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Abstract As a complement to a previous contribution

from us, the mass transport mechanisms of the electroac-

tive species to and from the electrode in an uncomplicated

electrode mechanism are considered. The electrode process

as a whole is discussed, with emphasis to its reversibility

degree, as results from the relevant responses in controlled

potential techniques, such as chronoamperometry and

current sampling voltammetry, linear sweep and cyclic

voltammetry, and in rotating disk voltammetry. The elec-

trode process as a whole, composed by charge transfer and

mass transport steps that concur to condition the current

flowing, is analysed on the basis of the relative rates of the

two steps, as well of the time window within which the

process is observed. The so-called ‘boundary value prob-

lem’ for uncomplicated charge transfers with different

reversibility degrees is outlined. Supplementary Material is

available, in which the simulated concentration profiles for

reduced and oxidised species reacting at an electrode, at

which a triangular potential waveform is applied, are

linked to the corresponding current densities.

Keywords Electrode reactions � Electrolytic cells � Mass

transport mechanisms � Laws of diffusion � Conditional
reversibility degree � Controlled potential techniques �
Boundary value problem

Introduction

In previous contributions [1, 2], thermodynamics and

kinetics have been treated ‘separately’ from the other steps

of the whole charge-transfer process. However, whenever

electric current crosses the ‘electron conductor|electrolyte’

interface, the following issues need being considered: (1)

How is the reactant transported to the interface and how

does the product leave it, i.e. what manages the mass

transport to and from the electrode surface? (2) How does

the charge transfer at the interface interplay with the mass

transport? (3) How do electrode thermodynamics, charge-

transfer kinetics, and mass transport kinetics determine the

overall process and condition the current responses

accounting for its occurrence?

The link between thermodynamics and kinetics gov-

erning an electrochemical process is a crucial point dealt

with in Ref. [2]. Though it was there discussed in an

electrochemical frame, most of the points are common to

physical and chemical events, as it will be tentatively

illustrated hereafter. Moreover, in electrodics, the mass

transport constitutes an additional kinetically controlled

event that will be extensively discussed in the present

contribution.

A first point to consider in the exam of a more or less

complex process consists of the vague border between

reversibility and non-reversibility, which was also in part

discussed in Ref. [2]. Such a sort of grey area descends

from the necessity to consider, together with the
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thermodynamic issue, also the kinetic ones. This implies to

consider the intrinsic characteristics of the electrochemical

system and experimental conditions that may drastically

change the way that the process shows itself through the

relevant electrochemical responses. This issue also emer-

ges quite often throughout the present contribution, and for

this reason, room should be dedicated to discuss it.

In the common language, the denomination ‘reversible’

is devoted to an event that can proceed in either of the two

directions: both in the forward sense and in the backward

sense. This is not, for instance, the case of the fall of a body

or, in chemistry, of the oxidation of glucose by an oxidant

to give CO2 and H2O. The forward kinetic constant is

substantially different from zero, while the backward

kinetic constant is not: there is no way to go back, and the

equilibrium constant of the reaction leading to the forma-

tion of the products assumes a huge value.

This simple definition is still valid in the experimental

science, being, however, complemented by more subtle

arguments in a thermodynamic frame. The correct defini-

tion of a (theoretically) reversible process is that it occurs

through equilibrium states, i.e. it has to proceed through

infinitesimal changes in the variables defining the evolving

system [3]. The dramatic consequence is that in the real

world, it could not proceed at all. A compromise is nec-

essary, because the ideal reversibility is a condition that

can only be approached in the real world.

The case of a galvanic cell working at different rates,

illustrated in Ref. [2], represents a particularly nice

example of progressive approach to reversibility in the

thermodynamic meaning: an external load is suitable to

modulate the rate of the spontaneous cell reaction, as well

as the conversion of chemical (free) energy into useful

work [3]. The higher the external resistance, the lower the

current, and the slower the reaction, the ‘closer to

reversibility’ the spontaneous process occurring in the

cell.

An example of different strong interactions between

thermodynamics and kinetics is evident when considering

the transformation of diamond to graphite. Diamond is a

metastable allotropic form of carbon and is less stable than

another form, i.e. graphite, so that the equilibrium constant

is in favour of the formation of graphite. However, the

conversion rate from diamond to graphite is too low

under standard conditions that the reaction seems not to

proceed at all: kinetics may render thermodynamics poorly

meaningful, in practice. However, if we could observe the

phenomenon over an extremely long time, actually very

much longer than our own life, we could observe the

progressive formation of graphite, until the equilibrium is

achieved. An extraordinarily important experimental vari-

able is introduced: the time window over which the event is

observed.

