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Abstract In this paper, a new method is proposed for generating families of continuous
distributions. A random variable X , “the transformer”, is used to transform another random
variable T , “the transformed”. The resulting family, the T -X family of distributions, has
a connection with the hazard functions and each generated distribution is considered as a
weighted hazard function of the random variable X . Many new distributions, which are
members of the family, are presented. Several known continuous distributions are found to
be special cases of the new distributions.

Keywords Hazard function · Pearson system · Beta-family · Generalized distribution ·
Entropy · Shannon entropy

1 Introduction

Statistical distributions are commonly applied to describe real world phenomena. Due to the
usefulness of statistical distributions, their theory is widely studied and new distributions are
developed. The interest in developing more flexible statistical distributions remains strong
in statistics profession. Many generalized classes of distributions have been developed and
applied to describe various phenomena. A common feature of these generalized distributions
is that they have more parameters. Johnson et al. [19] stated that the use of four-parameter
distributions should be sufficient for most practical purposes. According to these authors, at
least three parameters are needed but they doubted any noticeable improvement arising from
including a fifth or sixth parameter.

A. Alzaatreh
Department of Mathematics and Statistics, Austin Peay State University,
Clarksville, TN 37044, USA

C. Lee · F. Famoye (B)
Department of Mathematics, Central Michigan University,
Mount Pleasant, MI 48859, USA
e-mail: felix.famoye@cmich.edu

123



64 A. Alzaatreh et al.

The Pearson system of continuous distributions, as developed by Pearson [31], is a system
for which every probability density function (p.d.f.) f (x) satisfies a differential equation of
the form

1

f (x)

d f (x)

dx
= a + x

b0 + b1x + b2x2 , (1.1)

where a, b0, b1, and b2 are the parameters (see Johnson et al. [19, Chapter 12]). The shape of
the function f (x) depends on the parameters. The different shapes of the distribution were
classified by Pearson into a number of types. The different types correspond to the different
forms of solution to (1.1). The form of solution of (1.1) depends on the roots of the equation
b0 +b1x +b2x2 = 0. An example is when b1 = b2 = 0, which led to the normal distribution
and this is not assigned to a particular type. For a detailed discussion of the various types,
see Chapter 12 of Johnson et al. [19]

Burr [5] presented a system of continuous distributions which can take on a wide variety
of shapes. The system of distributions satisfy the differential equation

d F = F(1 − F)g(x)dx, (1.2)

where 0 ≤ F ≤ 1 and g(x) is a non-negative function over x . Burr [5] gave 12 solutions to
the equation in (1.2) and these correspond to the choices of g(x). See Fry [15] and Johnson
et al. [19] for a list of Burr Types I–XII distributions.

Johnson [18] proposed a system for generating distributions using normalization trans-
formation with the general form

Z = γ + δ f

(
x − ξ

λ

)
, (1.3)

where f (.) is the transformation function, Z is a standardized normal random variable, γ
and δ are shape parameters, λ is a scale parameter and ξ is a location parameter. Without
loss of generality, Johnson assumed that δ and λ are positive. He proposed three transfor-
mation functions and defined the lognormal family, the bounded system of distributions and
unbounded system of distributions. These families of distributions cover many commonly
used distributions such as normal, log-normal, gamma, beta, exponential distributions, and
others. For more discussions, see Johnson et al. [19, p.33].

Tukey [37] proposed lambda distribution, which was generalized by Ramberg and
Schmeiser [32,33] and Ramberg et al. [34] as the so-called generalized lambda distribu-
tions (GLD). This family of distributions is defined in terms of percentile function

Q(y) = Q(y; λ1, λ2, λ3, λ4) = λ1 + yλ3 − (1 − y)λ4

λ2
, where 0 ≤ y ≤ 1. (1.4)

The parameters λ1 and λ2 are, respectively, location and scale parameters, while λ3 and λ4

determine the skewness and kurtosis. The corresponding p.d.f. is given by

f (x) = λ2

λ3 yλ3−1 + λ4(1 − y)λ4−1 , with x = Q(y). (1.5)

The existence of a valid p.d.f. requires the condition that λ3 yλ3−1 + λ4(1 − y)λ4−1 has the
same sign for all y in [0, 1] and that λ2 takes the same sign. Freimer et al. [14] discussed
the similarity and differences between the Pearson’s system and the GLD. They pointed out
that Pearson’s family does not include logistic distribution, while GLD does not cover all
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Families of continuous distributions 65

skewness and kurtosis values. An extended GLD was proposed by Karian and Dudewicz [23]
that consists of both GLD and generalized beta distribution defined as

f (x) =
{

(x−β1)
β3 (β1+β2−x)β4

B(β3+1, β4+1)β
(β3+β4+1)
2

, for β1 ≤ x ≤ β1 + β2

0, otherwise,
(1.6)

where B(., .) is the complete beta function. For detailed discussion about the GLD and
extended GLD, see Karian and Dudewicz [23].

