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Abstract Distribution network reconfiguration (DNR) can

significantly reduce power losses, improve the voltage

profile, and increase the power quality. DNR studies

require implementation of power flow analysis and com-

plex optimization procedures capable of handling large

combinatorial problems. The size of distribution network

influences the type of the optimization method to be

applied. Straightforward approaches can be computation-

ally expensive or even prohibitive whereas heuristic or

meta-heuristic approaches can yield acceptable results with

less computation cost. In this paper, a customized evolu-

tionary algorithm has been introduced and applied to power

distribution network reconfiguration. The recombination

operators of the algorithm are designed to preserve feasi-

bility of solutions (radial structure of the network) thus

considerably reducing the size of the search space. Con-

sequently, improved repeatability of results as well as

lower overall computational complexity of the optimiza-

tion process have been achieved. The optimization process

considers power losses and the system voltage profile, both

aggregated into a scalar cost function. Power flow analysis

is performed with the Open Distribution System Simulator,

a simple and efficient simulation tool for electric distri-

bution systems. Our approach is demonstrated using sev-

eral networks of various sizes. Comprehensive

benchmarking indicates superiority of the proposed tech-

nique over state-of-the-art methods from the literature.

Keywords Distribution network reconfiguration,

Feasibility-preserving evolutionary optimization, Power
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1 Introduction

Power losses in distribution systems may be significant

and may negatively affect the economics of electric power

distribution networks [1]. Consequently, it is of interest to

study the reduction of losses through techniques such as

distribution network reconfiguration (DNR). The topology

of power distribution systems is typically radial, whereas

transmission systems can operate in loop or radial config-

urations [2].

Radial distribution systems often feature sectionalizing

switches and tie switches, mainly used for fault isolation,

power supply recovery and system reconfiguration.

These switches allow for reconfiguring the topology of

the network, with the objectives being reduction of power

losses, load balancing, and improvement of voltage profile

and system reliability [3]. A large number of permutations,

resulting from all possible switch configurations, make the

network reconfiguration task a complex and non-linear

combinatorial problem, particularly for large systems. Due

to the power flow calculations involved [4], the incurred

computational cost can be considerable.
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The first example of DNR for power loss reduction [5]

was a branch and bound search with all tie lines initially

closed, thus creating a meshed system; subsequently switch

opening was done until a radial configuration was

achieved. Similarly, a method was proposed in [6], where

the network was initially meshed and the switches were

ranked based on the current carried. The top-ranked switch

was opened and the power flow calculation was carried out.

The process was repeated until the system was radial. A

branch exchange was performed wherever a loop had been

identified. The configuration with lower power losses was

kept.

In [7], a generalized approach was proposed in which

the tie line with the highest voltage difference was closed

and the neighbouring branch was opened in the loop

formed, leading to a reduction of power losses. Reference

[8] implemented DNR through node-depth encoding

(NDE), which improved the performance of evolutionary

algorithms and power flow algorithms. On average,

27.64% in loss reduction was obtained on 30880 buses in a

5166-switch system.

The DNR problem is, in general, a multi-modal one, and

hence computational intelligence algorithms are normally

more appropriate, even though they generally do not con-

verge to the global optima for larger size systems.

In [2], DNR was performed using the cuckoo search

algorithm (CSA) on 33-, 69- and 119-node distribution

systems and compared to methods presented in other

works. The power loss values presented for the 33- and

69-node systems were the same as those implementing

continuous genetic algorithm (CGA) and particle swarm

optimization (PSO); the losses were smaller than those

applying fireworks algorithm (FWA) [9], genetic algorithm

(GA), refined GA (RGA), improved tabu search (ITS),

harmony search algorithm (HSA) [10], ant colony (AC)

algorithm, and improved adaptive imperialist competitive

algorithm (IAICA) [11]. For the 119-node system, CSA

and CGA presented the same loss level, where FWA and

HSA presented the lowest.

For larger distribution systems (with hundreds or thou-

sands of buses), DNR can be computationally expensive

and requires unacceptable computing time.

