spherical
fuzzy numbers [2, 3, 15-17, 30].

It is clear that above aggregation operators are based on
the algebraic operational laws of PFSs for carrying the
combination process. The basic algebraic operations of
PFSs are algebraic product and algebraic sum, which are
not the only operations that can be chosen to model the
intersection and union of the PFSs. Therefore, a good
alternative to the algebraic product is the Einstein product,
which typically gives the same smooth approximation as
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the algebraic product. Equivalently, for a union, the alge-
braic sum is the Einstein sum. Moreover, it seems that in
the literature there is little investigation on aggregation
techniques using the Einstein operations on PFSs for
aggregating a collection of information. Therefore, the
focus of this paper is to develop some information aggre-
gation operators based on Einstein operations on PFSs.

The remaining part of this paper is as follows. In
“Preliminaries” section, we give some basic definitions of
IFS, PFS and score and accuracy function. In “Einstein
operations of picture fuzzy sets” section, we proposed
picture fuzzy FEinstein operations. In “Picture fuzzy Ein-
stein arithmetic averaging operators” section, we introduce
some picture fuzzy Einstein arithmetic averaging operators.
In “Application of the picture fuzzy Einstein weighted
averaging operator to multiple attribute decision making”
section, we discuss the application of the picture fuzzy
Einstein weighted averaging operator to a multiple attribute
decision making problem. In “conclusion” section, we
solve MADM problem to illustrate the practicality of the
picture fuzzy Einstein operators, and we write the con-
clusion of the paper in the last section

Preliminaries

Definition 1[4, 6] An IFS f defined in U # ¢ is ordered
pair as follows

B = (@), Yy(a) i € 0) (1)

where p;(i), Yg(i) € [0,1] and defined as pg(ir), Yp(it) :
U — [0,1] for all i € U. Hence, pg (i), Y (i) are called the
degree of membership and non-membership functions,
respectively. The pair <,u/;(12), Y(ia)) is called the IFN or
IPV, where 115(ii) and Y (1) satisfy the following condition
for all ii € U.

(g (i) + Yp(ir) <1)
Definition 2 [22] A PES ff on U # ¢ is defined as
B = (up(ia), ng(it), Yp(ii)) (2)

where 0 < (i), n(ii), Yp(ii) <1 are called membership,
neutral and non-membership degrees of the function,
respectively, satisfying the condition p;(i) + ng(it) +
Y;(ii) € [0, 1], for all i € U. Furthermore, for all & € U,
®p = 1 — pg(t) — ny(ii) — Yp(a) is said to be the degree
of refusal membership, and the pair (u(ii), n4(if), Yp(i))
is called the PFN or PFV. Note that every IFS that can be
defined as

B = {(up(@), 0, Yp(i))lis € U} (3)
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If we put n4(it) # 0, in Eq. (3), then we have PFS

Basically, PFSs models are used in those cases in which
the human opinions involving more answers, i.e., “no”,
“yes”, “abstain”, and “refusal”. A group of students of the
department can be a good example for a PFS. There are
some groups of the students want to visit two places: one is
Islamabad, and other one is Lahore, but there are some
students which want to visit Islamabad (membership) not
to Lahore (non-membership), but some students want to
visit Lahore (membership) not to Islamabad (non-mem-
bership), and also some students which want to visit both
places Islamabad and Lahore, i.e., neutral students. But
there are also a few students which do not want to visit both

places, i.e., refusal.

Definition 3 [22] Let f8 = (u(1i), ns(id), Yp(id)) and ¢ =
(o (1), n,(if), Y,(i1)) be two PFNs of U. Then.

D ﬂ®Q:<ﬂ/ﬁ(’2)'ﬂo( )),n/;(ﬁ)Jrno(“)—ﬁﬂ(b(?)-ng(ﬁ)a>_
’ ﬁ@gz<#ﬁ<ﬂ>5u@<ﬁ>
3 ap= (1= (1= @), (nga)”, (rp(i)*)

4y B = (@) (1= (1 =np(@)" (1= (1 = Tp(@))")

Definition 4 [22] Let f= (uy(ii), ns(id), Yp(i2)) be a
PFN, the score function and accuracy function of 5 are
defined as

S(ﬁ) = Hp—Np— Yﬁ- (4)
And

H(B) = pg +ng+ Yp. (5)
Definition 5 [22] Let f8 = (ug(1i), ns(id), Yp(id)) and ¢ =

(o(i2),n, (i), X,()) be family of two PFNs. Then the
followmg comparison rules can be used.

(1) if S(B) > S(g), then f > ¢
@ if S(B) = (o), then

if H(f) > H(g), then § > ¢
if H(ff) = H(g), then = ¢

Definition 6 [22] Let (f;, f,,- .., f,) be family of PFNs.
Then The picture fuzzy weighted averaging ( PFWA)
operator is as follows,

PFWA(B,, By, - .- B,)

6
:{1—1_[11—u/g H"ﬂ,,’H ,,}- (6)
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Definition 7 [22] Let (3, f,,- .-, ,) be family of PFS.
Then, the picture fuzzy ordered weighted averaging

(PFOWA) operator is defined as
PFOWA(ﬁb ﬁ27 ceey ﬁn)

. o (7)
=q1- 1_[1 'uﬁd(p) H '/’ﬂo(p ﬁo ()
= p=1
where (6(1),06(2),...,0(n)) is a permutation of (1,2,...n)

such that ﬁaw g,‘*ﬂé(p_]) forallp =2,3,...,n where @ =

(wl,wz,...wn)T be the associated vector of PFOWA
operator such that @, €[0,1], (p=1,2,...,n) and
ZZ:1 @, = 1

Einstein operations of picture fuzzy sets

In this part of the paper, we have presented the Einstein
operations and also discussed some basic properties of the
defined operations on the PFSs. Let the t-norm 7, and
t-conorm S, be Einstein product 7, and Einstein sum S,
respectively; then the generalized union and the intersec-
tion between two PFSs that is  and ¢ become the Einstein
sum and Einstein product, respectively, as given that

B®o= <ra Ss(:u[i(’@nug(ﬁ))» Ts(”ﬁ(’z% ’7@(12))7

. 8
T.(Yp(@), Yo(a))li € U). N
e Q= I 1¢ B i Mo i [f 0
B @0 = (r, Tu(pp(it) ity (i), e (mp (i), m, (i), ©)
S:(Yp(d), Y, (i))|a € U)
Furthermore, we can derive the following forms:
Deﬁnition 8 Let f=(ug(u),ns(ii),Yp(it)) and ¢ =
o(i1)) be a family of two PFNs Then
B @, 0= Hp-Hg Np+n, Yp+1,
’ L4 (1= pp). (1= p,) T4 mgm, 1+ Y0, )
(10)
( Mg+ U Ng-M,
1+:u tuo . +(1_77 )(1 _170)7
B B 0 (11)
Y. Y
1+(1- Y,;).( -Y,)
f = ([1 + .“ﬁ]i -[1- /1/3]1 2[’7ﬁ]2
[+ )+ [0 = ) [2 = myl + ) (12)