Azzalini [4] introduced the skew normal family of distributions. Suppose X and Y are
independent random variables, each with a p.d.f. that is symmetric about zero. For any λ,

0.5 = P(X − λY < 0) =
∞∫

−∞
fY (y)FX (λy)dy. (1.7)

Thus, 2 fY (y)FX (λy) is a probability density function. If X and Y are each standard normal,
N (0, 1), then the skew-normal family of distributions has the p.d.f.

2ϕ(x)�(λx), (1.8)

where ϕ(x) and �(x) are N (0, 1) p.d.f. and cumulative distribution function respectively.
The distribution in (1.8) is characterized by a single parameter λ. Location and scale para-
meters can be added to the distribution in (1.8) by using the translation Y = μ + σ X . For
skew normal distribution and other systems of continuous distributions, see Johnson et al.
[19, Chapter 12].

Eugene et al. [10] used the beta distribution as a generator to develop the so-called family of
beta-generated distributions. The cumulative distribution function (c.d.f.) of a beta-generated
random variable X is defined as

G(x) =
F(x)∫
0

b(t)dt, (1.9)

where b(t) is the p.d.f. of the beta random variable and F(x) is the c.d.f. of any random
variable. The p.d.f. corresponding to the beta-generated distribution in (1.9) is given by

g(x) = 1

B(α, β)
f (x)Fα−1(x)(1 − F(x))β−1. (1.10)

This family of distributions is a generalization of the distributions of order statistics for the
random variable X with c.d.f. F(x) as pointed out by Eugene et al. [10] and Jones [21].
Since the paper by Eugene et al. [10], many beta-generated distributions have been studied
in the literature including the beta-Gumbel distribution by Nadarajah and Kotz [29], beta-
exponential distribution by Nadarajah and Kotz [30], beta-Weibull distribution by Famoye
et al. [12], beta-gamma by distribution Kong et al. [24], beta-Pareto by distribution Akinsete
et al. [1], and others.

Recently, Jones [22] and Cordeiro and de Castro [6] extended the beta-generated family
of distributions by replacing the beta distribution in (1.9) with the Kumaraswamy distri-
bution, b(t) = αβxα−1(1 − xα)β−1, x ∈ (0, 1), Kumaraswamy [25]. The p.d.f. of the
Kumaraswamy generalized distributions (K W -G) is given by

g(x) = αβ f (x)Fα−1(x)(1 − Fα(x))β−1
. (1.11)
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66 A. Alzaatreh et al.

Several generalized distributions from (1.11) have been studied in the literature including the
Kumaraswamy Weibull distribution by Cordeiro et al. [7], the Kumaraswamy generalized
gamma distribution by de Castro et al. [9], and the Kumaraswamy generalized half-normal
distribution by Cordeiro et al. [8].

Ferreira and Steel [13] introduced a method to generate skewed distributions through
inverse probability integral transformations. According to Ferreira and Steel [13], a distri-
bution G is said to be a skewed version of the symmetric distribution F , generated by the
skewing mechanism P , if its p.d.f. is of the form

g(y|F, P) = f (y)p(F(y)). (1.12)

Note that the p.d.f. (1.12) is a weighted function of f (.)with the weight p(F(.)). The skewed
normal family in (1.8) is a special case of this family. By relaxing the assumption F(.) being
symmetric, the beta-generated family (1.10) is a special case of (1.12).

This article presents yet another technique to generate families of continuous probabil-
ity distributions. The article is organized as follows: Sect. 2 presents a new technique for
generating families of continuous distributions. Section 3 gives examples of classes of gen-
eralized families developed using the technique in Sect. 2. The paper ends with a summary
and conclusion in Sect. 4.

2 Method for generating families of continuous probability distributions

The beta-generated family of distributions in (1.10) and the K W -G family of distributions
in (1.11) are generated by using distributions with support between 0 and 1 as the generator.
The beta random variable and the K W random variable lie between 0 and 1, so is the c.d.f.
F(x) of any other random variable. The limitation of using a generator with support lying
between 0 and 1 raises an interesting question: ‘Can we use other distributions with different
support as the generator to derive different classes of distributions?’ This section will address
this question and introduce a new technique to derive families of distributions by using any
p.d.f. as a generator.

Let r(t) be the p.d.f. of a random variable T ∈ [a, b], for −∞ ≤ a < b ≤ ∞. Let
W (F(x)) be a function of the c.d.f. F(x) of any random variable X so that W (F(x)) satisfies
the following conditions:

W (F(x)) ∈ [a, b]
W (F(x)) is differentiable and monotonically non-decreasing
W (F(x)) → a as x → −∞ and W (F(x)) → b as x → ∞.

