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Abstract
The agricultural production rate plays a pivotal role in the economic development of a country. However, plant diseases are
the most significant impediment to the production and quality of food. The identification of plant diseases at an early stage
is crucial for global health and wellbeing. The traditional diagnosis process involves visual assessment of an individual plant
by a pathologist through on-site visits. However, manual examination for crop diseases is restricted because of less accuracy
and the small accessibility of human resources. To tackle such issues, there is a demand to design automated approaches
capable of efficiently detecting and categorizing numerous plant diseases. Precise identification and classification of plant
diseases is a tedious job due because of the occurrence of low-intensity information in the image background and foreground,
the huge color resemblance in the healthy and diseased plant areas, the occurrence of noise in the samples, and changes in
the position, chrominance, structure, and size of plant leaves. To tackle the above-mentioned problems, we have introduced a
robust plant disease classification system by introducing a CustomCenterNet framework with DenseNet-77 as a base network.
The presented method follows three steps. In the first step, annotations are developed to get the region of interest. Secondly,
an improved CenterNet is introduced in which DenseNet-77 is proposed for deep keypoints extraction. Finally, the one-stage
detector CenterNet is used to detect and categorize several plant diseases. To conduct the performance analysis, we have
used the PlantVillage Kaggle database, which is the standard dataset for plant diseases and challenges in terms of intensity
variations, color changes, and differences found in the shapes and sizes of leaves. Both the qualitative and quantitative analysis
confirms that the presented method is more proficient and reliable to identify and classify plant diseases than other latest
approaches.
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Introduction

According to the Food and Agriculture Organization (FAO)
of the United Nations, the population of the world will rise to
9.1 billion by 2050. Therefore, to tackle the nutriment needs
of such a huge number of people, the growth rate of food
should be increased to 70% by 2050 [1]. However, several
factors are constraints in increasing food productivity i.e.,
unavailability of large regions for cultivation and cleanwater.
Moreover, crop diseases result in a substantial reduction in
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both the quantity and quality of crops. Such damages have
a profound effect on the economy which ultimately results
in a decrease in farmer’s income and an increase in food
prices for the customers. Furthermore, it may lead to intense
food shortages following severe hunger and starvation par-
ticularly in under-developed states where the availability of
preventive measures is limited. Mostly, crop diseases are
identified by human resources through physically visiting
the crop areas. However, it is a time-consuming activity and
practically impossible for humans to analyze each plant [2].
Therefore, frequent delays are faced in the analysis procedure
of crop diseases due to the limited availability of manpower.
Hence, crop disease recognition at an initial phase is manda-
tory as it not only enhances the production rate of the food but
can also protect the farmers from costly spray processes. To
cope with the challenges of manual plant disease detection,
the research community has shifted its focus to introduce and
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examine computer-aided approaches to ease this complex job
and to develop effective automatedmethods for crop analysis
[3].

Initially, techniques proposed in molecular biology and
immunology were utilized to detect crop diseases at the
earliest stage [4, 5]. However, these approaches required
human experts, huge resources, and cost to be established.
According to FOA, the majority of cultivation areas are
small and run by people in under-developed nations hav-
ing low income [6]. Therefore, such expensive solutions
are impractical for them and researchers need to propose
efficient and effective approaches that are accessible to all
farmers [7]. Recently, new machine learning (ML) based
hand-coded approaches are employed in the field of agri-
culture to enhance decision-making power [8]. Due to the
advancement of digital methods, a huge amount of infor-
mation is being gathered in real-time on which ML-based
approaches are applied tomake an optimized decision. These
methods like decision trees (DT) [9], support vectormachines
(SVM) [10], K-nearest neighbors (KNN) [11], and Gaussian
frameworks [12], etc. are also heavily tested for crop dis-
ease detection. Hand-coded keypoints computation methods
are easier to apply and do not need a huge amount of train-
ing data, however, such techniques are time-consuming and
need the skills of human expertise. Furthermore, the con-
ventional ML-based keypoints computation methods always
have a trade-off between computational complexity and
detection robustness. As the computation of large keypoints
vector increases the economic burden while utilizing a small
feature-set reduces the localization efficiency of the system
[13]. Therefore, still, there exists a need for performance
improvements, particularly for decision-support frameworks
that assist in converting the huge amount of data into valuable
recommendations.

Now, we witnessed the efficacy of deep learning (DL)-
based approaches such as CNN [14], Recurrent neural
networks (RNNs) [15], and deep belief networks [16, 17]
in several application areas including image segmentation
[18], classification [19], change detection [20] and agricul-
ture. DL-based techniques for example CNN are empowered
to automatically perceive the optimal key points from the
input samples without the need of human experts. The work-
ing of theDL-based framework imitates the processing of the
human brain. People identify and localize objects visually by
observing numerous object samples. These approaches fol-
low the same procedure for object and pattern recognition.
DL architectures generate more precise results than custom
ML-based methods, which allow improved decision making.
Due to the extensive progression of hardware equipment,
DL frameworks are heavily explored to solve challenging
problems in reasonably minimum time duration. DL-based
methods exhibit state-of-the-art accuracy in the field of agri-
culture and generalized well to several tasks. Different forms

of deep neural networks (DNNs) have attained significant
performance over hyperspectral analysis [21]. Some of the
popular CNN models are GoogLeNet [22], AlexNet [23],
VGG [24], and ResNet [25] which performed well in crop-
related classification tasks i.e. predicting the yield quantity,
crop heads detection, fruit counting, plant disease detection,
classification, and many others. These frameworks are capa-
ble of achieving robust results with minimum preprocessing
and computation effort. Furthermore, DL-based techniques
deliver better performance for object localization by exploit-
ing the topological data from the input images and are
invariant to post-processing attacks i.e. rotation, translation,
etc. In addition, these methods generate better quality output
with pre-trained frameworks. Although, a huge amount of
work has been presented for crop disease detection and clas-
sification, however, still there is a room for improvement.
The ability of MLmethods to resolve challenging real-world
problems is remarkable over human brain intelligence. The
major issues ofML-based techniques overcrop disease detec-
tions are the less efficacy and high processing time as these
frameworks produce lengthy codes that increase the compu-
tational complexity. To deal with the issue of long codes, DL
methods have emerged, however, at the cost of enhanced code
complexity. Moreover, existing methods are not generalized
well to real-world scenarios and are not applicable to iden-
tify several diseases over one sample or to locate multiple
instances of the same disease in one image [26].

