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Abstract Accurate assessment of the spatial variability of

soil properties is key component of the agriculture ecosys-

tem and environment modeling. The main objective of the

present study is to measure the soil properties and their

spatial variability. A combination of conventional analytical

methods and geostatistical methods were used to analyze the

data for spatial variability. In November 2014 a total of 32

soil samples were collected in the field through random

sampling in Medinipur Sadar block of Paschim Medinipur

district in West Bengal (India). Soil properties of pH, elec-

tric conductivity (EC), phosphorus (P), potassium (K), and

organic carbon (OC) were estimated using the standard

analytical methods. A classical ordinary kriging (OK)

interpolation was used for direct visualization of soil prop-

erties. The spatial distribution of EC, pH, and OC in soil are

influenced by structural factors, such as climate, parent

material, topography, soil properties and other natural fac-

tors. The semivariograms of the six soil properties were fit

with exponential curve and root mean square error value is

near about zero (0). Finally, spatial distribution and corre-

lation between OC and other soil properties is shown by

overlay of maps in GIS environment. The present study

suggest that the OK interpolation can directly reveal the

spatial distribution of soil properties and the sample distance

in this study is sufficient for interpolation.
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Introduction

Sustainable land management requires reliable information

on the spatial distribution of soil properties affecting both

landscape process and services (Lin et al. 2005; Shibu et al.

2006). In conventional soil survey soil properties are

recorded at representative sites and assigned to entire

mapping unit, which are delineated using both physio-

graphic and geopedologic approaches. Although soil sur-

veyors are very well aware of the spatial variability of soil

properties, conventionally prepared soil maps do not reflect

it as soil units are limited by boundaries (Heuvelink and

Webster 2001). But in nature the soil properties are highly

variable spatially (Burrough 1993) and for accurate esti-

mation of soil properties these continuous variability

should be considered. The traditional method of soil

analysis and interpretation are laborious, time consuming,

hence becoming expensive. Geostatistical techniques

(kriging) are widely recognized as an important spatial

interpolation technique in land resource inventories (Hengl

et al. 2004; Bhunia et al. 2016).

Geostatistical methods quantify spatial distribution and

variability based on the spatial scale of the study area,

distance between sampling points and spatial pattern of

modeling semivariograms. They have been widely applied

to evaluate spatial correlation in soils and to analyze the

spatial variability of soil properties, such as soil physical,

chemical and biological properties (Fromm et al. 1993;
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Wigginton et al. 2000; Vieira et al. 2007; Zheng et al.

2009; Liu et al. 2014).

In India majority of soil maps were prepared by con-

ventional methods and a very little work has been done so

far to use the modern spatial prediction techniques in this

regard (Saha et al. 2012; Pal et al. 2014; Behera and

Shukla 2015; Tripathi et al. 2015; Bhunia et al. 2016).

The accurate estimation of spatial distribution of soil

properties [soil pH, organic carbon (OC), electrical con-

ductivity, phosphorous, potassium, etc.] is important in

precision agriculture and is one of the bases for decision

and policy makers to make plans and strategies. So,

research in environmental monitoring, modeling and

precision agriculture need good quality and inexpensive

soil data. The aim of this paper is to evaluate the potential

for measuring soil properties [electric conductivity (EC),

pH, K, P, and OC] and its spatial variability using geo-

statistical methods.

Materials and methods

Study area

The present study was conducted in Medinipur Sadar block

of Paschim Medinipur district in West Bengal (India)

extending between 22�2304500N–22�3205000N latitude and

87�0504000E–87�3100100E longitude covering an area of

353 km2 (Bhunia et al. 2016). The geomorphology of the

block is undulating surface topography predominantly

covered by laterite soil. The sand, silt and clay contents of

the soil are 45, 35 and 20 %, respectively. The average

annual precipitation in the study area is 1,800 mm. In

addition, 70 % of the annual rainfall is this region occurs

between June and August. During these months the rain-

falls is intense and causes extensive erosion. The study area

is under two main land use types cover agricultural land

(56.91 %) and forest land (24.76 %).