⎫⎬
⎭ (2.1)

A method for generating new families of distribution is presented in the following definition.

Definition Let X be a random variable with p.d.f. f (x) and c.d.f. F(x). Let T be a continuous
random variable with p.d.f. r(t) defined on [a, b]. The c.d.f. of a new family of distributions
is defined as

G(x) =
W (F(x))∫

a

r(t)dt, (2.2)

where W (F(x)) satisfies the conditions in (2.1). The c.d.f. G(x) in (2.2) can be written as
G(x) = R{W (F(x))}, where R(t) is the c.d.f. of the random variable T . The corresponding
p.d.f. associated with (2.2) is
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Families of continuous distributions 67

g(x) =
{

d

dx
W (F(x))

}
r{W (F(x))}. (2.3)

Note that:

• The c.d.f. in (2.2) is a composite function of (R.W.F)(x).
• The p.d.f. r(t) in (2.2) is “transformed” into a new c.d.f. G(x) through the function,

W (F(x)), which acts as a “transformer”. Hence, we shall refer to the distribution g(x)
in (2.3) as transformed from random variable T through the transformer random variable
X and call it “Transformed-Transformer” or “T -X” distribution.

• The random variable X may be discrete and in such a case, G(x) is the c.d.f. of a family
of discrete distributions.

• The distribution (1.12) introduced by Ferreira and Steel [13] is a special case of (2.3) by
defining W (F(x)) = F(x) and r(.) plays the same role as the weight function.

Different W (F(x)) will give a new family of distributions. The definition of W (F(x))
depends on the support of the random variable T . The following are some examples of W (.).

1. When the support of T is bounded: Without loss of generality, we assume the support
of T is [0, 1]. Distributions for such T include uniform (0, 1), beta, Kumaraswamy and
other types of generalized beta distributions. W (F(x)) can be defined as F(x) or Fα(x).
This is the beta-generated family of distributions which have been well studied during
the recent decade.

2. When the support of T is [a, ∞), a ≥ 0: Without loss of generality, we assume a =
0.W (F(x)) can be defined as − log(1 − F(x)), F(x)/(1 − F(x)),− log(1 − Fα(x)),
and Fα(x)/(1 − Fα(x)), where α > 0.

3. When the support of T is (−∞, ∞): W (F(x)) can be defined as log[− log(1 −
F(x))], log[F(x)/(1 − F(x))], log[− log(1 − Fα(x))], and log[Fα(x)/(1 − Fα(x))].

By using the W (F(x)) = − log(1 − F(x)) in the second example, the G(x) in (2.2) is a
c.d.f. of the new family of distributions which is given by

G(x) =
−log(1−F(x))∫

0

r(t)dt = R{− log(1 − F(x))}, (2.4)

where R(t) is the c.d.f. of the random variable T . The corresponding p.d.f. associated with
(2.4) is

g(x) = f (x)

1 − F(x)
r(− log(1 − F(x))) = h(x) r(− log(1 − F(x))), (2.5)

where h(x) is the hazard function for the random variable X with the c.d.f. F(x).
The corresponding families of distributions generated from the other W (.) functions men-

tioned in examples 2 and 3 are given in Table 1.
In the remainder of this article, we will focus on the case when T has the support [0, ∞)

and W (F(x)) = − log(1 − F(x)). For simplicity, we will use the name T -X family of
distributions for the new family of distributions in (2.5).

Some remarks on the family of distributions defined in (2.5):

(a) The p.d.f. in (2.5) can be written as g(x) = h(x)r(H(x)) and the corresponding c.d.f.
is G(x) = R(− log(1 − F(x))) = R(H(x)), where h(x) and H(x) are hazard and
cumulative hazard functions of the random variable X with c.d.f. F(x). Hence, this
family of distributions can be considered as a family of distributions arising from a
weighted hazard function.
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68 A. Alzaatreh et al.