An efficient and effective automated localization and clas-
sification of crop disease is still a complex task because of
the presence of huge variations in the size, shape, color, and
position of leaves.Moreover, the variations in brightness dur-
ing the leaves image capturing process also complicates the
detection process. In this work, we have tried to deal with
the aforementioned challenges by introducing a customized
CenterNet framework with DenseNet-77 at the keypoints
computation level to calculate the deep key points of input
samples and localization and classification of various plant
diseases. Our results show that the presented technique is
robust to changes in size, rotation, color, brightness, contrast,
lightning conditions, blurring, and extensive noisy input sam-
ples. Themain contributions of the introduced framework are
as follows:

• Wepresent a customizedCenterNetmodelwithDenseNet-
77 for features computation to improve the detection and
classification accuracy of the plant diseases while mini-
mizing the training and testing time complexity.

• Our method provides accurate localization of the affected
portion of plant leaves due to the robustness of the Center-
Net model.

• Our method achieves improved classification accuracy of
plant leaves diseases due to the power of the CenterNet
model to tackle the over-fitted model training data.
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• We proposed a computationally efficient technique for
plant leaves disease detection as CenterNet employs one
stage object detection framework.

• Extensive experimentation has been carried out in com-
parison to other latest plant disease detection approaches
on a standard PlantVillage database that is diverse in terms
of distortions like blurriness, chrominance, intensity varia-
tions, high-density noise, rotational, and scaling variations
to exhibit the robustness of the presented approach.

The remaining of the paper has been structured as:
"Related work" contains the related work, while "Proposed
method" comprises a detailed description of the proposed
model. In "Experiment and results", the detection perfor-
mance of our framework is demonstrated. And, "Conclusion"
draws the conclusion of our work.

Related work

In this part, we have performed a critical analysis of the work
from the literature being employed for plant disease identifi-
cation and classification. Thework from researchers for plant
disease classification is categorized into two types namely
ML-based techniques or DL-based approaches.

Le et al. [27] introduced a method to detect and clas-
sify crops andweeds-based diseases. Initially,morphological
opening and closing operations were performed to remove
the noise from the input images. Then a customized frame-
work namely filtered local binary pattern method with
contour mask and coefficient k (k-FLBPCM) was proposed
to compute the features from the processed sample. The
extracted featureswere used to train theSVMclassifier to cat-
egorize several plant diseases. The technique in [27] shows
better plant disease classification accuracy, however, it may
not perform well over the samples with perspective distor-
tions. Ahmad et al. [28] proposed a framework to locate and
classify plant diseases. In the first step, Directional Local
Quinary Patterns (DLQP) were applied to the input image
to compute the keypoints. Then the SVM classifier was
trained on computed key points to obtain the plant disease
classification results. This approach [28] shows better plant
disease recognition accuracy, however, performance can be
further improved by employing the shape and color-based
information of the input sample. Sun et al. [29] proposed a
framework to recognize and classify tea plant diseases. In
the first step, Simple Linear Iterative Cluster (SLIC) was
applied to convert an input sample into blocks, on which
the Harris method was applied to extract the significant key
points. In the next step, the convex hull approach was used to
obtain the fuzzy salient region contour and Gray Level Co-
occurrenceMatrix (GLCM) approachwas used for keypoints
extraction which was used for training the SVM classifier to

perform the tea plant leaf diseases classification. The method
in [29] exhibits better classification accuracy, however, it is
suffering from high computational cost. Pantazi et al. [2] pro-
posed an approach to recognize and classify various plant
diseases. Initially, the GrabCut method was applied to the
input image to perform segmentation. Then, the HSV trans-
formwas applied over the segmented sample. In the next step,
LBP was applied over the obtained ROIs to compute the fea-
tures, which were later used to train the class SVM classifier.
This approach [2] works well for plant disease classification,
however, exhibits poor detection accuracy for noisy sam-
ples. Similarly in [30], a hand-coded feature extraction-based
approach was presented for plant disease identification and
classification. In the first step, the input samples were resized
and the histogram equalization (HE) method was applied
over them to enhance the visual quality of images. Then the
K-means clustering approach was employed over the pro-
cessed samples to perform the segmentation. In the next
phase, GLCM and LBP descriptors were applied over the
segmented regions to compute the features. In the last step,
the SVM classifier was trained on the calculated key points
to perform the plant disease classification. The method in
[30] shows better classification accuracy, however, results
are reported for a small dataset. Ramesh et al. [31] intro-
duced an approach for plant disease classification. Histogram
of Oriented Gradients (HOGs) features was employed for
feature extraction and trained the Random Forest (RF) clas-
sifier using these features to classify the samples into healthy
and diseased categories. The method [31] is robust to plant
disease classification, however, performance needs further
improvement. Kuricheti et al. [32] introduced a method to
classify turmeric leaf diseases. After preprocessing, the K-
means algorithm was applied to the input image to perform
the image segmentation. Then GLCM approach was applied
for features extraction, based on which the SVM classifier
was trained to perform the leaves classification. This method
[32] exhibits better plant disease classification results, how-
ever, unable to provide better performance on samples having
huge brightness variations. From the above discussed ML-
based approaches, it can be concluded that these works are
simple to apply, however, requires extensive training data
and are highly dependent on the skills of human expertise.
Moreover, these techniques are not robust to the extensive
variations in the size, color, and shapes of leaf plant dis-
eases. Therefore, there is a need of more robust approach
employing the latest approaches to improve the recognition
accuracy of several Plant leaf diseases [33, 34].