Z[YA/;]* )
2 =Yg+ [xg)
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M:( Gl U N L 1
2 — wg)" + [ug)” ’ (1 +ng)" +[1 - ’7/1]2

b

(13)

[+ 1" — [1 = Yy
[1+Yg)" +[1— Yy
Corollary 1 Let 3 be a PFS and A be any positive real

number; then A..f is also a PFS, i.e.,

[+ ()] = [1— ()]
I+ (1= pli))*

Proof  Since 0 < pu;(ii), ny(r), Yp(ii) < 1, respectively, and
0 < pp(i) + np (i) + Y (ut )_ then 1 — Yp(u )>Hp( i)
>0, and [1 — py(it))" > [Yp(i0)]", and also [1 — py(id)]" >
[nﬁ(ﬁ)];', and then we have

VG
2= Yy + Dyl

Furthermore, we have

ﬁ @ Springer

1+ up(@)]" —[1 — u/;(ﬁ)}} 2['7/;07)]1
[+ ()] + [1 = ()] (2 = ()] + [ (a0)]
2y (i)]

+ n 7
2 = Yp(@)]" + [Yp(a)]
iff pg(it) + np(ii) + Yp(ii) = 1. Thus the solution of ..f is
a PFS for any positive real number 4. O
Theorem 1 Let f§ be a PFS and A be any positive integer;
then show that
A

imﬁ:ﬁ@cﬂ@c"'@ﬁﬁ‘
Proof Now we used the mathematical induction to prove
that the above result hold for all positive integer A. The

above statement is named as Q(1). Show that the above
statement Q(4) true for 2 = 1. Since

uﬁ:<u+wwn—u—ww>
[1+ ug(@)] + [1 — pp(ir)
2[np(a)] 2[Yy(it)] )
2 = np()] + [np(@)] "2 = Yp(it)] + [Yp(a0)]
= (uglia), np(it), Yp(a)) = p
Then Q(4) is true for A =1, i.e, (1) holds. Assume that

O(4) holds for A = k. Now we prove that for A =k + 1,,
ket 1

]
I

ie, (k+1)..f=p®. PP - @, . Thus on PFSs the
Einstein sum as,
k+1 k
BO:P®o @ =B DD D D =k D B
[+ @) = [1 = (@)™
[+ ()] [1 uwW“’

2[’1/;( )]kﬂ
2 = np(@)]" + )
2]
[2 = (@) + X))
=k+1p

Hence, it has been shown that Q(k + 1) holds. Since for
any positive integer 4 we have been proved that Q(1)
holds. U

Theorem 2 Let f§ = (ug,n5, Xp), By = (g, 15, Yp,) and
B> = (up,,np,, Xp,) be family of three PFNs, then both
s =P B By and B, = .. (4 > 0) are also PFSs.

Proof The result is obviously proved by the corollary 1.
As under, we discused some special cases of 4 and f.
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(1) If B = (up,mg Yp) = (1,0,0)

= ([1 +M/f]}"— (1 —ﬂﬁ]f 2['//3]1
T\ ) 2= g+ g

2[Yy)"

—;> =(1,0,0)
[2—Yp]"+[Yp]"
2.:(1,0,0) = (1,0,0)

2 If p= (,uﬁ,nﬁ,Tﬁ) =(0,1,1) in this case u; =0,
ng =1and Yz =1, then

= ([14‘#;;])“—[1—#5]% 2[’7;3]1
' [+ ) + (1= pg)” (2= gl + )

)

%) =(0.1.1
2 =Yg+ [xp) oL
2.5(0,1,1) = (0,1,1)

3 If p= (,uﬁ,nﬁ,T/;) = (0,0,0) in this case u; =0,
ng = 0and Yz = 0, then

_ ([1 ‘H‘ﬂ]A ! —#p]i 2[’7;3]1
Lef= A E 2 i
(14 pp]" + [T = pp]" [2=n]" + 4]
L) _(0.0.0)
2= Yp]"+[Yp]"
2.:(0,0,0) = (0,0,0)

(4) If 2— 0 and 0<pg,ng, Yp<l,then

Lﬁ<ﬂ+wﬁ—u—mx Ayl

' [+ )+ (1= ) 2=yl + Iy
20,

2= Xgl" + Xy

i.e; 2..f—(0,1,1),as(2— 0)

—(0,1)

(5) 1If 2 — +oc and 0<pg, ng, Yp<1,then
Since

. [1+ pg)" — [1 — pg)
lim ~ >
oo [1 4 pgl™ + 1 — g

] "

P

1) _ ( —Hy)A
:AIim _ \F) 7
—+o0 1, 1—pp
14+ <l+uﬂ>
1-0
= —_— 1
1-0

And since 0<ng<l < 0<2mp<2 < np<2-—

J
2—n . 2—n
7”, then lim;_, . (—ﬁ) = +oo; thus

g
. 2(n,)* . 2
limy oo 20— fim; 20— = 0
(2—ng) +ng 2 )
’7/)‘ +l/

And  similarly 0<Y;<1 & 0<2Y;3<2 <&

A
Tp<2-Ype 1< 2}:,;’ then lim;_, (2}:”) —

2(Yp)"

00; thus —k
+ ’ (Z—Y/;)/'+Tﬂ

lim)'*,+oo 5 = limj.*H,oo

2.1/1) -0
(6) If =1, then
B = ([1 ‘Hﬁs]l —[1 —M/s])' 2[’7[;})'
R T N T P N T
2(0p)° >:CHMMUM
2= )"+ Xy (14 pg) + [T = pg)’
2[n] 2] )
2= ngl + g 2= Y] + Y]

= (g1, )
i.e; l.f=p, when(l=1)

O

Proposition 1 Let ﬁ = (H/Ba’/’ﬂaYﬁ)a ﬂl = (:uﬂpn[}zaYﬁl)
and P, = (,uﬁz, Np,» Yg,) be  family  of  three
PFNs, A, A1, 2, > 0; then,we have

(1) By ®e Br = By ®: P

() 2a(Br @: Ba) = A-eP1 Be AePas
(3) ﬂvl ~S,B ®De /12~£ﬁ = (;Ll + /12)&8,
(4) (/11~;L2)~1:ﬁ = /114:()“2%:[3)-

Proof (1) It is trivial.
(2) We transform
'uﬂl +'uﬁz ’7[31"7/32
Ut g, o, 1 (1= ) (1= mp,)
Yﬁl Yﬁz
T4+ (1= p)(1 = Yp,)

ﬁl D ﬁ2 =

into the following form

(14 pp )T+ pag,) — (1= g )1 — pg,)
(14 pp ) (14 pg)) + (1= g )1 — pg)’
21, Mg,

(2 —np )2 —mng,) +ngnp,’
2Yp, . Y,

(2= 0p)(2—Yp,) + Yp,. Xy,

ﬁl @sﬁZ =

ﬁ @ Springer
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and let a= (1+4pug)(1+pg), b=(1
C:'/Iﬁz’r’/fz’d: (2_’1/5’2)(2_’7[52)7
e = Yﬁl'Tﬁzﬂf = (2 - Yﬁl)(2 - Yﬁz);

B,y By — a—b 2c 2e
P \a+b'd+c'f+e

By the Einstein operation law, we have
a—b 2c 2e
}wr & :j-é ) )
(B1 ©: br) <a+b d—i—cf—i—e)
a—b\* a—b\*
1 —(1-
(1+a5s) (-553)
a—b\* a—b\*
1 1-—
(1+i53) +(-553)
2( 2 )Z
d+c
2¢ \* 2¢ \*
2 —
(o) (@)
2(f2e )ﬂ
+e
2¢ \* 2¢ \*
2 — +
(7))
B a*—b" 2 2¢*
- a}.+b}.’di+ci7fi+e).