Table 1 Probability density functions of some T -X families based on different W (.) functions

Support of T W (F(x)) g(x)

[0, ∞)
F(x)

1−F(x)
f (x)

(1−F(x))2
r
{

F(x)
1−F(x)

}

[0, ∞) − log(1 − Fα(x)) α f (x)Fα−1(x)
1−Fα(x) r{− log(1 − Fα(x))}

[0, ∞)
Fα(x)

1−Fα(x)
α f (x)Fα−1(x)
(1−Fα(x))2

r
{

Fα(x)
1−Fα(x)

}

(−∞, ∞) log(− log(1 − F(x))) f (x) r{log(− log(1−F(x)))}
(F(x)−1) log(1−F(x))

(−∞, ∞) log
(

F(x)
1−F(x)

)
f (x)

F(x)(1−F(x)) r
{

log
(

F(x)
1−F(x)

)}

(−∞, ∞) log(− log(1 − Fα(x))) α f (x)Fα−1(x)
(Fα(x)−1) log(1−Fα(x)) r{log(− log(1 − Fα(x)))}

(−∞, ∞) log
(

Fα(x)
1−Fα(x)

)
α f (x)

F(x)(1−Fα(x)) r
{

log
(

Fα(x)
1−Fα(x)

)}

(b) The fact that G(x) = R(− log(1 − F(x))) gives the relationship between random vari-
ables X and T : X = F−1(1 − e−T ). This provides an easy way for simulating ran-
dom variable X by first simulating random variable T from p.d.f. r(t) and computing
X = F−1(1 − e−T ), which has the c.d.f. G(x). Thus, E(X) can be obtained using
E(X) = E{F−1(1 − e−T )}.

The quantile function, Q(λ), 0 < λ < 1, for the T -X family of distributions can be
computed by using the formula

Q(λ) = F−1{1 − e−R−1(λ)}. (2.6)

The Shannon [35] entropy of a random variable X is a measure of variation of uncertainty.
Shannon entropy is defined as E{− log(g(X))}. Theorem 1 shows the connection between
the Shannon entropy of the new family of distributions, g(x), and the Shannon entropy of
the generator, r(t).

Theorem 1 If a random variable X follows the family of distributions g(x) = f (x)
1−F(x)r(− log

(1 − F(x))) in (2.5), then the Shannon entropy of X, ηX , is given by

ηX = −E{log f (F−1(1 − e−T ))} − μT + ηT , (2.7)

where μT and ηT are the mean and the Shannon entropy for the random variable T with
p.d.f. r(t).

Proof By definition,

ηX = E(− log[g(X)])
= −E(log f (X))+ E(log(1 − F(X)))+ E(− log r{− log(1 − F(X))}).

From (2.4), the random variable T = − log(1 − F(X)) has the p.d.f. r(t) which implies the
following: E(log f (X)) = E{log f (F−1(1−e−T ))}, E(log(1−F(X))) = −E(T ) = −μT ,
and E(− log r{− log(1 − F(X))}) = E(− log r(t)) = ηT .

Hence, ηX = −E{log f (F−1(1 − e−T ))} − μT + ηT , which is the result in (2.7). ��
Skewness and kurtosis of a parametric distribution are often measured by α3 = μ3/σ

3

and α4 = μ4/σ
4, respectively. When the third or fourth moment does not exist, for example,
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Families of continuous distributions 69

Cauchy, Lévy and Pareto distributions, α3 and α4 cannot be computed. For the T -X family,
one may encounter some difficulty in computing the third and fourth moments. Alternative
measures for skewness and kurtosis, based on quantile functions, are sometimes more appro-
priate for such distributions. The measure of skewness S defined by Galton [16] and the
measure of kurtosis K defined by Moors [27] are based on quantile functions and they are
defined as

S = Q(6/8)− 2Q(4/8)+ Q(2/8)

Q(6/8)− Q(2/8)
, (2.8)

K = Q(7/8)− Q(5/8)+ Q(3/8)− Q(1/8)

Q(6/8)− Q(2/8)
. (2.9)

Skewness measures the degree of the long tail (towards left or right side). Kurtosis is
a measure of the degree of tail heaviness. When the distribution is symmetric, S = 0 and
when the distribution is right (or left) skewed, S > 0 (or< 0). As K increases, the tail of the
distribution becomes heavier. For the T -X family, Galton’s skewness and Moors’ kurtosis can
be computed by using the quantile function in (2.6) and the appropriate T and X distributions.

3 Some families of T -X distributions with different T distributions

The T -X family of distributions can be further classified into two sub-families: One sub-
family has the same X distribution but different T distributions and the other sub-family
has the same T distribution but different X distributions. For example, by letting T be a
Weibull random variable, we generate a sub-family of Weibull-X distributions. By letting X
be a Weibull random variable, we generate a sub-family of T -Weibull distributions. In this
section, we consider the sub-family with different T distributions. Table 2 gives several such
sub-families with the same X and different T random variables.

In each of the following sub-sections, we discuss the properties of the gamma-X family,
beta-exponential-X family, and Weibull-X family.