Recently, DL approaches are highly explored in several
automated applications because of their high recall rate [35].
Argüesoa et al. [36] presented a DL-based method namely
Few-Shot Learning (FSL) to detect and classify plant dis-
ease. Initially, the Inception V3 framework was employed
to calculate the key points. Then a multiclass support vector
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machine (SVM) was trained over the extracted features. This
method [36] is robust to plant disease classification, how-
ever, results are reported on a small size dataset and need to
be evaluated on a large-scale and diverse corpus. Agarwal
et al. [37] proposed a CNN-based architecture to localize
and categorize the tomato crop disease. This method [37]
consisted of 3 convolutions along with max-pooling layers
to extract the key points from the input samples and to catego-
rize them. This approach [32] exhibits better tomato disease
classification accuracy, however, this framework suffers from
the problem of over-fitting over a small number of classes.
Richey et al. [38] introduced a mobile-app-based technique
to detect and classify maize crop disease. A DL-based model
namely ResNet50 was trained over the ImageNet database
for computing the deep key points from the input images
and to classify them into respective classes. The approach in
[38] provides a mobile phone-based solution to crop disease
classification, however, this method is computationally com-
plex and not much suitable for cellphones due to constraints
of limited memory, processor, and battery power. Zhang
et al. [39] introduced an improved DL-based framework for
classifying tomato crop diseases. In [39], researchers intro-
duced a custom Faster-RCNN approach in which the deep
residual framework was employed for features extraction
instead of the VGG16 model. Moreover, the k-means clus-
tering approach was utilized to group the bounding boxes.
The method [39] shows better tomato crop disease classifi-
cation results, however, at the increase of economic burden.
Batool et al. [40] proposed an approach to identify and cat-
egorize tomato leaf disease at the early stage. In the first
stage, the AlexNet framework was employed for extracting
the deep keypoints from the input sample that were then used
to train theKNNfor the classification of the images as healthy
or affected. This approach [40] shows better classification
accuracy, however, KNN is a slow and time-consuming algo-
rithm. Goncharov et al. [41] introduced a DL-based model
for classifying diseases of various crops like wheat and corn.
A deep Siamese network was used to compute the deep
features that were later used to train the KNN for image
categorization. The framework in [41] is robust to plant
disease detection, however, it suffers from the problem of
over-fitting on a large-scale dataset. Karthik et al. [42] pre-
sented a DL-based approach to detect disease in the tomato
leaves. In [42], a residual network was applied to compute
the deep features on input samples. Then a CNN classifier
was trained to compute key points to classify the healthy
and affected leaves. This approach [42] shows better leaves
disease classification accuracy, however, this method is eco-
nomically inefficient. TM et al. [43] introduced a DL-based
framework to localize and categorize tomato leaf diseases.
Initially, the input samples were resized before using them
for further processing. Then a DL model namely LeNet was
utilized to extract the points and classify the samples into

healthy and affected classes. The approach in [43] provides
a low-cost solution for tomato crop disease classification,
however, unable to show robust performance for noisy sam-
ples. Sembiring et al. [44] proposed a solution to classify
the tomato plant leaf diseases. A lightweight CNN frame-
work comprising four layers was used to compute the deep
features of suspected samples and classify them into ten
different classes. This work [44] is computationally effi-
cient, however, exhibits lower performance for real-world
scenarios. In [45], Turkoglu et al. proposed an ensemble tech-
nique in which several DL-based models namely AlexNet,
GoogleNet, DenseNet201, ResNet50, andResNet101 frame-
works were used to compute the deep keypoints of several
plants. In the next step, the computed featureswere employed
for the SVM training to categorize several plant diseases.
The approach [45] shows better plant leaf classification per-
formance, however, at the expense of increased features
computation cost.

The analysis of existing methods employed for crop dis-
ease detection is presented in Table 1. From the Table 1,
it can be witnessed that there is still a need for performance
enhancement both in terms of classification performance and
time complexity.

Proposedmethod

The introduced framework is comprised of two main phases
i.e., the transfer learning phase and the localization and
classification phase. The complete functionality is shown
in Fig. 1. The implementation of the proposed technique
consists of two modules. The first part is named ‘dataset
preparation’ while the other is the CenterNet network trained
for plant disease localization and categorization. In the
dataset preparation step, the annotations for plant images
are developed to specify the region of interest (RoI). While
in the second module trained CenterNet over the annotated
samples. We employed CenterNet with DenseNet-77 as its
base network for feature computation. The features extrac-
tor of the CenterNet framework namely DenseNet-77 takes
inputs of two types (suspected image and annotations). Fig-
ure 1 demonstrates the workflow of the proposed method.
In the beginning, a suspected image along with the anno-
tation’s bounding box (bbox) is passed to the DenseNet-77
framework. The bbox recognizes the RoI in the CNN key-
points therefore, reserved features from input samples are
designated for further processing. After features computa-
tion, the CenterNet is trained to classify the located areas.
Finally, accuracies are estimated for all units as per metrics
being employed in the field of computer vision. A detailed
description of the proposed method is given in Algorithm
1.
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Table 1 Comparison of existing techniques

References Method Performance Advantage Limitation

[27] A framework named k-FLBPCM
along with SVM was used for
crop disease classification

Accuracy � 98.63% The work assisted to enhance
classification accuracy for
plants with similar
morphological textures

Detection accuracy degrades for
the distorted samples

[28] The DLQP approach with the
SVM classifier was introduced
to categorize the various plant
diseases

Accuracy � 96.53% This work is robust to detect the
plant leaf disease classification
under intense scale and angle
variations in input samples

Classification performance needs
further improvements

[29] Harris method was used along
with the GLCM approach for
features computation while the
SVM classifier was employed
for tea plant disease
classification

Accuracy � 98.5% The approach is capable of
detecting the affected leaves
portion from the complex
background

This method suffers from a high
computational cost

[2] The LBP algorithm together with
the SVM classifier was
employed for plant disease
classification

Accuracy � 95% The model has better
generalization power

Classification performance
degrades over noisy samples

[30] The key points were computed
via employing GLCM and LBP
descriptors, while the
classification of plant disease
was performed with the SVM

Accuracy � 98.2% The framework can locate the
diseased plant portion from the
suspected samples under the
presence of intense light
variations

Results are reported for a small
dataset

[31] The HOG approach with the RF
classifier was employed to
categorize the diseased plant
samples into various classes

Accuracy � 70.14% The work is computationally
efficient

Performance needs further
improvement

[32] The K-means clustering, GLCM
methods along with SVM
classifier were utilized to
classify turmeric leaf diseases

Accuracy � 91% The work can locate the diseased
leaves of plants from the blurry
samples

Classification performance
degrades for samples having
huge brightness variations

[36] A DL-based method named FSL
was introduced to detect and
classify plant disease

Accuracy � 91.4% The approach requires less
training data

Results are reported for a small
dataset

[37] A CNN-based architecture was
presented to localize and
categorize the tomato crop
disease

Accuracy � 91.2% The technique is computationally
efficient

This method suffers from the
issue of over-fitting over a small
number of classes

[38] A mobile-app-based technique
employing a DL-based model
namely ResNet50 was utilized
to classify the various maize
crop diseases

Accuracy � 99% The model has better
generalization power

This method may not work well
for all mobile phones due to
processing power and battery
consumption requirements