Power flow analysis is an essential task of DNR, nec-

essary to evaluate the status of the distribution network

before and after reconfiguration. Thus, it serves as a ref-

erence to determine the effects of network reconfiguration

on quantities of interest (e.g., line power losses and/or

voltage profile). Due to the multi-combinatorial nature of

DNR, a large number of power flow analyses are required

[12].

The usual radial topology of distribution networks has

driven power flow analysis to be done with techniques such

as the forward-backward sweep ladder method [13],

because traditional methods such as the decoupled version

of Newton Raphson have shown convergence problems

leading to undesirable solutions [14].

The Open Distribution System Simulation (OpenDSS) is

an efficient and fast simulation tool for distribution net-

work analysis. It can perform power flow analysis although

it evolved as a harmonic flow analysis tool [15]. It handles

not only radial networks but arbitrarily-meshed, multi-

phase networks. The power flow solving methods imple-

mented by OpenDSS are based on the ‘‘current injection

mode’’. The use of the Newton method enables OpenDSS

to be a fast and robust power flow analysis tool [16].

In this paper, a customized evolutionary algorithm has

been proposed for solving a DNR problem for radial net-

works. The major differences between conventional evo-

lutionary algorithms and the proposed one are in dedicated

recombination operators that embed specific knowledge of

the problem. By enforcing feasibility of solutions, partic-

ularly maintaining radial network structure at all stages of

the process, a considerable reduction of the search space

size is obtained. This leads to faster convergence of the

optimization process, as well as improved repeatability of

the results, based on the numerical studies carried out for

the 33-, 69-, and 119-bus test problems. More importantly,

comprehensive benchmarking indicates superiority of the

proposed technique over state-of-the-art algorithms repor-

ted in the literature.

2 Problem formulation

2.1 Objective function

Network reconfiguration is realized by changing the

state of the switches (open/close). The objectives of this

change in the system are to minimize the power losses and

to improve the voltage profile/index. In more rigorous

terms, the objective is to minimize the expression in (1)

[9]:

F ¼ DPratio
loss þ DVD ð1Þ

where DPratio
loss is the ratio of the total power loss in the

branches after reconfiguration DPrec
loss to the initial power

losses before reconfiguration DPinit
loss, as in (2); DVD is the

voltage variation index and calculated by finding the

maximum voltage drop for all buses using the ratios of bus

voltages Vi to the reference source voltage V1, as in (3):

DPratio
loss ¼ Prec

loss=P
init
loss ð2Þ

DVD ¼ max
i¼1;2;���;Nbus

1� Vi=V1j j ð3Þ

In (1), one takes into account the change in losses after

the reconfiguration as well as the deviation of voltage in
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relation to the base voltage, and aims to minimize both

parameters. The constraint is to maintain the radial

architecture of the network, for supplying all load

points.

The network power losses are calculated by adding up

the losses in all active network branches, as in (4), where Pi

and Qi represent the active and reactive power flow out of

bus i, respectively; Ri is the resistance of line segment i; Vi

is the voltage at the ith bus; Nbr is the number of active

branches, given by (5):

Ploss ¼
XNbr

i¼1

Ri

P2
i þ Q2

i

V2
i

ð4Þ

Nbr ¼ Nbus � 1 ð5Þ

2.2 Power flow

OpenDSS is utilized to carry out power flow simulations

of the test distribution systems described in Section 4. For

the radial circuits, as the considered ones here, OpenDSS

exhibits convergence characteristics similar to those of

forward-backward sweep methods [15].

The test distribution systems are modeled as power

delivery elements (power lines) and power conversion

elements (loads) in the OpenDSS environment. The

OpenDSS script-driven simulation engine has a component

object model (COM) which allows MATLAB command to

access OpenDSS features as illustrated in Fig. 1. Some of

the commands include switch operations, power flow

execution, results extraction, etc.

Switching operations require a switch control assigned

to every branch in the network; given sectionalizing

switches Nsec and tie switches Nts, the total number of

controlled switches Ns is given by (6):

Ns ¼ Nsec þ Nts ð6Þ

The switches status is expressed by a binary string

x with zeros representing open switches and ones

representing closed switches.