(1+ .“/1,)1(1 + Hﬁz))' —(1- Mﬁ,))'(l - Hﬁz)i
1+ /1/1’,)/1(1 + #ﬁz))' +(1 - #ﬁ,);'(l - H/zz)/: 7
205, 15,

(2- ’7/31)1(2 - ’7/}2)'1 + Mg, Mg, 7
205 X,

(2= Y5) (2= Xp)" + Y X,

In addition, since

l-eﬂl
() (1 - ) 21
A A0 A 20
(1 ﬂ‘m) +(1 *#ﬁl) (2*”/51) +(’7ﬂ1)
A
ZYﬁ]
(2 - Yﬁl)z—’—Yﬁl
and
(1 +l~4/32>ﬂ*(1 *H/JZ)A 21122
A PR 2 70
du= | (rm) + (0w ) (2= m) ()
2Y7fz
(2 - Y‘/ﬁ’z) +Y/)’z
let a1 =(1+p5)", bi=(1—-pg) ci=npe=

\¢

@ Springer

- H/sl)(l - H/ﬁz)7

Ypa = (14 pp,)", b = (1= pg,)",
e=Ypd =02-n), &=

2-Yg)"

€2 =1, (2 —mng,)",

fi=2- Yﬁl);}fz =
then

2 ﬁ - al—b1 26‘1 261
T \ar b di el fi e

and

1 ﬁ o az—bz 26‘2 282
e a+bydy+ e’ fh+er

By the Einstein operation law, it follows that

b] 2C1
) ) | a +al dl +cp’ a—b, 2¢ 2e;
/L-r:ﬁ] 691: A-l;,B] - 26] 6911 <a2+b2’d2+62 "f2+e2
fite
ai 7b1 aszz 261 262
a+by a+ b ditc da+o
ay—by ay—by’ 2c 2 ’
n 1 1' 2 2 1+(1- Cl (1- &)
_ ay+by ax+ by dy + ¢ dr+ ¢
o 26] 262
fite hte
1+<1_.261 ).(]_'262 )
fi+el HL+e
_ <a1a2 —b|b2 2(,‘](,‘2 26162 >
ayay + biby 'didy + ¢ fifs + eres

(1) () =(1 =) (1)
(1em) (o) +(1-m) (=)

295, Mg,

(=) (=) +(m) ()
2'#/}, Yy,
(2= 0p) (2= Yp)" + Xy, Xy,

)

Hence ;“'S(ﬁl D ﬁz) = ;”-sﬁl De /luvﬁl

(3) Since
(1+pp)" = (1= )" 2(ny)"
2 ! p K
B = (U4 )"+ (U= 1) (2= )" ()’
2(p)"
2 Yp) " +(1p)"
and
(1 +/1B)?2—(1 —u,;)fz 2(;113)*2 |
i | (T =) 2 mn) ()
2(Yp)"
(2= Yp) 2 +(Xxp)"
where 41 >0,4, >0, let a; =(1 _|_‘uﬂ)),l7 by =

(l_ﬂﬂ) C1 _nﬁael Yﬁ)
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az = (1+:u/3)/121b2: (1 _.“/s‘);ﬁ €2 =1, €y = ) ﬁ: a—b 2c 2e
(VA g (Ve e at+b’d+c'f+e
Yﬁvdl (2 775) 3 dZ (2 nﬁ) )
fi=Q2=Yp", o= (2—Yp)?;then By the Einstein law, it follows that
Taf = ar—br 2 2e Je( 2aeP)
¢ a1+b17d1+617f1+61 . a—b 2c 2
e atbld+c'f+e
" (oms) (o) o)
, ﬁ_<az—bz 2¢» 2es ) +b a+b d+c .
2 a+bydr+c'fhter <1+a_ ) (1— (2 ) (26>
_ a+b a+b +c d+c
By the Einstein operation law, it follows that 2<fze >
—b 2c a—by 2¢ 2 Ie 2¢ \*
: +bdi+cr’ thdr ey - ¢ )
Al-sﬂ De ;LZ-SB = @ 12611 “ ¢ “ 22@22 ° . r . (2 f,+ 8> +<f+e
fite frte = (a/..I 7b/,'1, 28 , ,,zem _ )
by  ay—b 2¢y 2cy at b 'd"m e ten :
ai+b a+b ’ di+ci dy+cy 7 (1 -i-,uﬁ)/vm2 (1 —H/;)WV: 2(’1/;)/1/~Z .
e (1- 20 (1- 2 ) (1w (= gg) ™ ) )
1 1 a2 2 1T C 2T C2 Jala
2e 2e, Z(T; z) J1/a
fitei h+e (2= 7p)" "+ ()
2e 2e; = (4142)..B
1+(1- A1 =
( f1+€1> ( f2+32>
B (a.az —bib, 2cic; 2eie; ) Ol
C\aay + biby didy + 102 ' fifs + €1
(1+/1/3)2'(1+ﬂ/3)22 (1—pp)" (1= )" . . . . . .
() (0t 1tp) "+ (1 — 1) (1 — 1) Picture fuzzy Einstein arithmetic averaging
' ’ ’ ’ operators
_ 26/’/; ’1/f
2-np)" (2~ ’Uﬂ) (’7/3) (’7/3) In this section, we shall develop some Einstein aggregation
2 Xy operators with picture fuzzy information, such as picture
2= (2= Yp) "+ Y5 Y fuzzy Einstein weighted averaging operator, picture fuzzy
(1+ ‘uﬁ>/1+/2 (1- ﬂ/;)/'+” 5 (p/l+/z Einstein ordered weighted averaging operator to aggregate
(1+ )/,m T(0—u )/:,+/:p - )/1+/ o )/z.mv the picture fuzzy information. And also discussed some
= K K s K i basic properties of picture fuzzy Einstein aggregation
2% operator.
(2 _ Yﬁ)ﬂﬁ%z + Y/} .
= Ui+ Ja)f Definition 9 Let f§, = (,uﬁp,nﬁp,Y,;ﬂL (p=1,2,...,n) be
ie; Aof D Arof a family of PFNs and @ = (w;,wy,..., wn)T be the
= (M + X2)..p weighting vector of f,(p=1,2,...,n), such that @, €
0,1, (p =1,2,...,n) and } ', @, = 1; then, a PREWA
) (_’1")’2>'Sﬁ = J1.5(22:0P) operator of dimension n is a mapping PFEWA : (L*)"—
Since L*, and
p; p; p;
(Ltpp) (=)™ 200p)" PFEWA(B1. 2. - ) (14)
7 b 7 !
2P (1 Jruﬁ) ZJF(I 7:“/3)A2 (2777[?) 2+(’7ﬁ)A2 =@1:f1 Be W2-efy B - - - B Tyofy-
2.eP = ,
J2
Z(Y/}) Theorem 3 Let f§, = (,u/;p, Wﬁva[f,,)v (p=1,2,...,n) bea