[39] A custom Faster-RCNN model
was introduced for classifying
tomato crop diseases

mAP � 97.18% The work is robust to the
presence of noise and
distortions in suspected samples

This approach is economically
inefficient

[40] The DL framework namely
AlexNet along with the KNN
classifier was used to classify
the tomato leaves as being
healthy or affected

Accuracy � 76.1% The work can identify the
affected region from
low-intensity images

This approach is slow and
time-consuming

[41] A deep Siamese network together
with KNN classifier was used
for plant disease classification

Accuracy � 96% The technique has improved the
classification accuracy for
samples with complex
backgrounds

This method is suffering from the
problem of over-fitting for a
large-size dataset
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Table 1 continued

References Method Performance Advantage Limitation

[42] A CNN-based framework
employing a residual network
was introduced for deep
features computation and
classification

Accuracy � 98% The work is robust to noisy
samples

This method is computationally
expensive

[43] A DL-based framework using
LeNet was utilized to extract
the key points and classify the
samples into healthy and
affected classes

Accuracy � 94.8% The work requires less training
data

This framework is not robust for
noisy images

[44] Employed a lightweight CNN for
tomato leaf disease
classification

Accuracy � 97.15 This work is Computationally
efficient

Only evaluated for tomato leaf
disease classification and not
robust to real-world scenarios

[45] AlexNet, GoogleNet,
DenseNet201, ResNet50, and
ResNet101 along with the SVM
classifier were used for plant
leaf disease classification

Accuracy � 97.56% The work is robust to plant
disease classification under the
presence of light variations

The approach is suffering from a
high computational cost

Fig. 1 Flow diagram of Proposed Custom CenterNet model with DenseNet-77 feature extractor

Annotations

For an efficient training process, it is mandatory to accurately
specify the position of the affected region from the input plant
samples. For this purpose,we have utilized theLabelImg [26]
software to build the sample annotations. Some visual results
are reported in Fig. 2. The generated annotations are stored in
an XML file which comprises two important details: (i) class
associated with each affected region, and (ii) bbox values
for drawing a rectangular box over the detected region. In
the next step, the training file is produced from an XML file
which is utilized for training the model.

CenterNet

An efficient keypoints computation is needed to precisely
categorize plant diseases into numerous classes. However,

computing a discriminative set of the feature vector is a chal-
lenging task because of the following reasons: (i) models can
result in over-fitting by employing the large size keypoints
vectors, and (ii) while utilizing a small key points-set, the
technique may miss learning some important object behav-
iors i.e., structure and color changes which cause affected
regions of disease indistinguishable from the healthy leaves.
To achieve the discriminative and robust image keypoints, it
is mandatory to employ an automated features computation
technique without the need of using hand-crafted features
calculation. The models using handcrafted key points are
not robust to correctly identify and recognize plant diseases
because of extensive changes in the size, texture, color,
and position of plant leaves. To deal with the challenges,
we employed a DL-based framework namely CenterNet
because of its ability to directly compute the effective features
from the input samples. The convolution filters of CenterNet
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Fig. 2 Annotated samples of the PlantVillage dataset to show the region of interest

extract the features of the suspected sample by analyzing its
structure.

The motivation of using the CenterNet [46] over the
RCNN[47], Fast-RCNN[48], Faster-RCNN[49] approaches
for plant disease recognition is that these approaches per-
form classification by following a two-stage object detector.
In [46–49], initially, a Region Proposal Network (RPN) is
employed to locate the region of interest (RoIs) which possi-
bly surround an object. Then, using the collective key points
intimate each RoIs, and separated identification heads of
framework detect the category of object and draws the rect-
angular box. Therefore, these methods are computationally
inefficient and are impractical for real-time object detection
requirements. The CenterNet better tackles the problems of
RCNNandFast-RCNNandFaster-RCNNby specifyingboth
features and location boxes of objects in input samples at the
same time. Therefore, the one-stage object detection power
of CenterNet makes it computationally efficient and better
generalize to real-time object detection.

For plant disease classification, it is a complex task to iden-
tify the key points of interest due to the following causes:
(i) locating the exact location of the affected region from
the input sample due to intense light and color variations,
and (ii) category of each detected object. The CenterNet
framework can accurately identify and categorize the affected
regions of varying categories by employing its heat maps
and by replacing the two-stage object detection with a one-
stage recognition algorithm. TheHeat-mapmodule works by
employing the center of key points and attains better recall
performance, which assists tominimize the keypoints extrac-
tion time of the presented model.

Custom CenterNet

The conventional CenterNet framework employed the
ResNet-101 as a feature calculator for performing object
detection and classification [46]. However, the ResNetmodel
uses skip-connections and identity methods to evade non-
linear transformations which result in the direct flow of
gradient from the back to the front layers. The ResNet-101
approach comprises a large number of parameters, which
eventually results in the vanishing gradient problem. To deal
with this issue of the ResNet-101 framework, we intro-
duce a densely associated convolution framework named
DenseNet as the backbone network of the traditional Center-
Net approachby replacing theResNet-101withDenseNet-77
[50]. The proposed feature computer DenseNet-77 contains
a small number of parameters with thinner layers network as
compare to ResNet-101 which gives a computational bene-
fit over ResNet-101. DenseNet has numerous dense blocks
(DBs) that are consecutively linked with each other via
employing added convolutional and pooling layers in sequen-
tial dense blocks [51, 52]. DenseNet model can show the
complicated transformation efficiently which assists in deal-
ing with the problem of the lack of the object’s location
data for the significant features to some extent. Moreover,
DenseNet supports the keypoints transmission procedure and
boosts their reuse which makes it more convenient for crop
disease classification and improves the speed of the training
process. Therefore, in the presented work, we have utilized
the denseNet-77 for extracting the deep features in the Cen-
terNet framework. Table 2 shows the description of the
trainable parameters for the Custom CenterNet.

The CenterNet framework follows two main steps to
perform the plant disease classification which are feature

123



514 Complex & Intelligent Systems (2022) 8:507–524

Table 2 Training parameters of the presented methodology

Model parameters Value

No of epochs 30

Value of learning rate 0.001

Selected batch size 8

The threshold for the confidence score 0.2

The threshold for the unmatched region 0.5

extraction and detection. A detailed description is provided
in this section.