Soil sampling and measurement

In November 2014 a total of 32 soil samples were col-

lected in the field through random sampling from whole

of the study area. A portable global positioning system

(GPS) was used to collect each sample site. The undis-

turbed soil samples at depths of 0–20 cm, was collected

with five soil cores each, and well mixed into a com-

posite soil sample. Soil samples were air dried and pas-

sed through a 2 mm sieve for laboratory analysis of soil

texture. Soil pH, EC, phosphorus (P), potassium (K), and

soil OC were determined using the standard analytical

methods (Table 1).

Geostatistical methods

Geostatistical method is a spatial distribution and vari-

ability analysis method that was developed from classical

statistics. The ordinary kriging (OK) interpolation method

was used for prediction of the values of the unmeasured

sites (un-samples locations) x0 by assuming the z*(x0)

equals the line sum of the known measured value (field

measured value). Kriging process is calculated by the fol-

lowing equation (Wang 1999):

Z�ðx0Þ ¼
Xn

i¼1

kizðxiÞ ð1Þ

Where z*(x0) is the predicted value at position x0, Z(xi) the

known value at sampling site xi, ki the weighting coeffi-

cient of the measured site and n is the number of sites

within the neighborhood searched for the interpolation.

Semivariograms were used as the basic tool to examine

the spatial distribution structure of the soil properties.

Based on the regionalized variable theory and intrinsic

hypotheses (Nielsen and Wendroth 2003), a semivariogram

is expressed as:

cðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1

½ZðxiÞ � Zðxi þ hÞ�2 ð2Þ

where c(h) is the semivariance, h the lag distance, Z the

parameter of the soil property, N(h) the number of pairs of

locations separated by a lag distance h, Z(xi), and

Z(xi ? h) are values of Z at positions xi and xi ? h (Wang

and Shao 2013). The empirical semivariograms obtained

from the data were fitted by theoretical semivariogram

models to produce geostatistical parameters, including

nugget variance (C0), structured variance (C1), sill variance

(C0 ? C1), and distance parameter (k). The nugget/sill

ratio, C0/(C0 ? C1), was calculated to characterize the

spatial dependency of the values. In general, a nugget/sill

ratio \25 % indicates strong spatial dependency and

[75 % indicates weak spatial dependency; otherwise, the

spatial dependency is moderate (Cambardella et al. 1994).

Cross-validation

Cross-validation technique was adopted for evaluating and

comparing the performance of OK interpolation method.

The sample points were arbitrarily divided into two data-

sets, with one estimate mean value against measured mean

were used to validate the model. The root mean square

error (RMSE) is error based measures to evaluate the

accuracy of interpolation methods.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ð0i � SiÞ2

N

s

ð3Þ
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Where 0i is observed value and Si is the predicted value,

N is the Number of samples.

Result and discussion

Geostatistical analysis

Table 2 shows the soil properties where variable charac-

teristics was generated from semivariogram model. C0 is

the nugget variance; C is the structural variance, and C0 -

? C represents the degree of spatial variability, which

affected by both structural and stochastic factors (Fig. 1).

The higher ratio indicates that the spatial variability is

primarily caused by stochastic factors, such as fertilization,

farming measures, cropping systems and other human

activities. The lower ratio suggests that structural factors,

such as climate, parent material, topography, soil properties

and other natural factors, play a significant role in spatial

variability. The value of\0.25, 0.25–0.75, and[0.75 can

show strong, moderate and weak spatial autocorrelation in

soil properties, respectively. As shown in Table 2, the C0/

C0 ? C ratio values for P, K, pH, OC and EC were 0.08,

0.05, 0.28, 0.56, and 0.04, respectively. The nugget/sill

ratio were between 25 and 75 % of OC, indicating mod-

erate spatial correlation with 2,219 m ranges and impact of

stochastic and structural factors. The C0/C0 ? C ratio were

less 25 % in the four soil properties such as P, K, pH, and

EC indicates a strong spatial correlation. The spatial cor-

relation was apparent in the 925–2,018 m ranges and was

affected by structural factors.

The semivariance function model fits exponential curve

for each soil properties. The exponential curve gradually

increased with increasing spatial distance before stabiliz-

ing. All five soil properties have coefficients of determi-

nation R2 values of 0.39–0.61 and a small RMSE. The R2

was calculated to measure the goodness of fit. The R2 of all

variables, except for pH, and OC were[0.5, indicating a

good fit (Table 2). The pH and OC had a moderate fit, with

R2 values of 0.44 and 0.39, respectively. The RMSE were

all approximately near to 0, but the theoretical model for K

and OC showed RMSE values of 0.590 and 0.858,

respectively. These results indicate that the theoretical

model was an adequate representation of the spatial

structural properties of soil.