3 Optimization methodology

In this section, the proposed optimization algorithm is

outlined. It is referred to as feasibility-preserving evolu-

tionary optimization (FPEO). Similar to the previous works

in the literature, as in [2], a population-based metaheuristic

method is selected due to its ability to perform global

search. This is necessary because DNR is intrinsically a

multi-modal problem. The algorithm is tailored to the task

at hand, in particular, a radial network configuration is

maintained throughout the optimization run. The operation

and performance of the method is demonstrated in

Section 4.

3.1 Representation

The solutions are represented as binary strings with

zeros corresponding to open switches (no connection) and

ones corresponding to close switches (existing

connections).

Given Nbr and Nts, the number of possible network

configurations is C(Nbr, Nts) which is large and grows

quickly with both Nbr and Nts. At the same time, the

number of radial configurations, equal to the number of the

spanning trees s(G) of the network graph G, is much

smaller. For example, for the 119-bus system in [17], the

numbers are 2.491019 and 491015 (the latter estimated

using the matrix-tree theorem [18]). Consequently, it is

beneficial to maintain feasibility of solutions throughout

the entire optimization run. In the proposed algorithm, it is

realized by appropriate definition of the recombination and

mutation operators.

3.2 Algorithm flow

The proposed algorithm follows the basic steps of the

generational evolutionary algorithms. The flow diagram of

the proposed algorithm is shown in Fig. 2, where P stands

for the population.

The algorithm uses binary tournament selection [19]. It

also features elitism and adaptive adjustment of mutation

probability based on population diversity. The elitism

works by replacing the first individual of the newly created

population by the best individual found so far, which

allows it to bypass the selection and recombination pro-

cedures, and, thereby, to preserve it across the algorithm

iterations. Diversity is measured as the average standard

deviation of solution components. The vector F of cost

function values for the population is used by the selection

procedure. The two critical (and novel) components of the

algorithm are mutation and crossover operators, both

Fig. 1 Main simulation engine of OpenDSS accessible to MATLAB

command
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designed to maintain radial structure of the network. They

are briefly described in the following two subsections.

3.3 Feasibility-preserving mutation operator

The mutation operator is supposed to introduce a small

random change in the network configuration. Here, it is

implemented as follows. First, one of the open switches is

randomly selected and closed creating a loop in the net-

work. Then, the loop created this way is identified. Finally,

one of the connections on the loop is randomly selected to

be opened. As a result, the network is transformed from

one radial configuration to another. The mutation operator

has also been explained in Fig. 3.

3.4 Feasibility-preserving crossover operator

The crossover operator, similarly as the mutation one, is

designed to maintain radial configuration of the network.

The first step is a conventional uniform crossover [20],

where components of the offspring x are randomly selected

from one of the two parent individuals. In the second step,

a repair procedure is launched according to the flow dia-

gram shown in Fig. 4, where G(x) represents the network

graph corresponding to the configuration x.

In the above algorithm, connectivity of the network

graph is first checked. In case the graph is not connected,

subsequent switches are closed until connectivity is

achieved. At this step, only those switches that do not lead

to creating loops can be closed. Otherwise, subsequent

connections are opened until the network graph becomes a

tree which corresponds to a radial network configuration.

While modifying the individual, the switches that have

already been tried out are stored in order to avoid unnec-

essary repetitions. The flow diagram of the crossover

operator is shown in Fig. 5.

It should be emphasized that due to the repair procedure,

the network modification made by a crossover operation

can be quite extensive, especially in the initial stages of the

optimization run when diversity of the population is large.

Consequently, a low crossover probability is used (here,

0.2), which is more advantageous as indicated by the initial

experiments.

Initialize population P

Evaluate population P

Find best individual Pbest

Select parent individuals

Perform crossover and mutation

Compute population diversity and 
adjust mutation probability

End

N

Y

Termination condition?