Feature extraction using DenseNet-77

The presented Densenet-77 framework has two major
changes from conventional DenseNet: (i) Densenet-77 com-
prises fewer parameters from the real framework, and (ii) the
layers inside every DB are attuned to cope with the problem
of economic cost. Table 3 presents the structure of the intro-
duced DenseNet-77 framework that shows the layer’s name
used for keypoints computation to perform the advanced pro-
cessing by the CenterNet.

The DB is the major element of DenseNet-77 as presented
in Fig. 3, where for the N-1layer, n ×n ×m0 exhibits the
features maps (FPs), whereas, n and m0 denote the FPs size
and total channels, respectively. To minimize the channels, a
non-linear transformation denoted by H(.) is applied which
comprised various operations namely Batch Normalization
(BN), Rectified linear unit (Relu), and a 1×1 convolution
layer (ConL). Moreover, a 3×3 ConL is utilized to perform
the keypoints reorganization. The long-dashed arrow is used
to show the dense connection which combines the preceding
and the next layer through the value computed by H(.). To
end, n ×n × (m0 + 2 m) is the resultant value of the N + 1
layer. The extensive dense connections increase FPs consid-
erably, therefore, the transition layer (TL) is introduced to
reduce the keypoints size than the earlier DB.

The computed features are down-sampled with the stride
rate R � 4, which are then passed to compute three types of
heads.

Heatmap head The heatmap head computes a key point
estimation over the down-sampled deep features from the
DenseNet-77 framework to locate the affected regions of
plants together with the respective class. Whereas, the key
points are box center in case of object detection i.e. plant
regions which are computed as follows:

ôi , j ,c � exp(− (i − p̂i)2 +
(

j − p̂ j
)2

2σ2
p

. (1)

Here, i and j are presenting the actual ground truth key
point coordinates, while p̂i and p̂ j are showing the locations
of predicted down-sampled key points. σ and p are showing
the object size-adaptive standard deviation and c is showing
the number of classes. The ôx ,y,c is presenting the center for
a candidate key points if it has a value of one, otherwise, it
is marked as background.

Dimension head The Head is responsible for predicting the
coordinates of the bbox. The dimension of the bbox for a
candidate object k with class c having coordinates (×1,×2,
y1, y2) can be estimated through the L1 norm which is (×
2-×1, y2-y1).

Offset head The offset head is computed to minimize the
discretization error which occurs due to performing down-
sampling over the input sample. After computing the center
points, these points are againmapped to a higher dimensional
input image.

Multi-loss function CenterNet is the end-to-end learning
technique that employs multi-loss methods to improve its
performance and accurately localize the affected region with
the corresponding class. Designing an effective loss function
is mandatory for the robust performance of a model, there-
fore, the CenterNet model uses a multi-loss method. The
benefit of employing the multi-loss function is that it assists
the model to accurately differentiate between the actual and
predicted value.

The employedmulti-loss L on each sample head is defined
as:

LCenterNet � Lmap + λdimLdim + λoffLoff. (2)

Here LCenterNet presents the total loss computed by the
CenterNet, whereas, the Lmap, Ldim, and Loff are rep-
resenting Heatmap, Dimension, and Offset head losses,
respectively. Moreover, λdim and λoff are constants with the
values of 0.1 and 1, respectively. The Heatmap loss Lmap is
computed as follows:

Lmap � −1

n

∑

i . j,c,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

1 − ôi, j,c
)αlog(ôi, j,c).

i f ôi, j,c � 1
otherwise

(

1 − Oi, j,c
)β(

ôi, j,c
)α

log(1 − ôi, j,c)
(3)

Here, n is the total number of key points, O i, j,c is pre-
senting the actual candidate key point center, while ôi, j,c is
the predicted key point center. Moreover, α and β are the
hyperparameters of Heatmap loss with the values of 2 and 4
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Table 3 Architectural
description of DenseNet-77 Layer Densenet-77

Size Stride

ConL 1 7 × 7conv 2

PoolL 1 3 × 3
max_pooling

2

DB 1
[

1 × 1conv

3 × 3conv

]

× 6 1

TL ConL 2 1 × 1conv 1

PoolL 2 2 × 2
avg_pooling

2

DB 2
[

1 × 1conv

3 × 3conv

]

× 12 1

TL ConL 3 1 × 1conv 1

PoolL 3 2 × 2
avg_pooling

2

DB 3
[

1 × 1conv

3 × 3conv

]

× 12 1

TL ConL 4 1 × 1conv 1

PoolL 4 2 × 2
avg_pooling

2

DB 4
[

1 × 1conv

3 × 3conv

]

× 6 1

Classification_layer 7 × 7
avg_pooling

Fully con-
nected
layer

SoftMax

Fig. 3 Pictorial representation of
DB which shows the layers
architecture

for all our experiments, respectively. The Dimension Head
loss is calculated as:

Ldim � 1

n

n
∑

k�1

∣

∣̂bk − bk
∣

∣. (4)

Here, b̂k is the predicted bbox coordinates, while bk is
showing the actual dimensions of bboxes from ground truths.
Finally, the Offset-head loss is calculated as:

Loff � 1

n

∑

p

∣

∣

∣

̂Fp̂ −
( p

R
− p̂

)∣

∣

∣. (5)

Here, ̂F is presenting the predicted offset value, whereas,
p and p̂ represents the actual and down-sampled key point.

Detection process

CenterNet is a DL-based approach that is independent of
approaches i.e. selective search and proposal generation.
So, the suspected image along with generated annotation is
passed as input to the framework, on which the CenterNet
framework calculates the center points of the plant diseases
portion, offsets to the x and y coordinates, and the dimensions
of bboxes along with the target class.
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Table 4 Description of
PlantVillage dataset Class No Class Name Cause of disease Training samples Validation