3.1 Gamma-X family

If a random variable T follows the gamma distribution with parameters α and β, then r(t) =
(�(α)βα)−1tα−1e−t/β, t > 0. From (2.5), the p.d.f. of gamma-X family is defined as

g(x) = 1

�(α)βα
f (x)(− log(1 − F(x)))α−1(1 − F(x))

1
β

−1
. (3.1)

By using (2.4) and expressing the c.d.f. of the gamma distribution in terms of the incomplete
gamma function, R(t) = (1/�(α))γ (α, t/β), where γ (α, t) = ∫ t

0 uα−1e−udu, the c.d.f.
of the gamma-X family in (3.1) is G(x) = γ {α,− log(1 − F(x))}/�(α). We will refer to
distributions of the form (F(x))c and (1 − F(x))c as, respectively, Exp(F) and Exp(1 − F)
family of distributions.

Lemma 1 The Shannon entropy of the gamma-X family of distributions is given by ηX =
−E{log f (F−1(1 − e−T ))} + α(1 − β)+ logβ + log�(α)+ (1 − α)ψ(α), where ψ is the
digamma function.

Proof It follows from Theorem 1 by usingμT = αβ and the Shannon entropy for the gamma
distribution, which is given by Song [36] as ηT =α+logβ+log�(α)+(1 − α)ψ(α). ��
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Table 2 Families of generalized distributions derived from different T distributions

Name The density r(t) The density of the family g(x)

Exponential θe−θ t θ f (x)(1 − F(x))θ−1

Beta-exponential λe−λβx (1−e−λx )
α−1

B(α,β)
λ f (x)
B(α,β) (1 − F(x))λβ−1{1 − (1 − F(x))λ}α−1

Exponentiated-exponential αλ(1−e−λx )
α−1

eλx αλ f (x){1 − (1 − F(x))λ}α−1
(1 − F(x))λ−1

Gamma 1
�(α)βα

tα−1e−t/β f (x)
�(α)βα

(− log(1 − F(x)))α−1(1 − F(x))
1
β

−1

Half normal 1
σ (

2
π )

1/2
e−t2/2σ2 1

σ (
2
π )

1/2 f (x)
1−F(x) exp(−{log(1 − F(x))}2/2σ 2)

Levy ( c
2π )

1/2 e−c/2t

t3/2 ( c
2π )

1/2 f (x)
1−F(x)

exp(−c/2 log(1−F(x)))
{− log(1−F(x))}3/2

Log logistic β(t/α)β−1

α{1+(t/α)β }2

β

αβ
f (x)

1−F(x) {− log(1 − F(x))}β−1

×{1 + (− log(1 − F(x))/α)β }−2

Rayleigh t
σ2 e−t2/2σ2 − f (x) log(1−F(x))

σ2(1−F(x))
exp(−{log(1 − F(x))}2/2σ 2)

Type-2 Gumbel αβt−α−1e−βt−α
αβ f (x)
1−F(x) {− log(1 − F(x))}−α−1

× exp(−β{− log(1 − F(x))}−α)
Lomax λk

(1+λt)k+1
f (x)

1−F(x)
λk

{1−λ log(1−F(x))}k+1

Inverted beta tβ−1(1+t)−β−γ
B(β, γ )

f (x)
B(β, γ )(1−F(x)) {− log(1 − F(x))}β−1

×{1 − log(1 − F(x))}−β−γ

Inverse Gaussian
√

λ

2π t3 e
− λ

2μ2 t
(t−μ)2 f (x)

1−F(x)

(
λ

2π{− log(1−F(x))}3

)1/2

× exp

(
− λ{− log(1−F(x))−μ}2

2μ2{− log(1−F(x))}
)

Weibull c
γ (

t
γ )

c−1e−(t/γ )c c
γ

f (x)
1−F(x) {−(1/γ ) log(1 − F(x))}c−1

× exp(−{−(1/γ ) log(1 − F(x))}c)

When α = 1, the gamma-X family in (3.1) reduces to Exp(1 − F) distributions. When
α = n and β = 1, the gamma-X family is the density function of the nth upper record value
arising from a sequence {Xi } of identically independent random variables with the p.d.f.
f (x) and c.d.f. F(x) (see Johnson et al. [19, p. 99]). The generalized gamma distribution
defined by Amoroso [3] is a member of gamma-X family where X is the Weibull random
variable. If f (x) is the p.d.f. of the Weibull distribution, then (3.1) becomes

g(x) = c

γ αc�(α)βα
xαc−1e− 1

β
(x/γ )c

, x > 0; α, γ, β, c > 0. (3.2)

Setting δ = βγ c in Eq. (3.2), the distribution reduces to the generalized gamma distribution
in Amoroso [3]. When c = γ = 1, (3.2) reduces to the gamma distribution.