The electrode charge-transfer process

Deconvolving the process

In previous contributions [1, 2], we dealt with the ther-

modynamic and kinetic aspects of redox reactions occur-

ring either by direct contact of the reagents with each other

or inside an electrochemical cell. Both the cases of a

spontaneous process in a galvanic cell and of a forced one

in an electrolytic cell were considered, especially focusing

the attention to the oxidation or reduction half-reaction at a

single electrode, i.e. the charge-transfer step or electron-

transfer step.

An electrode reaction necessarily involves, together

with the transfer of electrons, the presence of one or more

charged species. It is an interfacial reaction, in which the

energy of electrons and ions depends on the inner potential

of the metal and solution close to it: such a difference is

identifiable with the electrode potential, E.

In an electrolytic cell, the potential difference between

two electrodes can conveniently be varied to regulate the

reaction rate at the electrode of interest, i.e. at the so-called

working electrode (WE). The cell reaction occurs at two

electrodes, and the electric current flows through the cell

(inner circuit) and through the outer conductor connecting

the two electrodes (outer circuit). The second electrode is

the so-called auxiliary electrode. In the three-electrode

arrangement (three-electrode cell), a reference electrode

(RE) is also present, allowing the best control of the

potential of the WE [1]. Therefore, we will focus on the

events occurring at a single electrode.

In principle, the electrode reaction involves all the steps

(chemical reactions, structural reorganizations, and

adsorptions) accompanying the charge transfer. However,

only this last step is considered by the mathematical

expressions of the current density as a function of the

electrode potential, namely, the Erdey–Grúz Volmer

(EGV) equation, described in Ref. [2]. On the other hand,

even when considering the simplest electrode process, the

mass transport of the species involved has to be considered

as a necessary complement to the charge transfer. Diffu-

sion, migration, and convection are the three possible mass

transport processes. Diffusion should always be consid-

ered, because as the reagent is consumed and the product is

formed at the electrode, concentration gradients between

the vicinity of the electrode and the bulk of the solution1

arise: the reactant species move towards the electrode

surface, and product species leave the interfacial region

1 With the term ‘bulk of the solution’, we refer to whatever solution

volume in which the concentrations of the electroactive species are

unchanged with respect to the initial values, independently of what

happens at the electrode.
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(interphase).2 Similarly, migration, i.e. mass transport due

to an inner potential gradient in the solution near the

electrode, should also be considered. The charge transfer,

in fact, necessarily alters the charge balance of the chem-

ical species close to the electrode. As illustrated afterwards,

a specific modification of the solution is made in order that

transport by migration is minimised.

Once considering the diffusion and charge-transfer steps

in series to each other, it should be recalled that the rate of

a stepwise event in which the slowest step is the first one

only depends on the rate of this; in the opposite case, the

rates of all steps preceding the slowest one concur to define

the overall rate. Hence, whenever the kinetics of the charge

transfer is limiting, the rate at which the electroactive

species is made available at the electrode should also be

considered.

We will deal here with the phenomena occurring in the

solution as a consequence of depletion and production of

electroactive species at the electrode: the arising of a mass

gradient at any points between the electrode surface and the

bulk of the solution. We will couple this event to the

charge-transfer step, in the frame of an overall unique

electrode process: the events of charge transfer and mass

transport by diffusion are concomitant, and affect each

other: the charge-transfer step induces mass transport and

mass transport support charge transfer. The link between

the two steps of the electrode process constitutes a key

point of what discussed here.

The subjects treated in the present contribution hold in

all situations typical of potentiostatic, galvanostatic, or

potentiodynamic techniques, in which a constant or pro-

grammed perturbation of the potential or of the current at

WE is applied. In practice, the most widespread cases are:

(1) chronoamperometric technique, in which the current is

measured as a function of time, WE being polarised at a

constant potential after a potential step perturbation; (2)

voltammetric techniques, in which the current is measured

at WE polarised at potentials varying during time; (3)

galvanostatic techniques, in which a constant current is

imposed to the WE and the potential correspondingly

assumed is measured at passing time. In cases (1) and (2),

the so-called potential waveform, E(t), gives account of the

kind of the technique used and of the specific relevant

parameters.