samples
Test samples

Apple

1 Scab Fungus 441 126 63

2 Black_Rot Fungus 435 124 62

3 Cedar_Rust Fungus 192 55 28

4 Healthy – 1151 329 165

Blueberry

5 Healthy – 1051 300 151

Cherry

6 Healthy – 598 171 85

7 Powdery_Mildew Fungus 736 210 106

Maize

8 Common_Rust Fungus 835 238 119

9 Healthy – 813 233 116

10 Northern_Leaf_BlightFungus 690 197 98

11 Gray_leaf_spot Fungus 360 102 52

Grape

12 Black Rot Fungus 826 236 118

13 Black_Measles Fungus 968 277 138

14 Healthy – 296 85 42

15 Leaf_Blight Fungus 753 215 108

Orange

16 Huanglongbing Bacteria 3855 1101 551

Peach

17 Bacterial Spot Bacteria 1608 459 230

18 Healthy – 252 72 36

Pepper Bell

19 Bacterial_Spot Bacteria 698 199 100

20 Healthy 1034 297 147

Potato

21 Early_Blight Fungus 700 200 100

22 Healthy – 107 30 15

23 Late_Blight Infection 700 200 100

Raspberry

24 Healthy – 260 74 37

Soybean

25 Healthy – 3563 1018 509

Squash

26 Powdery_Mildew Fungus 1285 367 183

Strawberry

27 Healthy – 319 91 46

28 Leaf_Scorch Fungus 776 222 111

Tomato

29 Bacterial_Spot Bacteria 1488 426 213

30 Early_Blight Fungus 700 200 100

31 Healthy – 1114 318 159

32 Late_Blight Infection 1336 382 191
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Table 4 continued
Class No Class Name Cause of disease Training samples Validation

samples
Test samples

33 Leaf_Mold Fungus 667 190 95

34 Septoria_leaf_Spot Fungus 1240 354 177

35 Spider_Mites Mite 1174 335 167

36 Target_Spot Fungus 984 280 140

37 Mosaic_Virus Virus 262 74 37

38 Yellow_Leaf Virus 3750 1071 536

Experiment and results

This section provides a comprehensive investigation of the
obtained results after performing various experiments to
measure the evaluation power of the presented approach. The
description of the dataset used for performance evaluation is
also demonstrated in this section. The presented framework
was implemented using Python and executed on an Nvidia
GTX1070 GPU-based system. In the introduced approach,
instead of training themodel from scratch,we used the frame-
workwith pre-trainedweights acquired fromMS-COCO and
performed transfer learning to fine-tune the CenterNet on the
PlantVillage dataset for plant leaf disease classification and
classification.

Dataset

The detection and classification performance of the presented
method is evaluated over the PlantVillage dataset [53]. The
Plantvillage database is an extensive and publically available
standard dataset of plant disease classification which is heav-
ily used by existing approaches for performance evaluation.
To analyze the robustness of the introduced technique, we
performed several experiments on this database, which com-
prises several categories of plants and their diseases. The
employed dataset namely the PlantVillage contains 54,306
images of plant leaves, with 12 healthy and 26 diseased plant
classes of 14 species of plants. The samples for all 14 species
of the crop including Tomato, Potato, Apple, Grape, etc., are
downloaded from the Plantvillage dataset. The samples in
the Plantvillage database are varied in the aspect of changes

in angle, size, color, light, and the presence of blurring, and
noise, etc., whichmakes it a diverse database for plant disease
recognition. Figure 4 presents few samples from the Plantvil-
lage dataset and Table 4 shows the detailed description of the
dataset.

Evaluationmetrics

We have measured our proposed technique using different
evaluation metrics e.g., Intersection over Union (IOU), accu-
racy, precision, recall, and mean average precision (mAP).
We computed the accuracy as follows:

Accuracy � T P + T N

T P + FP + T N + FN
. (6)

Equation 7 shows the mAP calculation, in which AP
denoted the average precision of each class and q is the query
or test image. Q is the total number of test images:

mAP :�
T

∑

i�1

AP(ti )/T . (7)

Equations 8, 9 and 10 represent the IOU, precision, and
recall, respectively.

Precision � T P

T P + FP
, (8)

Recall � T P

T P + FN
, (9)

I oU � T P

FN + FP + T P
× 2. (10)

Fig. 4 Samples images from the PlantVillage dataset of different classes
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Fig. 5 Test results of custom CenterNet for plant disease recognition where shows the bounding box with obtained localization score and associated
class

Performance evaluation of plant disease localization

The correct detection of several plant diseases is important to
build an effectivemodel for the automated recognitionof crop
diseases. For this purpose, we investigated the localization

power of the presented technique by experimenting.We have
tested all the samples of the PlantVillage dataset and visu-
ally presented 90 samples in Fig. 5. It can be seen from the
reported results that Custom CenterNet can accurately detect
and recognize plant diseases of varying categories.Moreover,
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Table 5 Class-wise performance of the proposed technique

Class_Name Precision Recall F1-Score

Apple_Scab 0.992 0.982 0.987

Apple_Black_Rot 0.991 0.993 0.992

Apple_Cedar_Rust 0.994 0.980 0.987

Apple_Healthy 1 1 1

Blueberry_Healthy 1 1 1

Cherry_Healthy 1 1 1

Cherry_Powdery_Mildew 0.982 0.984 0.983

Maize_Common_Rust 0.996 0.987 0.991

Maize_Healthy 1 1 1

Maize_Northern_Leaf_Blight 0.991 0.990 0.990

Maize_Gray_leaf_spot 0.992 0.981 0.986

Grape_Black Rot 0.992 0.980 0.986

Grape_Black_Measles 0.982 0.981 0.981

Grape_Healthy 1 1 1

Grape_Leaf_Blight 0.999 0.987 0.993

Orange_Huanglongbing 0.994 0.981 0.987

Peach_Bacterial Spot 0.998 0.980 0.989

Peach_Healthy 1 1 1

PepperBell_Bacterial_Spot 0.994 0.985 0.989

PepperBell_Healthy 1 1 1

Potato_Early_Blight 0.988 0.982 0.985

Potato_Healthy 1 1 1

Potato_Late_Blight 0.989 0.982 0.985

Raspberry_Healthy 1 1 1

Soybean_Healthy 1 1 1

Squash_Powdery_Mildew 0.993 0.989 0.991

Strawberry_Healthy 1 1 1

Strawberry_Leaf_Scorch 0.996 0.991 0.993

Tomato_Bacterial_Spot 0.992 0.973 0.982

Tomato_Early_Blight 0.991 0.980 0.985

Tomato_Healthy 1 1 1

Tomato_Late_Blight 0.991 0.975 0.983

Tomato_Leaf_Mold 0.989 0.983 0.986

Tomato_Septoria_leaf_Spot 0.992 0.991 0.991

Tomato_Spider_Mites 0.994 0.976 0.985

Tomato_Target_Spot 0.993 0.984 0.988

Tomato_Mosaic_Virus 0.989 0.980 0.984

Tomato_Yellow_Leaf 0.996 0.972 0.984

the presented approach is robust to numerous post-processing
attacks i.e. blurring, noise, light and color alterations, and
image distortions.