Spatial distribution of soil properties

Figure 2a–d shows the spatial distribution of soil properties

of EC, pH, K, P and OC using OK interpolation method.

An OK technique was used to switch point soil samples

into continuous fields of soil properties. The spatial cor-

relation map of soil properties (EC, pH, K, and P) and

measured OC was produced, compared and analyzed for

the results. Spatial variability maps among the soil pH, EC,

K, P and predicted OC was prepared using ArcGIS to

represent the dependence of OC (Fig. 2). Concentration of

OC was observed in the north-western part of the study

area. Soil pH found to be an important factor in the analysis

of the soil inorganic carbon (SIC), but its contribution

towards organic carbon cannot be overruled. The spatial

map of pH is generated from the measured pH value from

the collected samples in the study sites. To the central and

Table 1 Analytical methods of

estimation of different physio-

chemical parameters of soil

Parameters Methods

Electrical conductivity (EC) Conductivity bridge method (Richards 1954)

Soil pH Digital pH meter

Potassium (K) Flame spectrophotometer (Jackson 1958)

Organic carbon (OC) Walkley–Black wet oxidation method (Nelson and

Sommers 1996; Bao 2000)

Phosphorus (P) Spectrophotometer (Bremner 1996)

Table 2 Geo-statistical parameters of the fitted semivariogram models for soil properties and cross-validation statistics

Soil property Model Nugget (C0) Sill (C0 ? C) Range (m) Nugget/sill R2 RMSE

P (ppm) Exponential 0.26 3.309 1,100 0.08 0.58 0.480

K (ppm) Exponential 0.24 4.662 1,131 0.05 0.53 0.590

pH Exponential 0.06 0.218 2,018 0.28 0.44 0.365

Organic carbon (%) Exponential 0.54 0.970 2,219 0.56 0.39 0.858

EC (ls) Exponential 0.04 1.040 925 0.04 0.61 0.381

R2 coefficient of determination, RMSE root mean square error
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northeastern portion of the study site, higher pH is

concentrated.

The value of P was highly concentrated in the eastern

and south western part, whereas the higher OC was

observed in the northwestern corner of the study site.

Spatial distribution of P did not varied extremely with

organic carbon; however, well reflected changes were

observed in spatial distribution for OC and pH. The EC

varied with organic carbon and some portion showed

concentrated EC. The K value showed some pockets of

concentration. However, regression analysis was pre-

formed between soil properties and predicted OC. The

statistical regression among the predicted OC and EC, pH,

K, and P of R2 values were 0.32, 0.45, 0.38 and 0.41,

respectively. These results suggest that the certain man-

agement practices, e.g., minimum tillage, cover crops, and

Fig. 1 Semivariogram parameters of best-fitted theoretical model to predict soil properties, a EC, b K, c P, d soil pH, and e SOC
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rotations, are to be used to recover OC of the topsoil in the

study area. The greater amount of soil OC was perhaps due

to the maximum concentration of root mass, waste material

and secrete root exudates, growing physical steadiness and

microbial activity (Holeplass et al. 2004; Kukal et al.

2008). In our analysis, it was found that storage of OC in

soil was mainly influenced by structural factors, such as

climate, parent material, topography, soil properties and

other natural factors played a significant role in spatial

variability.

Conclusion

Understanding the spatial distribution and accurate map-

ping of soil properties at large scale are essential for pre-

cision farming, environmental monitoring, and modeling.

This study showed that geostatistical models were fitted for

six soil properties, namely phosphorus (P), potassium (K),

pH, electrical conductivity (EC), and organic carbon (OC).

Cross-validation of variogram models through OK showed

that spatial prediction of soil properties is better than

assuming the mean of the observed values at any unmea-

sured location. Finally, six prediction maps were developed

using best fit semivariogram models with OK. Our results

suggest that the ordinary kriging interpolation can directly

reveal the spatial distribution of soil properties and the

sample distance in this study is sufficient for interpolation.

However, future studies are needed to clarify the spatial

variability on the larger scale and better understand the

factors controlling spatial variability of soil properties.
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