The most widely used controlled potential techniques,

beside the chronoamperometry and to the strictly related

voltammetric techniques, i.e. current sampling voltam-

metry (CSV), are linear sweep and cyclic voltammetry

(LSV and CV, respectively), and rotating disc electrode

(RDE) voltammetry. A short treatment of these techniques

is made in the following, in order that the reader may

have an idea of how the equations and the arguments

exposed here and in Ref. [3] give account of actual

experimental responses. The exhaustive treatment of the

individual electrochemical techniques is beyond the scope

of the present contribution; it can be found in numerous

excellent textbooks [4–10].

Equilibrium conditions in the absence and presence

of current flow

Different models of the so-called electrical double layers

have been developed to account for the composition of the

solution close to a charged metal surface, in terms of

excess of ionic and non-ionic species, in the absence of

faradic current. Figure 1 shows a sketch of the denomina-

tions and characteristics of the layers of solution consti-

tuting the electrical double layer. The solution layer closest

to the metal, which is either spontaneously charged or

forced to assume a given potential, contains solvent

molecules and, sometimes, other ions or molecules that are

specifically adsorbed (compact, Helmholtz, or Stern layer).

In particular, the region containing electrical centres of the

adsorbed ions constitutes the inner Helmholtz plane (IHP),

whereas the locus of centres of the solvated ions nearest to

the metal is the outer Helmholtz plane (OHP). Long-range

electrostatic forces exert influence on ions in solution; the

effect is essentially independent of the chemical properties

of the species. These are distributed in a region called the

Fig. 1 Electrical double layer. Reprinted with permission from Ref.

[8]

2 For the sake of simplicity, throughout the whole article, we will

simply call electrode the interphase directly involved in the electron

transfer. In fact, it is the electron conducting phase of the electrode

(metal, carbon together with their surface modification, e.g. electron

conducting oxide), as generally used in laboratory practice.
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diffuse layer, which extends from the OHP into the bulk of

the solution.

Once the electrode is polarised, i.e. assumes a potential

different from that at the equilibrium, the extent of the

overall current measured in a WE–AE circuit is given by

the sum of two components: (1) the first one is due to

electrons that do cross the electrode|solution interface for

the occurrence of the charge transfer: it constitutes the so-

called faradic current, namely, the current considered here;

(2) the second one does not imply that electrons pass from

the electrode to the solution or vice versa and is due to

charging–discharging of the electrical double layer, similar

to the charging–discharging of a capacitor: it is the so-

called capacitive current or, more precisely, differential

capacitive current. This capacitive component of the

overall current most often constitutes a ‘noise’ in the frame

of the characterisation or quantification of an electroactive

species in solution.

To deal with a charge-transfer step, kinetic parameters,

namely, the standard kinetic rate constant of the hetero-

geneous charge transfer ðks;hÞ and the exchange current

density ðj0Þ, have been defined [2]. They represent the

kinetic constant of both forward and backward redox

reactions at E = E�0 and the exchange current density, i.e.

the current density flowing with equal intensity in both the

anodic and cathodic directions at the equilibrium potential,

E = Eeq, respectively. In principle, an infinite rate of the

charge transfer is required to define a process reversible in

character. What introduced in the present contribution,

namely, the mass transport, constitutes an additional

kinetic factor to consider with respect to the reversibility

degree exhibited by a charge-transfer step. The different

situations arising from the necessity to consider thermo-

dynamic and all kinetic factors will be examined in the

following.

In any cases, reversibility requires that the Nernst

equation can be applied once expressed as a function of the

concentrations of the reacting species at the closest

approach to the electrode: equilibrium conditions are

achieved, and the Nernst equation is obeyed, in spite of the

flowing current. However, the upsurge of a conflict

between the experimental limits and the theoretical idea of

‘infinite rate’ is evident. It is, hence, easy to accept a priori

the assumption that a charge transfer appears to be rever-

sible when its rate is above a certain limit, making the

Nernst equation suitable to account for the values of the

concentrations at the surface of the electrode.

As briefly introduced in the beginning of this study, the

reversibility degree of a charge transfer, as inferred from

the relevant electrochemical responses, is only meaningful

once connected to the experimental conditions under which

the response is observed. It is proper to speak of a

conditional (or apparent) reversibility degree, observed by

applying a given technique and under given experimental

conditions, with particular emphasis to (1) the mass

transfer to the electrode and (2) the time window of

observation. This means that a process, on the basis of the

relevant responses, may appear as a reversible or as a non-

reversible one, when adopting different conditions to look

at it. It follows that the quantities defining the kinetics, such

as ks,h and a (the charge transfer coefficient) or j0, may be

computed only when they are not too high, i.e. from

experimental responses recorded under conditions in which

the charge transfer exhibits non-reversible behaviour.