The localization ability of the CenterNet technique allows
it to efficiently identify and locate several plant diseases.
To quantitatively measure the localization power of the pre-
sented technique, we have employed two metrics namely
mAP and IOU. These metrics help to analyze the recogni-

tion performance of the system for plant diseases of several
types. More precisely, we attained the mAP and mean IOU
of 0.99 and 0.993, respectively. Both the visual and numeric
results demonstrate that the presented technique can reliably
be employed to localize and classify plant diseases.

Class wise performance

Theaccurate detection and categorizationof several plant dis-
eases are mandatory to compute the efficacy of a technique.
So, the effectiveness of the presented method in determining
the class of each plant disease is also evaluated via experi-
mentation.To accomplish this,we applied the trainedCustom
CenterNet classifier on all the test images of the PlantVillage
dataset. The class-wise plant disease classification perfor-
mance of the introduced method in terms of precision, recall,
and F1-score is demonstrated in Table 5. From Table 5, we
can say that the presented approach exhibits state-of-the-art
performance in terms of all evaluation parameters. The key
reason for the robust plant disease recognition performance
is the accurateness of the presented keypoints extraction
method, which shows each category of disease in a viable
manner.

To additionally show the category-wise detection power
of the introduced technique, we have presented the accu-
racies of 38 classes in a line graph, as presented in Fig. 6.
The introduced CustomCenterNet attained the average accu-
racy values of 99.9%, 100%, 100%, 100%, 100%, 100%,
100%, 100%, 100%, 99.8%, 100%, 100%, 100%, 100%,
100%, 100%, 99.9%, 100%, 100%, 100%, 100%, 100%,
100%, 100%, 100%, 100%, 100%, 99.7%, 100%, 100%,
100%, 100%, 100%, 100%, 100%,100%, 100%, and 100%
for classes of 1 to 38. Our method shows the average accu-
racy value 99.982%, which is showing the efficacy of the
proposed method.

Evaluation of DenseNet-77

An analysis is conducted to check the efficacy of the
DenseNet-77 model in performing the plant leaf disease
classification by comparing the obtained results with base
models. To perform this task, the classification performance
of the presented DenseNet-77 based CenterNet is evalauted
against other base approaches i.e. Inception-v4 [54], VGG-
16 [55], ResNet-50 [56], ResNet-101 [57], ResNet-152 [57],
and DenseNet-121 [58] as presented in [59].

In Table 6, we have presented the comparative results of
our approach with several base models both in terms of net-
work parameters and classification performance. The values
are clearly showing that the DenseNet-77 based CenterNet is
more robust than its peer approaches. Furthermore, it can be
witnessed from Table 6, that the VGG-16 approach contains
the highest number of parameters, while, the ResNet-152
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Fig. 6 Obtained accuracy rates of the proposed method on the thirty-eight classes from the PlantVillage dataset

Table 6 Comparison of the presented model with base frameworks

Parameters Inception V4 VGG-16 ResNet-50 ResNet-101 ResNet-152 DenseNet-121 DenseNet-77

No of total model parameters (Million) 41.2 119.6 23.6 42.5 58.5 7.1 6.2

Training loss 0.0102 0.5069 6.238e−04 4.1611e−04 2.4844e−04 5.6427e−04 6.442e−04

Test loss 0.0686 0.6055 0.02177 0.02082 0.0246 0.0159 0.0085

Train time accuracy 99.74% 83.86% 99.99% 99.99% 100% 100% 100%

Test time accuracy 98.08% 81.83% 99.59% 99.66% 99.59% 99.75% 99.983%

Execution time (s) 4042 1051 1583 2766 4366 2165 1067

has the largest processing time. Whereas, in comparison,
our approach is computationally most robust as it only takes
1067 s for processing a suspected sample. The major cause
of the better performance of the DenseNet-77 framework is
due to its shallownetwork structure thatmakes effective reuse
of model parameters without employing redundant keypoint
maps. Such architectural settings of the DenseNet-77 frame-
work cause to decrease in the number of model parameters
extensively. While the comparative base networks are suffer-
ing from the high computational cost and are not robust to
sample post-processing attacks i.e. blurring, noise and light
variations, etc. Hence, the proposed method better deal with
the problems of comparative approaches by presenting an
efficient framework for keypoints computation and exhibits
complex sample transformations accurately, which causes to
enhance its recognition accuracy under several image distor-
tions. It can be concluded from the discussed results that our

improvedDenseNet-77 basedCenterNetmodel shows robust
accuracy in comparison to other DL-based approaches both
in terms of classification performance and execution time.

Comparison with other DL-based object detection
techniques

We designed an experiment to investigate the various DNN-
based object detectionmodels for plant disease classification.
We have evaluated these algorithms for different scenarios
like for the presence of several leaves in a single image or
for the plants of different categories to check whether these
models can locate the healthy and affected leaves with com-
plicated background settings.

To accomplish this, we have considered two types of
object detection models namely one-stage and two-stage
detectors. The key difference among both models is that
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Table 7 Comparison of the
presented method with other
object detection models

Base mAP IOU Test time (sec/img)

Two-stage models

Fast-RCNN VGG-16 0.85 0.870 0.25

Faster-RCNN VGG-16 0.88 0.893 0.25

Faster-RCNN ResNet-101 0.97 0.977 0.23

One-stage models

YOLOv3 DarkNet-53 0.83 0.852 0.28

SSD ResNet-101 0.81 0.837 0.36

RetinaNet ResNet-101 0.92 0.902 0.38

Proposed custom CenterNet DenseNet-77 0.99 0.993 0.21

two-stage detectors work by first locating the positions of
the primary object in an image via employing several region
proposal techniques, which are later narrow down, and then
the final classification task is performed.Whereas, in the case
of single-stage detectors, both the class and location boxes of
primary objects in input samples are defined in a single step.
In ourwork, themodels fromboth types of detectors that have
shown robust performance over the COCO dataset [60] were
considered for the PlantVillage dataset and were split into
70%, 20%, and 10% for training, validation, and testing sets,
respectively. The two-stage detectors namely Fast-RCNN
[61] and Faster-RCNN [62] and one stage-stage detector
namely RetinaNet [63] were trained over the PlantVillage
databasewith a batch size of 32 alongwith stochastic gradient
descent (SGD) algorithm. While for the remaining single-
stage detectors namely You Only Look Once (YOLO)[64]
and single shot detector (SSD) [65], the batch sizes were set
to 64 and 16, respectively. Moreover, the learning rate for all
detectors was set to 0.001 with a momentum value of 0.9.
Table 7 shows the obtained results of the object detection
frameworks on the test set.