If f (x) is the p.d.f. of the Pareto distribution, then from (3.1) we get

g(x) = kα

x�(α)βα

(
θ

x

)k/β(
log

( x

θ

))α−1
, x > θ.
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Families of continuous distributions 71

Fig. 1 Graphs of the gamma-Pareto distribution for various parameter values

Fig. 2 Galton’s skewness(S) and Moors’ kurtosis(K ) for the gamma-Pareto distribution

On setting β/k = c, we get

g(x) = 1

x�(α)cα

(
θ

x

)1/c(
log

( x

θ

))α−1
, x > θ. (3.3)

Based on our naming convention, the distribution in (3.3) will be called gamma-Pareto
distribution. When α = 1, (3.3) reduces to the Pareto distribution and hence the gamma-
Pareto distribution can be considered as a generalization of the Pareto distribution. Figure 1
shows graphs of the gamma-Pareto density for different parameter values including the special
cases. The figure shows that the shape parameter α adds extra flexibility to the distribution
by changing the shape of the density function from reversed J-shape to concave down shape
for certain parameter values.

The c.d.f. of the gamma-Pareto distribution in (3.3) is G(x) = γ {α, c−1 log(x/θ)}/�(α),
and hence the quantile function of the gamma-Pareto distribution is the solution of equation
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72 A. Alzaatreh et al.

G(x) = p, 0 ≤ p ≤ 1. To investigate the effect of the two shape parameters α and c on the
gamma-Pareto density function, Eqs. (2.8) and (2.9) are used to obtain Galton’s skewness
and Moors’ kurtosis. Figure 2 displays the Galton’s skewness and Moors’ kurtosis for the
gamma-Pareto distribution in terms of the parameters α and c when θ = 1.

From Fig. 2 and the corresponding data values (not included to save space), the Gal-
ton’s skewness is always positive which indicates that the gamma-Pareto distribution is right
skewed. For fixed c ≥ 1, the Galton’s skewness is an increasing function of α. For fixed
c < 1, the Galton’s skewness is a decreasing function of α and for fixed α, the Galton’s
skewness is an increasing function of c. The Moors’ kurtosis is an increasing function of α
and c.

3.2 Beta-exponential-X family

If a random variable T follows the beta-exponential distribution in Nadarajah and Kotz [30],

then r(t) = λ(B(α, β))−1e−λβt (1 − e−λt )
α−1

. From (2.5), the p.d.f. of the beta-exponential-
X family is defined as

g(x) = λ

B(α, β)
f (x)(1 − F(x))λβ−1{1 − (1 − F(x))λ}α−1

. (3.4)

The c.d.f. of (3.4) can be expressed in terms of the incomplete beta function Ix (a, b). The
c.d.f. of the beta-exponential-X family is G(x) = 1 − I(1−F(x))λ (λ(β − 1)+ 1, α).

Lemma 2 The Shannon entropy of the beta-exponential-X family of distributions is given
by

ηX = −E{log f (F−1(1 − e−T ))} + log(λ−1 B(α, β))+ (α + β − 1)ψ(α + β)

−(α − 1)ψ(α)− βψ(β)− [ψ(α + β)− ψ(β)]/λ.

Proof It follows from Theorem 1 by using the mean μT = [ψ(α + β) − ψ(β)]/λ and the
Shannon entropy ηT = log(λ−1 B(α, β))+ (α + β − 1)ψ(α + β)− (α − 1)ψ(α)− βψ(β)

for the beta-exponential distribution, which are given by Nadarajah and Kotz [30]. ��

Special cases of beta-exponential-X family:

(1) The beta-generated family in (1.10) is a special case of (3.4) when λ = 1. Hence, the
family of distributions in (3.4) can be used to generate all the distributions belonging to
the beta-generated family.

(2) When α = 1, the beta-exponential-X family reduces to the Exp(1 − F) distributions.
When β = 1 and λ = 1, the beta-exponential-X reduces to the Exp(F) distributions.

(3) When β = 1, (3.4) reduces to the exponentiated-exponential-X family with p.d.f.

g(x) = αλ f (x){1 − (1 − F(x))λ}α−1
(1 − F(x))λ−1. (3.5)

The c.d.f of (3.5) can be written as G(x) = {1 − (1 − F(x))λ}α .
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By using D(x) = 1 − F(x) in (3.5), the exponentiated-exponential-X family reduces to
the K W -G family.

If X is the uniform random variable, then from (3.4) the beta-exponential-uniform is
defined as

g(x) = λ

B(α, β)

1

b − a

(
b − x

b − a

)λβ−1
{

1 −
(

b − x

b − a

)λ}α−1

, a < x < b. (3.6)

If we use the transformation y = 1 − x in (3.6) then the distribution reduces to the (i) gener-
alized beta distribution of the first kind (McDonald [26]), when b = 1, (ii) beta distribution
when a = 0 and b = λ = 1, and (iii) Kumaraswamy’s [25] double bounded distribution
when a = 0 and b = β = 1.