Start

Insert Pbest into new population

Fig. 2 Flow diagram of proposed algorithm

(a) Part of radial network 
with a switch randomly 

closed (green dashed line)

(b) A loop created by 
closing the switch
(blue solid line)

(c) A switch along the 
loop randomly opened to 
retain radial configuration

(red dotted line)

Fig. 3 Operation of feasibility-preserving mutation operator

Modify x by closing 
one of randomly 

selected open switches

Modify x by opening a 
randomly selected 

connection

N

Y

End

Reverse last graph 
modification

Is G(x) a connected 
graph?

Is G(x) a tree? N

Y

Is G(x) a connected 
graph?

NY

Start

G(x)

Fig. 4 Flow diagram of repair procedure
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4 Numerical results and benchmarking

In this section, the FPEO algorithm introduced in Sec-

tion 3 has been comprehensively validated using 3 stan-

dard test networks [16, 17, 21], consisting of 33, 69 and

119 buses, presented in Figs. 6, 7 and 8, respectively. The

network topologies are briefly discussed in Section 4.1.

Numerical results are presented in Section 4.2 along with

comparison to state-of-the-art methods from the literature.

4.1 Test cases

The systems are assumed to be balanced and hence

single phase representation is sufficient.

The initial conditions of the systems, obtained from the

power flow method outlined in Section 2.2, are described

in Table 1, where Vmin is the minimum voltage found in the

system, for all busses, and the ‘‘Initial loss’’ is the total

system power losses. For power flow purposes, the L-N

base voltage level for the 33- and 69-bus systems is set to

be 12.66 kV, while for the 119-bus system, the base volt-

age level set is 11 kV; a tolerance threshold of 0.005 is

set.

The initial topologies of the considered systems are

shown in Figs. 6, 7 and 8. Each bus is indexed for easy

identification. The discontinuous lines represent the tie

lines, and each is labeled with the switch number of the

switch that operates the tie line.

Initialize G(x)

Is G(x) connected?

Modify x by opening a randomly 
selected closed switch

Is G(x) a tree?

Is G(x) connected?

Modify x by closing a 
randomly selected switch

End

Reverse modification

Y

Y

N

N

Y

N

Start

Fig. 5 Flow diagram of feasibility-preserving crossover operator
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Fig. 6 33-bus distribution system
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Fig. 8 119-bus distribution system
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Based on the fact that the voltage source operates as a

Thevenin equivalent source, the complex impedance, set

during the modelling in the OpenDSS environment, is the

impedance of the first line connected to the voltage source

bus.

4.2 Results and benchmarking

The proposed algorithm has been executed using the

following setup: population size 10, crossover probability

0.2, and mutation probability 0.2. It should be noted that

these values are different from typical ones utilized in

evolutionary algorithms (e.g., 0.5 to 0.9 for crossover, and

0.01 to 0.05 for mutation). Extensive initial experiments

conducted for various values of the control parameters

(e.g., crossover rate between 0.1 and 0.5, mutation rate

between 0.05 and 0.2) indicate that the values utilized

above provide the best results, however, the algorithm

works relatively well also for other setups within the

aforementioned ranges. In particular, the cost function

averaged over 20 independent runs may increase up to a

few percent as compared to the algorithm using the control

parameter values.

As already explained in Section 3.4, the dedicated

crossover operator designed for FPEO is rather disruptive

so that lower crossover probability has to be used.

Suitable values of this and other parameters such as pop-

ulation size and mutation probability have been obtained

through initial experiments. In particular, higher mutation

probability is necessary in order to maintain sufficient

population diversity (although a particular value of 0.2 is

not critical because it is adaptively adjusted during the

optimization run).

Maximum number of function evaluations was set to

500, 1000, and 5000 for 33-, 69- and 119-bus systems,

respectively, which corresponds to 50, 100, and 500 algo-

rithm iterations. The results are shown in Tables 2, 3 and 4,

for 33-, 69- and 119-bus systems, respectively. In Tables 2,

3 and 4, different power losses for the same network

configuration in some instances are due to different simu-

lation software packages used by various authors; Nevals is

the number of cost function evaluations, equal to the

Table 1 Initial parameters of test distribution networks

Test case Initial loss (kW) Vmin (p.u.) Initial open switches

33-Bus system [16] 200.745 0.9107 33, 34, 35,36, 37

69-Bus system [21] 223.725 0.9094 69, 70, 71, 72, 73

119-Bus system [17] 1298.100 0.8667 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133