(2= Yp)2+(p)"

Let a = (1 JF#/;)iza b=(1 *H;})Aza c=ng e=Yp d=
(2—np)", f = 2=y

family of PFNs, then their aggregated value by using the
PFEWA operator is also a PFN, and

ﬁ @ Springer
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PFEWA(S,, B2, - -, B)

[t (U4 )™ =TTt (1 — g )™
H,n;:l(l + .“[fp)w]) + H;l;:l(] - ,u[i,,)w” 7
2 H;:l(’?ﬁp)w’;

[1-(2— Wﬁp)w” +11- (Wﬁ],)w” ’ 7
2HZ:1(Yﬁp)w”
[L=1(2 = Xp,)™ 4+ IT,=i (Yp,)™

,,)T be the weighting vector of
[0,1], (p=1,2,...,n)

(15)

where w = (wl,wz, ...
B,(p=1,2,..., ) such that @, €

and 37, @, =

Proof The first result is easily proved from Theorem 2.
Now using mathematical induction method to prove
Eq. (15). It is obviously true that Eq. (15) holds for n = 1.
Assume that Eq. (15) holds for n =k, i.e.,

PFEWA(S,, B2, - - Bi)

Hf;:l(l + #ﬂp)m” - Hf}:l(l - #ﬁ,,)m”
Hﬁ:l(l + .U/f,,)w” + szl(l - .Uﬁp)m" 7
20T, ()™
Hl;:l (2- Wﬁ],)w” + Hf;:l (”Iﬁ,,)wﬁ
ZH;:I(Yﬁp)wp
Hﬁ:l (2-Yp)" + H,ﬁ:l (Yp,)™
Then if n = k4 1, we have
PEEWA(B,. o, - - Brsr)

= @1 De - - De TPy De wp+1~ﬁk+l'
= PFEWAG (B, By, - - -, Bi) @ w[i+1~ﬂk+1'

Wp+1
(1 + Mﬁkﬂ) ( 'uﬁkﬂ)
Wyl )
(1 + . ]> +(1 ﬂ/m])
Dp+1
(nﬁ/m)

Wp+1 @p+1 )
(2 - %,) +('1/fk+l)

2 (Yﬁk+l )pr
Dp+ Dp+
(Z_Yﬁk\l) l+(Yﬁk<1) l

Let a1 =TT, (14 145)™ b1 =TTy (1 — )™, e =
k @, _ k @, _ k @,
Hp:l (’1/)’,,) ’ dl - Hp:l (Yﬁ,)) €1 = Hp:l (2 - ;/’/fp)

k @, Dp+1
fi = 1o @2=0)™, @ = (14‘#/%) , by =

Wp+1 @p+1
<1 - Hﬁkﬂ) 162 = (nﬁk+l) ’

Wp+1

ﬁ @ Springer

dy= (Yﬁk+l )mﬁ] €2= (2_ 'llﬁkﬂ)m’)+l JSo= (2 —Y[fH] )WPH 5

_ —b 2¢ 2d
Then, PEEWA, (B By ., Bi) = (Zl+bi> 2 m)

J— a bz 262 2(12
- <112+b2 Y er+co ’f2+d2)’ thus,

by the Einstein operational law, we have
PEEWAG (B, o, - - Bri1) = PFEWAG(B1, Ba, -, Br) @ Dt B,
ay) — b2 26‘2
- aj *bl 261 2d1 612-’-1?2’624—027
ay+bi’er +cfi +di . 2d,

and @, 1.8,

Hh+d
_ (alaz —b|b2 2616‘2 2d|d2 >
C\aiar + biby erer +cior fifs + dids

[+ 1, )™ -0 - 1)

TL5 (4 wg))™ + T 5 (1= )™
antl ('71; )7

HHI(Z '1;) ! +Hp 1 'V/f)

2115 (g )™

[ — )™ + 11"

)

)

()

ie., (15) true forn =k + 1.
Therefore, (15) holds for all n, which competes the
proof of the above theorem. U]
[51, 54] Let B,>0,m, >0,(p=1,2,...,n),
| @p = 1; then

Lemma 1

n

and ),
n n

[IAr <2 ouby.

p=1 p=1

with equality if and only if B, = p, =..= p,

Corollary 2 The PFWA and PFEWA operators have the
following relation

PFEWA, (B, By, .-, B,)
SPFWAw(ﬁlaﬁ% . ~7ﬂn)

where B, (p =1,2,...,n) be the family of PFNs and w =
(@, @2, . . .,wn)T be  the
B,(p=1,2,...,n) such that @, €

n _ .
and Y, @, = 1;

Proof Since

[100+m,) +H1—ﬂ/f,) ”<pr(1+#/f,,)
p=1

+pr(1—“ﬁp)=27

p=1

(16)

weighting  vector  of
[O’ 1]7 (p = 1)27 . ’n)
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then

H;:l(l + ﬂﬁ,,)mp - HZ:](I - ﬂ/}p)w]’

H;:l (1+ ,u/f,,)wﬁ + H;:l (1- ﬂﬂp)mp
21_[;:1(1 - .“ﬁp)wﬂ

[L=1 (U4 )™ 4 TTpmy (1= g )™

n

<1- H(l — g )"

=1

=1-

(17)

where that equality holds if and only if pug = ug

In addition, since

HZ:l(Q' - ﬂﬁ,,)w”

EZ:] wp(z - 1’]/;1’) + EZ:I Wyl = 2, then
2111 ()™ n

p=1\'lp o

m on Ld - — > (77 ) » 18

[Ip=1(2 = np,)™ + TTp=i (g, )™ H By (18)

p=1
where that equality holds if and only if ng =g

+ Hn:1 Ng, <

— .. = ]7/3”.
Let PFEWAo(By, fos. .. B,) = (u;w;}) —f  and

PEWA(By, B, Ba) = (1ging) = ;. then (17) and
(18) are transformed into the form s <y and ny > g,

respectively. Thus
s(B) = wy —ny <pp—ng = s(p).
If s(f")<s

(p), then by Definition 5, for every w,we have

PEEWAG (B, By - -, B,) <PFWAG(Sy, B, ., ). (19)
If s(B) = s(B), i.e., py — ny = pg — 1y, then by the con-
ditions i < g and 17, > 1, we have py = g and 17, = 1g;
Thus 1(B") = p +np = pg + ng = h(B), in this case,
from Definition 5, it follows that
PFEWAG (B}, B, B,) = PEWAGL(B, B, - -+, B,)-
(20)
From (19) and (20), we know that (16) always holds, i.e.,