To conduct the performance analysis of all object-
detection models, we have used the mAP and IOU metrics
as these were selected by many researchers as standard met-
rics in object identification problems. Moreover, we have
compared the test time of all the models to analyze them in
the aspect of computational complexity. From the reported
results, it can be seen that the presented framework has
attained the highest mAP value with minimum test time.
Moreover, the CenterNet approach attains the IOU with a
value of 0.993 which is higher than the comparative models
due to its efficient features computation. The Faster-RCNN
with ResNet-101 has attained comparable results with the
presented technique, however, it is computationally more
expensive due to its two-stage detector network.Moreover, in
the case of single-stage detectors, the YOLOmodel is unable
to locate the leaves of small sizes while the SSD computes
poor features in shallow layers and results in loss of fea-
tures in deep layers which results in degraded performance.

The RetinaNet can locate the leaves of small sizes, however,
for the acentric features, the RetinaNet is unable to locate
the important anchors. Visual results of all methods are pre-
sented in Fig. 7. The presented technique better addresses
the limitations of existing one-stage and two-stage detectors
by introducingCustomCenterNetwith theDenseNet-77base
network. The DenseNet allows the CenterNet to learn a more
representative set of features which assists in better locat-
ing the plant diseases of various categories. Moreover, the
one-stage detector nature of CenterNet has given it a compu-
tational advantage over other models as well.

Comparison with ML-based classifiers

To further show the efficacy of the presented approach, we
have used another experiment to show the classification per-
formance analysis of our technique with other ML-based
classifiers. For this evaluation, the two well-knownML clas-
sifiers namely SVM and KNN are chosen and results are
reported in Table 8. The introduced custom CenterNet clas-
sifier attained the highest accuracy with a value of 99.982%.
The SVM classifier obtained the second-best results with an
accuracy of 98.01%. While the KNN exhibited lower per-
formance with an accuracy value of 91.01%. The obtained
results clearly show that our approach is more robust to plant
disease detection and classification than the ML-based clas-
sifiers due to its ability to deal with the over-fitted training
data.

Comparative analysis with existingmethods

In this section, we have performed the comparison of our
technique with the latest approaches using the same dataset
for plant disease classification. For performance analysis, we
compared the average highest results of our framework with
the average results reported in these studies [67–70]. Table 9
demonstrates a quantitative comparison employing various
performance measurement metrics i.e. precision, recall, and
accuracy.
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Fig. 7 Visual results of Fast-RCNN, Faster-RCNN, RetinaNet, SSD, YOLO, and proposed CenterNet framework

Table 8 Comparative analysis of proposed approach with other ML-
based classifiers

Classifier Accuracy (%)

Deep-features + SVM [66] 98.01

Deep-features + KNN [66] 91.01

Proposed 99.982

Table 9 Comparison with the state-of-the-art techniques

Technique Precision Recall (%) Accuracy(%)

Mohanty et al. [67] 99.35% 99.35 99.350

Geetharamani et al. [68] 96.47% 99.89 96.460

Chen et al. [69] – 99.01 99.850

Atila et al. [70] 99.39% 99.38 99.970

Proposed 99.52% 99.92 99.982

Mohanty et al. [67] presented a DL-based approach
namely GoogleNet for the detection and classification of
plant diseases and attained an average accuracy of 99.35%.
Similarly, the approach in [69] also proposed a DL-based
model namely MobileNet-Beta and exhibited an accuracy of
99.85%. Geetharamani et al. [68] introduced a CNN model
for plant disease classification and obtained an accuracy of

96.46%. Atila et al. [70] presented a DL model namely Effi-
cientNet for plant disease classification with an accuracy
value of 99.97%. From Table 9, we can visualize that the
presented framework attained 99.982% accuracy, 99.52%
precision, and 99.92% recall values which are the largest
in comparison to all other methods. The proposed solution
exhibited an average precision of 99.52%, whereas, the com-
petitor approaches acquired the average precision of 98.40,
so, the presented technique obtained a 1.12% performance
gain. Moreover, the proposed solution has a recall value of
99.92 while, the average recall value of comparison methods
is 99.40, which shows 0.52% performance gain. Moreover,
ourwork achieved99.982%average accuracy,while the other
techniques have an average accuracy of 98.907%.Thus, it can
be said that custom CenterNet approach presented a 1.075%
performance gain andmore effective to plant disease identifi-
cation and categorization in comparison to other approaches.

These results clearly show that the introduced solution
outperforms the comparative methods [67–70], as these
approaches deploy very deep architectures which can easily
result in an over-fitting problem. However, the introduced
framework uses DenseNet-77 for deep features computation
that extracts more representative and reliable features based
on which our Custom CenterNet provides a more effective
representation of plant diseased portions over comparative
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methods.Moreover, thesemethods [67–70] are computation-
ally more expensive than our methodology. So, we can say
that our method is more effective and efficient for the classi-
fication of plant diseases.

Conclusion

The presented approach introduces a novel framework for
the automated detection and categorization of plant diseases.
In this work, we have proposed a Custom CenterNet with
the DenseNet-77 as a base network. More explicitly, we
introduce the DenseNet-77 to extract the representative set
of features from the input sample. Then, the computed key
points are used to train the CenterNet classifier to recognize
and classify plant diseases of numerous types. The intro-
duced framework can efficiently locate and classify the 38
types of crop diseases from the PlantVillage dataset. More-
over, our method is robust to plant disease classification
under the presence of several artifacts, i.e., variations in the
light, intensity, color, size, orientation, and shapes of plant
leaves. Experimental results demonstrate that the introduced
model outperforms the existing latest plant diseases classifi-
cation approaches. Although, we have achieved comparable
results, however, the proposed model cannot be deployed on
mobile-based devices, therefore, we aim to introduce some
lightweight model for leaf disease recognition. Furthermore,
the time complexity can be further reduced by using a more
efficient feature extractor. For future work, we plan to eval-
uate the Custom CenterNet on the images from real-world
scenarios and apply this work to other parts of plants like
stems. Furthermore, we plan to check the recognition power
of ourmethod overmore complex datasets and consider other
state-of-the-art DL techniques.
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