Table 2 Statistics of the optimization results of the 33-bus test network

Method Nevals Best (kW) Average (kW) Worst (kW) Standard deviation Open switches Fitness

FPEO 500 140.3350 140.3350 140.3350 0.00 7, 9,14, 28, 32 0.7607

CSA [2] 3000 139.8476 N/A N/A N/A 7, 9, 14, 32, 37 0.7618

FWA [9] 1000 140.3350 147.0200 157.2430 5.39 7, 9, 14, 28, 32 0.7607

HSA [10] 2500 142.8780 153.8200 197.0100 11.28 7, 10, 14, 36, 37 0.7810

RGA [10] N/A 139.8476 166.5100 200.3400 13.34 7, 9, 14, 32, 37 0.7618

ITS [10] 600 142.8780 165.1000 198.2200 12.11 7, 9, 14, 36, 37 0.7810

GA [10] 21000 139.8476 167.8200 204.6800 14.54 7, 9, 14, 32, 37 0.7618

Table 3 Statistics of the optimization results of the 69-bus test network

Method Nevals Best (kW) Average (kW) Worst (kW) Standard deviation Open switches Fitness

FPEO 1000 98.9299 98.9299 98.9299 0.00 14,55,61,69,70 0.4492

CSA [2] 3000 98.9418 N/A N/A N/A 14,57,61,69,70 0.4993

GA [11] 900 98.9418 101.3400 104.7300 N/A 14,57,61,69,70 0.4993

AC [11] 900 99.1225 103.1800 110.2800 N/A 12,55,61,69,70 0.5001

IAICA [11] 900 98.9418 100.5700 104.2500 N/A 14,57,61,69,70 0.4993
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population size times number iterations; N/A means that

relevant data has not been provided.

FPEO has been executed 20 times in order to obtain

meaningful statistical data. The results obtained for the

33-bus test network are compared to those presented in

[2, 9, 10]; configurations presented by the specified refer-

ences are simulated using the power flow method described

in Section 2.2.

As shown in Table 2, the power losses are slightly

higher than those presented in [2], RGA in [15] and GA in

[10], however, the fitness function value of the proposed

method exhibits the lowest value. The reason is objective

aggregation, as indicated in (1), i.e. the objective function

value is a composition of the power losses and the bus

voltage index.

It should be emphasized that repeatability of the results

is excellent for the proposed FPEO: e.g. in this case the

algorithm returns the globally optimum results in all runs

(i.e., zero standard deviation). This is not the case for the

benchmark methods as shown in Table 2. Thus, the relia-

bility of FPEO significantly exceeds reliability of other

techniques.

For the 69-bus test network, the results are consistent

with those obtained for the 33-bus network, i.e., globally

optimum results have been obtained in all algorithm runs as

shown in Table 3. For the 119-bus test network, the results

are presented in Table 4. The configuration obtained is the

same as that of CSA in [2], FWA in [9] and CGA in [2].

The results for PSO [2] and modified tabu search (MTS)

[22] are also presented. As indicated in Table 4, the sta-

tistical data reflects a clear indication that FPEO obtains

global optima for vast majority of runs (19 out 29; the

standard deviation is very low).

Figures 9, 10 and 11 show the optimization history for

the 3 considered test cases. In Figs. 9, 10 and 11, red lines

indicate objective function value versus iteration index for

20 algorithm runs; the black line is an average value. The

optimum value is obtained for all but one algorithm runs

with the algorithm being virtually converged after 35–40

iterations (which corresponds to 350–400 system

simulations) for Fig. 9 (cf. Table 2), and after 50–60 iter-

ations (which corresponds to 500–600 system simulations)

for Fig. 10 (cf. Table 3). The optimum value has been

obtained for most of the algorithm runs for Fig. 11 (cf.

Table 4).