PFEWAW(ﬁlvﬁZ’ e '7ﬁn) SPFWAW(ﬁI?ﬁ% RS ﬁn)

where that equality holds if and only if B, =p,

E——
In addition, since [[7_;(2—Yp )" +[[)_, Y5, <

D1 @p(2 =Yg )+ > @, Y =2, then

2 H;;:l (Y/J’,,)m”

[ 2= Y5)" + 11

where that equality holds if and only if Yp = Y,
= =Ty

Let  PFEWAo(Sy, fos- .o ) = (M;;,Y;) —p*  and

PEWAG (B, Ba, .- - B,) = (15, Xg) = f; then (17) and

7 > [ (0p,)” 21
T H (21)

(21) are transformed into the form ,u;} < ug and Y}} > Yy,
respectively. Thus

S(B7) = 1 —
If s(B*) <s

— Yﬁ = S(ﬁ)
(f), then by Definition 5, for every w,we have
PFEWAw(ﬁla ﬂZa SRR ﬁn) <PFWAw(ﬁ1 ’ ﬁZv LA ﬁn) (22)

If s(B") =s(B), ie, wy—Yjz=pz—Yp, then by the
conditions uj <ug and Y;> Yy, we have uj =y, and
Y}, = Yp;Thus A(B") = uj + Y = py + Yy = (), in this
case, from Definition 5, it follows that

PFEWAL (B, Bas - B,) = PEWAL (B, Bas- -+, B,)-

Ty <uyg

(23)
From (22) and (23), we know that (16) always holds, i.e.,
PFEWAW(ﬁla :827 RS ﬁn) S PFWAIU(ﬁl?ﬁZ? ) ﬂn)

where that equality holds if and only if f, =, =
=B, O

Example 1 Let f, =(0.2,0.4,0.3),5, = (0.3,0.5,0.1),
f3 =(0.1,0.2,0.4), and f, = (0.6,0.1,0.2) be a four fFVs
and w = (0.2,0.1,0.3,0.4)T be the weighting vector of

By(p=1,2,...n). Then T[,_,(1+py)™ = 13221,
TIo, (1= )™ = 06197, 2[[5 1( ) —0.3816,
I, (nﬂz)m”z 0.1908, [T, (2~ ny )™ = 17637,
211, (Yp,)™ = 0.4982, [T, (Yp)™ = 0.2491,
[T, (2—Yp)™ = 1.7269.

PFEWAW(ﬁl ’ BZ? ﬁ37 ﬁ4)

H2:1(1 + ﬂ/},,)m“ T (1 — Mﬁp)w”
H::I(l + /v‘/f,,)wﬁ + H;:l (1- .“[3”)% ’
20T, (1™
Hi:l (2 - ﬂﬁp)w” + H;:1 (Wﬂ,,)w"

2 H2:1(Yﬁp)w”

p—y 4
Hp:l (2 - Yﬁp)wp + Hp:]
= (0.3617,0.1952,0.2521).

(Yp,)™

If we use the PFWA operator which is developed by Xu [53],
to aggregate the PFVs f3,(p = 1,2,...,n), then we have

4
PFWAW(ﬁl7ﬁ27ﬁ37ﬁ4) = <1 - H(l - 'uﬂp)mp
p=1

4 4
H(n[} >H Y/ﬁ w”) (0.3804,0.1908,0.2491).
p=1 p=1

Y
ﬁ @ Springer
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It is clear that
PFEWAw(ﬁI 9 ﬁ27 ﬁ37 ﬁ4) <PFWAW(H1 ) ﬁ27 BS» ﬁ4)

Proposition 2 Let f8, = (:u/)’pvn/fvaﬁ,,)v(p =1,2,...,n)
be a family of PFNs and w = (w),ms,...,@,)" be the
weighting vector of B,(p=1,2,...,n) such that @, €
0,1, (p=1,2,...,n) and Y7 _, @, = 1; then, we have
the following.

(1) Idempotency If all B, are equal, i.e., f,
p=12...

PFEWA, (S}, fa, - -

= f for all

n, then

5 Ba) =B (24)

=p for all p=1,2,...,n, ie,
=1,2,...,n, then

Proof Since f,
Mg g, = Mg and Y/fp =Yg, p
PFEWA, (81, Ba; - - By)

[T (14 s)™ =TT, (1= )™
H;:1(1 + ,H/;p)w” + 10 (1= .“ﬂp)w” ,
21T g™
[[-(2- ﬂﬁ,,)m” + H;:1('1/i,,)w” ’
21T (XYp)™
=1 (2= Yg)™ + TTp=y (Xp,)™

Hp, =

Z,;:l(l + ﬂﬁ)mﬂ - 22:1(1 - ﬂﬂ)%
Zﬁ:l (1+ ﬂ[s’)wﬁ + ZZ:] (1- #ﬁ)wP ’
ZZZ 1(”[})%

o1 (2=mp)™ + py ()™

23,1 (Yp,)™”
Z; 1(2 - Yﬁ)mp + 22:1(Yﬂ,,)%
(14 pg) — (1 — pp) 21
(1 + pg) + (1 —pp) " (2 = mp) +np’
Zlﬁ/j
(2-0p) + Y

= (ug, 15, Yp)
=p
(2). Boundary

ﬁmin S PFEWAW(ﬁl? ﬁ27 .

'7ﬁn)§ﬁmax

where ﬁmin = min{ﬁl ) ﬁ27 SRS ﬂn} and

max{f,fs, .., P}

ﬁ @ Springer

Proof Let f(r):{if, re[0,1];

thus fix) is

then f(r) = [ =

—== <0 decreasing function. Since

<1+ )

By g, <pg. for all pothen f(uy, )<

I=pp o 1—py
Fug,) <F () for all prieapiton < 7t <

:ﬁﬁ,(p =1,2,...n)Let w= (wl,wz,...,wn)T be the
weighting vector of §,(p = 1,2,...n) such that @, € [0, 1],
(p=1,2,...,n)and 22:1 @, = 1; then for all p, we have

() <)
1+ Mg —\1+ tg, —\1+ ...,
R )
) <I{;/—) <
o\t Hg,, i\t H, o\ Tt
£ () sl
It ug ACREY) S\t g,

1 — Hg nof1— Hg, ” 1-— ug.,
A1 <II{ 7= =\t
HB p=l Hg, HB i
@p
<

A

R #ﬁm

p=1
g, 1 Ity
2 = L iwNT S 2
1+ Hp:l (l+/lfp)
2
S l+p < . <1+u
by
1+ Hl’ 1 (l+ﬂ/f )
2
© By < TN S
1 + Hp:l (W)
1.e.,
o B0 TR0
Brnin — Hp:l(l + .“/f )w,, + Hp l( )w,, = MPnax
(26)
Let g(y)=%%, ye(0,1); then g(y)=52<0, be

decreasing function on (0, 1]. Since 5 < Mg, <ng_, for

2 Mpin 21, 2 M _
for all p, i.e., S %” < . J(p=1,2,....n).
Let w= (wl,wz, .. .,wn)T be the weight vector of
B,(p=1,2,...n) such that @, € [0,1], (p=1,2,...,n)

and 22:1 @, = 1; then for all p, we have
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2=\ (2T (2
B S\ g, O\ M

Thus

P p max
n 2 @, n [ _ @, n ) @,
) Mo | < g\~ = M
p=1 r’ﬁmm a p=1 rlﬁp - p=1 rlﬁmax

Mpoin — p=1 \ I8, 11
o Mo L
2 n 2-ny, 4 | 2
Hp:l g, +
2
S My = o N7 = b
n B,
prl < ’76,,,) +1
ie.
21Leim
p=1"1B,
<N i,mx = n @, n S n B imin (27)
! et 2= )" + Tl ng, ~
Note that (27) also holds even if 1B, 0.