The exponentiated-Weibull distribution defined by Mudholkar et al. [28] is a member of
exponentiated-exponential-X family in (3.5) when X is the Weibull random variable. If f (x)
is the p.d.f. of the Weibull distribution, then (3.5) reduces to

g(x) = cλα

γ

(
x

γ

)c−1

(1 − e−λ(x/γ )c )α−1
e−λ(x/γ )c , x > 0; c, γ, α, λ > 0. (3.7)

Writing δ = λγ c, (3.7) reduces to the exponentiated-Weibull distribution given by Mudholkar
et al. [28]. When γ = c = 1, (3.7) reduces to the exponentiated-exponential distribution
defined by Gupta and Kundu [17]. When λ = c = 1, (3.7) reduces to the Weibull distribution.
When λ = γ = c = 1, (3.7) reduces to the exponential distribution.

The type I generalized logistic distribution given by Johnson et al. [20, p. 140], is a special
case of exponentiated-exponential-logistic distribution. If f (x) is the p.d.f. of the standard
logistic distribution then (3.5) reduces to

g(x) = αλe−λx

(1 + e−x )λ+1

(
1 − e−λx

(1 + e−x )λ

)α−1

, −∞ < x < ∞, α, λ > 0. (3.8)

When λ = 1, the exponentiated-exponential-logistic distribution in (3.8) reduces to type
I generalized logistic distribution. When α = λ = 1, (3.8) reduces to standard logistic
distribution.

Figure 3 shows graphs of the exponentiated-exponential-logistic density functions for
different parameter values including the special cases.

The c.d.f. of the exponentiated-exponential-logistic distribution in equation (3.8) is
G(x) = (1 − (1 + ex )−λ)α, and hence the quantile function of the exponentiated-
exponential-logistic distribution can be written as

Q(p) = log((1 − p1/α)
−1/λ − 1), 0 ≤ p ≤ 1. (3.9)

By using (3.9), (2.8) and (2.9), one can obtain the Galton’s skewness and the Moors’ kurtosis
for the exponentiated-exponential-logistic distribution. Figure 4 displays the Galton’s skew-
ness and Moors’ kurtosis for the exponentiated-exponential-logistic distribution in terms of
the parameters α and λ.

From Fig. 4 and the corresponding data values (not included in order to save space),
the exponentiated-exponential-logistic distribution can be left skewed, right skewed, and
symmetric. For fixed λ > 1, the Galton’s skewness is an increasing function of α, and for
fixed α, the Galton’s skewness is a decreasing function of λ. For fixed α, the Moors’ kurtosis
is a decreasing function of λwhen λ > 1, and for fixed λ, the Moors’ kurtosis is a decreasing
function of α when α > 1.
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Fig. 3 Graphs of the exponentiated-exponential-logistic distribution for various parameter values

Fig. 4 Galton’s skewness(S) and Moors’ kurtosis(K ) for the exponentiated-exponential-logistic distribution

3.3 Weibull-X family

If a random variable T follows the Weibull distribution with parameters c and γ , then r(t) =
(c/β)(t/β)c−1e−(t/β)c , t ≥ 0. From (2.5) the Weibull-X family is given by

g(x) = c

β

f (x)

1 − F(x)

{− log(1 − F(x))

β

}c−1

exp

{
−

(− log(1 − F(x))

β

)c}
. (3.10)

The c.d.f. of the Weibull distribution is R(t) = 1 − e−(t/β)c and hence from (2.4) the c.d.f.
of the Weibull-X family is

G(x) = 1 − exp{−[− log(1 − F(x))/β]c}. (3.11)

Lemma 3 The Shannon entropy of the Weibull-X family of distributions is given by

ηX = −E{log f (F−1(1 − e−T ))} − β �(1 + 1/c)+ γ (1 − 1/c)− log(c/β)+ 1,
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Fig. 5 Graphs of the Weibull-logistic distribution for various parameter values

where γ is the Euler’s constant.

Proof It follows from Theorem 1 by using the mean μT = β �(1 + 1/c) and the Shannon
entropy ηT = γ (1 − 1/c) − log(c/β) + 1 for the Weibull distribution, which is given by
Song [36]. ��

When c = 1, the Weibull-X family reduces to the Exp(1 − F(x)) distributions. The type
II generalized logistic distribution is a special case of Weibull-logistic distribution. If F(x)
is the c.d.f. of the standard logistic distribution then (3.11) reduces to

G(x) = 1 − exp{−[log(1 + ex )/β]c}, −∞ < x < ∞. (3.12)

When c = 1, the distribution in (3.12) reduces to type II generalized logistic distribution.
Figure 5 shows graphs of the Weibull-logistic density functions for different parameter

values including the special case.
From (3.12), the quantile function of the Weibull-logistic distribution can be written as

Q(p) = log{exp[β(− log(1 − p))1/c] − 1}, 0 ≤ p ≤ 1. (3.13)

Equations (3.13), (2.8) and (2.9) can be used to obtain Galton’s skewness and Moors’ kur-
tosis. Figure 6 displays the Galton’s skewness and Moors’ kurtosis for the Weibull-logistic
distribution in terms of parameters β and c.