It can be observed that the evolution of the objective

function (versus iteration index) is consistent for all algo-

rithm runs thus confirming its robustness. The voltage

profiles and power losses before (initial) and after the

optimization (optimized) are shown in Figs. 12 and 13,

respectively, which confirm the voltage profile improve-

ment. After the optimized reconfiguration, the minimum

Table 4 Statistics of the optimization results of the 119-bus test network

Method Nevals Best

(kW)

Average

(kW)

Worst

(kW)

Standard

deviation

Open switches Fitness

FPEO 5000 856.8000 861.1900 865.5850 1.90 24, 26, 35, 40, 43, 51, 59, 72, 75, 96, 98, 110, 122, 130, 131 0.7300

CSA [2] 15000 856.8000 N/A N/A N/A 24, 26, 35, 40, 43, 51, 59, 72, 75, 96, 98, 110, 122, 130, 131 0.7300

FWA [9] 3000 856.8000 887.5300 942.6300 29.58 24, 26, 35, 40, 43, 51, 59, 72, 75, 96, 98, 110, 122, 130, 131 0.7300

CGA [2] 15000 856.8000 N/A N/A N/A 24, 26, 35, 40, 43, 51, 59, 72, 75, 96, 98, 110, 122, 130, 131 0.7300

PSO [2] 1000 898.6068 N/A N/A N/A 9, 23, 35, 43, 52, 60, 71, 74, 82, 96, 99, 110, 120, 122, 131 0.7626

MTS [22] N/A 884.9000 N/A N/A N/A 23, 27, 33, 40, 43, 49, 52, 62, 72, 74, 77, 83, 110, 126, 131 0.7493

Fig. 9 Optimization history for 33-bus system

Fig. 10 Optimization history for 69-bus system
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p.u. voltage is increased to 0.9383, 0.9430 and 0.9305 p.u.

for 33-, 69- and 119-bus networks respectively.

4.3 Discussion

FPEO has been demonstrated to be a viable method for

solving power distribution system reconfiguration based on

the radial nature of the distribution systems. The globally

optimum configurations have been found for all considered

test cases.

The improvement in power losses is significant and

although the voltage profile was not directly controlled (cf.

(1)), the optimized configurations exhibit significant

improvement with this respect.

OpenDSS is used in this work to solve power flow, and

although power flow method is different than that utilized

by the benchmark methods, the numerical results are very

close.

There are two features of FPEO that have to be

emphasized. The first one is robustness. As opposed to

majority of benchmark approaches, FPEO features excel-

lent repeatability of results (globally optimum solutions

obtained in all algorithm runs for 33- and 69-bus systems

and all but one for 119-bus network). Second, the com-

putational cost of the algorithm is dramatically lower than

that of majority of the benchmark approaches. For exam-

ple, the CSA, CGA, and PSO methods in [2] are set to 3000

function evaluations for 33- and 69-bus system, and 15000

evaluations for 119-bus system. FPEO works with 500,

1000 and 5000 maximum function evaluations for the 3

systems, respectively. In other words, FPEO offers a much

faster convergence rate.

Fig. 11 Optimization history for 119-bus system

Fig. 12 Network voltage profile before and after reconfiguration/

optimization
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5 Conclusion

In the paper, a customized evolutionary algorithm for

solving distribution network reconfiguration problem has

been presented. The proposed algorithm determines the

optimized configuration of the network with respect to

objectives being reduction of the power losses and

improvement of the voltage profile.

The proposed algorithm features feasibility preserving

mutation and recombination operators which allow us to

maintain the radial structure of the network at all steps of

the optimization process, which results in a dramatic

reduction of the search space size.

As demonstrated, through comprehensive numerical

validation, the proposed technique is superior over majority

of the state-of-the-art methods reported in the literature. In

particular, the computational cost of the optimization pro-

cess is much lower than for most of competitive approa-

ches. More importantly, repeatability of results is excellent,

allowing for obtaining a globally optimum solution in

almost each and every algorithm run.

The future work will be focused on extending the range

of applications of the method, including multi-objective

DNR (for both power loss reduction and voltage control),

constrained optimization, as well as other types of net-

works (multi-source, non-radial).
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