Let h(z) =2%, z€(0,1]; then K'(z) == <0, be a
<Y/3p§Yﬂmin7

ﬁmm) = h(’%) <

P < 2-Yy

decreasing function on (0, 1]. Since Yp_

for all i, where 0<Yp ,then h(

L2 max
h(Yp,,), for all p, e, <
(p=1,2,...,n).

Letw = (o), @y, .., @,

Pmax

)T be the weighting vector of ﬂ

0,1], (p=1,2,...,n) and > _, @, =
then for all p, we have

4 2—-7 o — @p
<2 Tﬁmm) < LA (2 Tﬁmx>
g, Yy, g,

Thus

such that @, €

Buin  pi , Yfen
PRV 1
2 no (22X, \
HF‘( Ty ) i
Y/;
<o Y < <Yg_
2 max n 2-Yg min
HP:I( T, ) !
ie.,
H” 1Y/f
& Yg,, < <Yg,, (28)
[ (2=0p)" +11- Y,
Note that (28) also holds even if Yg = 0.
Let PEFEWAG (B, B2, - -, B,) = (ug. 5, Yp) = B; Then

(26), (27) and (28) are transformed into the following
forms, respectively;

Hpo < Hp < M,

M <18 SN,

max

Vg SVp<Tp.
O

(3) Monotonicity Let f, = (uﬁp, ng,, Yﬁp) and ﬁ; =
(,uﬁ;, n/;;,Y[;;> (p=1,2,...,n) be a two family of PFNs,
and B, <., Le.pp, < pg,ng >ng and Yg > Y, for all
p; then
PFEWAG(B1, By, - - -, B,) SPFEWAG (B, ;.. ., B,)-

(29)
Proof Let f(r) = £,

,uﬁpg,uﬁ;, for all p, then f(uﬁ;) gf(u,;), for all

r € [0,1], be a decreasing function

1=pp I—pg o
p=172. nle.,lwﬂg_Hﬂ/;,(p—l,Z,...n).
Letw = (w), @y, ...,m,)" be the weighting vector of B,
(p=1,2,...,n)suchthat @, € [0,1], (p = 1,2,...,n) and
22:1 w,=1; then for all p, we  have

n). Thus

AN < (1=, o 1.2
H—Nﬂ; — ]+Mﬂp )(p_ 3Ly

ﬁ @ Springer
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(3
_|_
=
—
+ 1 |
35

p=1 ﬁ;
1 1
<~ @, < 1 i
no (1o no [ H
1+ Hp:l (1+/Aﬂz> 1+ Hl’:l <1+fo;>
2 2
= ) @, S 1—u @)
n 7“/311 n )
1+ Hp*l (1+H/i,,> 14 Hp:l <l+uﬁ;>
2 2
< 1 m 1< 1 w1
n —lg n M
1+110- ('*“é) 1+ H,;:l (H»,u}; )
ie.,
[T (U 45)™ = TTpma (1= 15))™
[per (U a1 )™ 4 TLper (1 = 11 )™ (30)
[t (U4 )™ =TTy (1 — )™
T (U )™ + T (1= )™

Let g(y) = %, y € (0,1], be the decreasing function on

(0, 1]. Since 11,31]271[;; >0, for all p, then g(r]ﬁ;) >

. 2—;7/;* 27%
1.e., 2> __r
g(nﬁ,,), w2 g, (P

=1,2,...n). Let w@w=

(@1, @, ...,m,)" be the weighting vector of B, such that

@, €[0,1], (p=1,2,...,n) and >3 _, @, = 1; we have

2o\ @ 2 @p
e
b P
@, @p
fn(5) =15
s\ Mg =1\ 5,
n

N 1 S 1
n 2—1g, 7 I 2-nge ”
Hp_1< ”ﬁ,,[> +1 Hp_1 ,1’3*’ +1
2 2
= >

1.e.,

n n @
2[Tp=1 1, 21T <'7/f;)

n — @p n - n @, n
ot @ =)™ + Ty, ™ TT 2= )™ + T ()

(31)
Note that (31) also holds even N, = Mg, = 0, for all p,

Y4
ﬁ @ Springer

wp

Let h(z) =2, be the decreasing function on (0, 1].

Since Y, > Yy, >0, for all p, then h(Yy ) =h(Yy,).

2— Y/f; S 2—Yﬁp
9 - -_ "
Y,;p Y B

ie. ,(p=1,2,....n). Let @w = (wy,@,...,

@,)" be the weighting vector of B, such that @, € [0, 1],
(p=12,...,n) and > @,=1; we

2_Y/i*y wp 2*Yﬂ, mp
(5) "= ()™ s
ﬁ (2 - Y,g,) . H (2 - m) v
p=1 Yﬁ; B p=1 Y/))I’

n 2=\ n 2=\
s, 5,
P > !
@H( Y*>H—(Y >+1
p=1 ﬁp p=1 ﬁﬂ

have

1 1
= >
n 271'/%)(31; — 2*1‘/;* @p
Hﬂzl( Y/;P +1 HZl( Tﬁ;p +1
2 2
& >

2-Yp \ @p
HZ:l ( Y/g I) +1

3
i.e.,
2 H;:l Yﬂp 2 H;Z:l <Yﬁ;>
n @, n - @,
e 2= X)) + 1o Yo, 1, 2= )™ + TTL, (Y/;;)
(32)

Note that (32) also holds even Y = Y,;; =0, for all p,

Let PFEWAG (B, By, ... B,) = (ug,ng Yp) = and
PFEWAG (B, 5, -, Br) = (,uﬂ*,nﬁx,T,;*) =p Then
(30), (31) and (32) are transformed into the following
forms, respectively;

Hp < pg
Mg = Npe
Yp> Y[;*

Picture fuzzy Einstein ordered weighted
averaging operator

In this section, we shall develop picture fuzzy Einstein
ordered weighted averaging aggregation operators to
aggregate the picture fuzzy information and also some
basic properties of picture fuzzy Einstein ordered weighted
averaging operator.