Figure 6 and the corresponding data values (not included to save space) indicate that the
Weibull-logistic distribution can be left skewed, right skewed, and symmetric. For fixed β,
the Galton’s skewness is a decreasing function of c, and for fixed c, the Galton’s skewness is
an increasing function of β. For fixed c, the Moors’ kurtosis is an increasing function of β
when c ≤ 1 and a decreasing function of β when c > 1.

4 Summary and conclusion

A method to generate new families of distributions is introduced. This technique defines new
family of distributions using the composite function (R.W.F)(x) with R and F being the
c.d.f.s of the random variables T and X , respectively. The W (.) function is defined to link the

123



76 A. Alzaatreh et al.

Fig. 6 Galton’s skewness(S) and Moors’ kurtosis(K ) for the Weibull-logistic distribution

support of T to the range of X . This technique generates a large number of new distributions
as well as existing distributions as special cases. Table 1 contains several different variants
of T -X families using different W (.) functions.

This article focuses on W (F(x)) = − log(1 − F(x)), where the support of T is [0, ∞).
Some properties of this T -X family are studied. Besides using functions of moments for mea-
suring skewness and kurtosis, we suggest Galton’s measure of skewness and Moors’ measure
of kurtosis. Three sub-families of T -X family, namely gamma-X family, beta-exponential-X
family and Weibull-X family are discussed. These sub-families demonstrate that the T -X
family consists of many sub-families of distributions. Within each sub-family, one can define
many new distributions as well as relate its members to many existing distributions.

Table 2 summarizes various sub-families based on different T distributions with the
same X distribution. New distributions discussed include gamma-Pareto, exponentiated-
exponential-logistic and Weibull-logistic distributions. In general, it is difficult to see how
the shapes of the T and X distributions will affect the T -X distribution. We believe that a
relationship may exist for some specific T and X distributions. For the gamma distribution, α
is a shape parameter while β is a scale parameter. For the Pareto distribution, θ is a scale para-
meter and k is a shape parameter. After forming the gamma-Pareto distribution, θ remains a
scale parameter, β/k = c becomes a shape parameter. The study of the properties, parameter
estimation and applications of these new distributions are currently under investigation. For
example, Alzaatreh et al. [2] defined and studied the gamma-Pareto distribution, a member
of the gamma-X family. Three real data sets were used to illustrate the applications of the
gamma-Pareto distribution. The illustration showed that the gamma-Pareto distribution is a
good model to fit data sets with various kinds of shapes.

Figure 7 provides a tree-relationship of the T -X family addressed in this article. As Fig. 7
shows, the T -X family consists of many sub-families, in which new distributions can be
defined and various existing distributions are special cases.

The variants of T -X families in Table 1 will define many potential new distributions
that deserve further study. Some of these variants are currently under investigation. Future
research for the T -X family may include (i) the investigation of general properties of distribu-
tions generated using different W (.) functions, (ii) defining and investigating the properties of
specific new distributions, (iii) studying new methods for estimating the parameters in addi-
tion to the well-known moments and maximum likelihood (ML) methods, and (iv) applying
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Fig. 7 Sub-families of T -X family of distributions

these new distributions to fit different types of data sets. Based on our experience, the ML
method may be challenging for more than three parameters. A better estimation method will
be needed for distributions with four or more parameters.

During the recent decade, many new distributions developed in the literature seem to focus
on more general and flexible distributions. Using the technique that generates the T -X family,
one can develop new distributions that may be very general and flexible or for fitting specific
types of data distributions such as highly left-tailed (right-tailed, thin-tailed, or heavy-tailed)
distribution as well as bimodal distributions. There are only a few existing distributions that
are known to be capable of fitting bimodal shapes. One of such distributions that have been
successfully applied to fit real world data sets is the beta-normal distribution by Eugene et
al. [10] and Famoye et al. [11]. Our limited investigation in the T -X family suggests that
there are new distributions that can fit not only unimodal and bimodal, but also multimodal
distributions.

123



78 A. Alzaatreh et al.

This article focuses on the case when both T and X are continuous random variables.
This technique can be extended to develop discrete T -X family of distributions where T is
continuous and X is discrete. Different considerations for the W (.) functions will be needed.
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