Definition 10 Let f, = (uﬁp,nﬁp,rﬁp)(pz 1,2,...,n)
be the family of PFNs. A picture fuzzy Einstein OWA
operator of dimension »n is a mapping PFEOWA : L* — L*,
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which has an associated vector w = (@, @y, . . .wn)T such
that @, € [0,1],p = 1,2,...,nand >, @, = 1, and

n

PEEOWA, (B, B, - oB) = (Wiﬁ«sm)

— (33)
= (w1.6ﬁ5(1) e w2-6ﬁ5(2) De

Such that (06(1),0(2),...,0(n)) be a permutation of
(1,27.. .,n), where ﬁg(,,) SLB(S(I,-H) Vp =1,2,...,n

- De wn'ﬂé(n))'

Theorem 4 Let f§, = (,uﬁp, ng,» Yﬁp>, (p=1,2,...,
the family of PFNs, then by using the PFEOWA operator
the aggregated value is again a PFV, and

PFEOWA, (B4, B3, - - -»0,)

HZ:I(I + ,“ﬂa-m)w[’ - HZ:1(1 - ﬂ/}o-(l)))mp
HZ:] (1+ .“/f(s(m)w]) + H;:l (1- /v‘/zé(l,))mp ’
2[Tp=1 (g, )™

[1-(2— ’7/;(,(,,))% + 1= (”/ﬂ,;(m)wp ’

n) are

2[ 1= (Yp,,)™”
=1 (2= Y, )™ + T1mi (V)™
where  (6(1),0(2),...,6(n)) be a permutation of
(1,2,...,n) with By, <tBspry YV P=12,....n. w=
(w1, @y, .. .wn)T be the weighting vector of the PFEOWA
operator  such that @, €[0,1] and 7 _ @, =

L.(p=1,2,....n)

Proof The proof of this theorem is same as to
Theorem 3. O

Corollary 3 The PFOWA operator and PFEOWA opera-
tor have the following relation

PFEOWAG (B1, s, - - -,f5) SPFOWAG (B, Ba, - B,)-

where B, be the family of PFNs and @ = (w, @3, . . .wn)T
be the weighting vector of B, (p=1,2,.. .,n) such that

€0, 1Jand > @, =1;(p=1,2,...,n)
Proof Similar to the Corollary 2. O

Example 2 Let f, =(0.2,0.3,0.4),6, =(0.1,0.5,0.3),
f;=1(0.3,0.2,04), p,=(0.1,0.2,0.3) and f5=
(0.3,0.1,0.4) be a five PFVs and the PFOWA operator has
an associated vector w = (0.113,0.256,0.132, 0.403,

0.096)". Since B, <pB; <Py <P3<ps, then By =5 =
(0.3,0.1,04), Bya) = B3 = (0.3,02,0.4), Py = fs =
(01702703)7 ﬁ5(4) = ﬁl = (021 O3a04)1 ﬁé(S) = ﬂZ =
(0.1,0.5,0.3). Then, we compute the following partial
5 @ 5 @

values: [, (1 + #g,, )" = 12115, [ (1 - wp,)" =

5 @) 5 @, __
07821, [L_ny =02378, [, (2—ny, )" =

L739L[L ., Y =03746, I,
1.6222. By (45), it follows that
PFEOWAm(ﬁl 5 ﬂZv ooy ﬁs)

(2 — Y/g(i(p))w” =

(Tl (14w, )™ =T (1= s, )™
Ty (1 + g, )™ + T (1= a5, )™
B 2Hp 1 ’7;?
a H2:1(2 ~ Mg )™ + Hp:l niﬁiﬁ(m
2 HI’ 1 ﬁo )
BIFETCED VRIDIES | WD Vi

= (0.2154,0.2406,0.3752)

Example 3 1If we use the PFOWA operator, which was
developed by Xu [52], to aggregate the PFVs, f,

(p=1,2,..,
PEOWA (B, Bas - -, fs)

5 5
= (l - H ¢ﬁ0() H qD/fo(l 1_]1: ‘pz](,-))
=

p=1

= (0.2179,0.2378,0.3746)

5),then we have

It is clear that PFEOWA,(f,, [, ..

(ﬁl? ﬁZa ceey ﬁS)
Similar to those of the PFOWA operator, the PFEOWA

operator has same properties as follows.

., Bs) <PFOWA,

Proposition 3 Let f§, = (uﬁp,n,}p,Yﬁp),(p =1,2,...,n)
be a family of PFNs, and w = (wl,wz,...wn)T be the
weighting vector of the PFEEOWA operator, such that @, €

0,1, (p=1,2,...,n) and 37 _, @, = 1; then, we have

the following.
(1).  Idempotency If all B,are equal, i.e., , = ffor all f,
(p=1,2,...,n) then

PFEOWA, (B, Bas - - -,B,) = B

(2). Boundary

ﬂmin S PFEWAw(ﬁ] ’ ﬂZv .. '7ﬁn) S ﬂmax

where Ppin = min{f, f,,....0,} and P, = max
{:81) ﬁ2a B '7ﬁn}'

(3). Monotonicity Let B, = (,uﬁp, g, » Y/;p) and /3; =
(uﬁ;,nﬁ;,Yﬁ;) (p=1,2,...,
of PFVs, and B, <.p,, i.e., Mg, <t Mg =g and
Yﬁp > Yﬁ;,for all p; then

n) be a two collections

PFEOWA, (B, o, - -

’r @ Springer



226

Mathematical Sciences (2019) 13:213-229

(4). Commutativity Let B, = (uﬁp,nﬁp,Yﬂp), (p=12,
...,n) be a family of PFNs, then for every @
PFEOWA (B, B2, - - -,B,) = PFEOWAL(S], 5, ..., B5).

where (f1,p5,...,0,) is any permutation of (f7,f;,
B

Besides the aforementioned properties, the PFEOWA
operator has the following desirable results.

Proposition 4 Let f§, = (uﬁp,nﬁp,Y/gp), (p=1,2,...,n)
be a family of PFVs, and w = (w1, ws,.. .,wn)T be the
weighting vector of the PFEOWA operator, such that @, €
[0, 1] and Zzzl @, =1;(p=1,2,...,n) then, we have the
following.

(). Ifw=(1,0,...,0)", then PFEOWAy (B, s - - -B,)
= max{ﬁlaﬁb x 'vﬁn}'

). Ifw=(0,0,...,1)", then PREOWA(B,, fa; - - ..f)
= min{ﬁl’ﬁ% e '7ﬁn}'

3). If wj=1 and w, =0(j #1i), then PFEOWA,
(Bis Bas - B,) = Bs(j) where By; is the jth largest
of B,(p=1,2,...,n).

Application of the picture fuzzy Einstein
weighted averaging operator to multiple
attribute decision making

MADM problems are common in everyday decision
environments. An MADM problem is to find a great con-
cession solution from all possible alternatives measured on
multiple attributes. Let the discrete set of alternatives
and attributes are A ={A,Ay,... A} and
C={C,C,...,C,}, respectively. Suppose decision
maker given the PFVs for the alternatives A;
(p=1,2,...,n) on attributes C; (j = 1,2,...,m) are k;j =
(,u,-j, Nij» Yij), where y;;, 1;; and Y; indicates the degrees that
the alternative d; satisfies, neutral and does not satisfy the
attribute h;, respectively. Where 0 < y; +n,; + Y;; <1, and
satisfy the condition y; +17; + Y;; < 1. Hence, an MADM
problem can be briefly stated in a picture fuzzy decision
matrix K = (k) .., = (5 M i)

Step 1 Find the normalized picture fuzzy decision
matrix. Generally, attributes are two types, the one is
benefit and the other is cost; in other words, the attribute set
C can be divided into two subsets: C; and C,, where C; and
C, are the subset of benefit attributes and cost attributes,
respectively. If in a MADM problem the attributes are of

)
’r @ Springer

the same type (benefit or cost), then the rating values do not
need normalization. If in a MADM problem the attributes
are of the different type (benefit and cost) in such case, we
can use the following formula to change the benefit type
values into the cost type values.

Sij = (,uijv '/Iij7 Ylj)

{k; jeq } (34)
kij J (S C2

Hence, we obtain the normalized picture fuzzy decision
matrix S = (s;),..= (15 Y3)),,,,» Where ki is the
complement of k;.

Step 2 Utilize the PFWA and PFEWA operator to
aggregate all the rating values s;;(j = 1,2,...,m) of the ith
line and achieve the total rating value s; corresponding to
the alternative A;.

Step 3 Find the score value of the total aggregated value
s; by using Eq. (4). Then select the best one ranking the
alternative A;(i = 1,2,...,m), by the descending order of
the score values.

lllustrative example

Let consider a numerical example for decision making
problem, the decision maker consider three different
companies for invest of money. Let A;, A, and A3 be rep-
resented car company, Food company and Arm company,
respectively, and the criteria plane C is risk analysis, C; is
growth analysis, C3 is investment cost, Cy4 is social impact,
Cs operating cost, Cg is environmental impact analysis and
C7 other factors. The opinions of decision maker about
these three companies based seven criteria are represented
in Table 1.

Based on Table 1, we get the picture fuzzy decision
metric K = (kij)3><7: ((,uij,nij, Y’7)>3x7‘ In this problem,
we consider that the attributes C3 and C; are the cost
attributes and all another are benefit attributes, using
Eq. (34), transformed the picture fuzzy decision matrix K
into the following normalized matrix, shown in Table 2.
Let w = (0.05,0.15,0.20, 0.20,0.15,0.15,0.10)T be the
attribute weight vector. Using the PFEWA and PFWA
operators, respectively, we can get the ranking orders and
the overall rating values of the alternatives A;(i = 1,2, 3)
as follows in Table 3.

It is clearly seen from Table 3 that using different
operators, the overall rating values of the alternatives are
different, but the ranking orders of the alternatives remain
the same, and therefore, the best option is A;.
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Table 1 Picture fuzzy decision
matrix

G

(&)

C3

Cy

A
Ay
Az

(0.25,0.30,0.40)
(0.15,0.25,0.45)
(0.25,0.15,0.35)

(0.35,0.25,0.35)
(0.30,0.30,0.35)
(0.35,0.20,0.45)

(0.40,0.20, 0.20)
(0.45,0.10, 0.40)
(0.60,0.20,0.20)

(0.25,0.25,0.40)
(0.35,0.20,0.35)
(0.45,0.10,0.45)

Cs

Cs

G

A
Ay
A3

Table 2 Normalized picture
fuzzy decision matrix

(0.40,0.10,0.50)
(0.20,0.35,0.45)
(0.40,0.10,0.50)

(0.20,0.45,0.45)
(0.45,0.10,0.45)
(0.30,0.20,0.50)

(0.25,0.25,0.25)
(0.40,0.20,0.35)
(0.40,0.35,0.25)

G

G

G

Cy

Ay
A
Az

(0.25,0.30, 0.40)
(0.15,0.25,0.45)
(0.25,0.15,0.35)

(0.35,0.25,0.35)
(0.30,0.30,0.35)
(0.35,0.20, 0.45)

(0.20,0.20,0.40)
(0.40,0.10,0.45)
(0.20,0.20,0.60)

(0.25,0.25,0.40)
(0.35,0.20,0.35)
(0.45,0.10,0.45)

Cs

Cs

G

Ay
Ay
Az

(0.40,0.10,0.50)
(0.20,0.35,0.45)
(0.40,0.10,0.50)

(0.20,0.45,0.45)
(0.45,0.10,0.45)
(0.30,0.20,0.50)

(0.25,0.25,0.25)
(0.35,0.20,0.40)
(0.25,0.35,0.40)

Table 3 Overall rating values and ranking orders of the alternatives

Overall rating values Ranking Orders

PFEWA A; = (0.2717,0.2229,0.2804), Al > Ay > As
Ay = (0.3376,0.1856,0.4079) ,
As = (0.3280,0.1648,0.4817)

PFWA Ay = (0.2740,0.2212,0.2607), AL > Ay > As
A; = (0.3405,0.1834,0.4072),
Az = (0.3212,0.1834,0.4072)

Comparison analysis

This section consists of the comparative analysis of several
existing aggregation operators of picture fuzzy information
with proposed Einstein aggregation operators. Existing
methods to aggregated picture fuzzy information are shown
in the below table.

Overall ranking of the alternatives

Existing operators Ranking

PFWG [1] H,>H, >H, > H;
PFOWG [1] H,>H,>H >H
PFHWG [1] H,>H >H, >H
GPFHWG [1] H,>H >H >H,
Proposed operators Ranking

PFEWA H,>H, >H, > H;
PFEOWA H,>H, >H, > H;

The bast alternative is Hy. The obtaining result utilizing
Einstein weighted averaging operators is same as results
shown in existing methods. Hence, this study proposed the
novel Einstein aggregation operators to aggregate the pic-
ture fuzzy information more effectively and efficiently.
Utilizing proposed Einstein aggregation operators, we find
the best alternative from set of alternative given by the
decision maker. Hence, the proposed MCDM technique
based on proposed operators gives to find best alternative
as an applications in decision support systems.

Conclusion

In this paper, we investigate the multiple attribute decision
making (MADM) problem based on the arithmetic aggre-
gation operators and Einstein operations with picture fuzzy
information. Then, motivated by the ideal of traditional
arithmetic aggregation operators and Einstein operations,
we have developed some aggregation operators for aggre-
gating picture fuzzy information: picture fuzzy Einstein
aggregation operators. Then, we have utilized these oper-
ators to develop some approaches to solve the picture fuzzy
multiple attribute decision making problems. Finally, a
practical example for different companies for invest of
money is given to verify the developed approach and to
demonstrate its practicality and effectiveness. In the future,

’r @ Springer
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the application of the proposed aggregating operators of
PFSs needs to be explored in the decision making, risk
analysis and many other uncertain and fuzzy environment.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creative
commons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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