In a pure kinetic frame, the charge-transfer step is only

considered: it is said to be irreversible when it is very

sluggish (ks,h and j0 are very small). In this case, the anodic

charge-transfer kinetics and the cathodic charge-transfer

kinetics are never simultaneously significant. To observe a

current, the charge-transfer reaction has to be strongly

activated either in the cathodic or in the anodic direction by

application of a suitable overpotential; the charge transfer

in the opposite direction does not occur at all. When the

electrode process is neither very facile nor very sluggish,

we speak of quasi-reversible behaviour.

The contemporary dependence of the conditional

reversibility degree on the parameters of the charge transfer

and of the mass transport rates, as well on the time window,

is considered in Fig. 2. km,Red = DRed/dRed is the mass

transport coefficient, where DRed is the diffusion coefficient

of reactant species Red [see Eq. (1)] and dRed is the dif-

fusion layer thickness (see later); a parameter, s, accounts
for the time window of the experiment.

Making reference to Ref. [2], let us recall a few equa-

tions accounting for the kinetics of a generic oxidation

electrode process:

Red � Oxþ ne ð1Þ

Recalling that a one-electron charge transfer constitutes

invariably the rate-determining step of the electron trans-

fer, the current density may be expressed in two forms. The

first one is

j tð Þ ¼ j0ðtÞ
cRedð0; tÞ

c�Red
exp

aFg
RT

� �
� cOxð0; tÞ

c�Ox
exp

�ð1� aÞFg
RT

� �� �

ð2Þ

where g is the charge transfer overvoltage and indicates the

difference between the imposed and the equilibrium

potential. Alternatively, Eq. (2) can be written in the form:

j tð Þ ¼ nFks;h cRedð0; tÞexp
aFðE � E00 Þ

RT

� ��

�cOxð0; tÞexp
�ð1� aÞFðE � E00 Þ

RT

� ��
ð3Þ
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where E00 is the formal potential of the Ox/Red couple.

It is easy to see that for g = 0, i.e. at the equilibrium

potential (E = Eeq), j(t) = 0, so that

cRed 0; tð Þ ¼ c�Red ð4Þ

and

cOx 0; tð Þ ¼ c�Ox ð5Þ

where c�Ox and c�Red are the concentrations of Red and Ox

species, respectively, in the bulk of the solution, whereas

cOx(0; t) and cRed(0; t) are the relevant concentrations at the

electrode surface. On the other hand, according to Eq. (2),

j(t) is modulated by j0(t), i.e. the current density that ‘flows’

with equal intensity in either directions at E = Eeq.

Assuming c�Red ¼ c�Ox, it follows that Eeq � E00

Ox=Red, so that

Eq. (3) may be written under the form:

j0 tð Þ ¼ nFks;hcRed 0; tð Þexp aFðEeq � E00 Þ
RT

� �

¼ nFks;hcOx 0; tð Þexp �ð1� aÞFðEeq � E00 Þ
RT

� �
ð6Þ

Alternatively, being j0 defined in equilibrium conditions:

j0 ¼ nFks;hc
�
Redexp

aFðEeq � E00 Þ
RT

� �

¼ nFks;hc
�
Oxexp

�ð1� aÞFðEeq � E00 Þ
RT

� �
ð7Þ

In view of Eqs. (4) and (5):

Eeq ¼ E00

Ox=Red þ
RT

nF
ln

c�Ox
c�Red

ð8Þ

By a number of substitutions and suitable elaborations,

Eq. (7) may be rewritten under the form:

j0 ¼ nFks;h½c�aRedc
�� 1�að Þ
Ox � ð9Þ

The ratio between Eqs. (3) and (9) is hence:

jðtÞ
j0

¼ nFks;hfcRedð0; tÞexp½aFðE�E00Þ=RT��cOxð0; tÞexp½�ð1� aÞFðE�E00Þ=RT�g
nFks;h½c�aRedc

��ð1�aÞ
Ox �

¼ cRedð0; tÞexp½aFðE�E00Þ=RT��cOxð0; tÞexp½�ð1� aÞFðE�E00Þ=RT�
c�aRedc

��ð1�aÞ
Ox

¼ cRedð0; tÞexp½aFðE�E00Þ=RT�
c�Red

� cOxð0; tÞexp½�ð1� aÞFðE�E00Þ=RT �
c�Ox

ð10Þ

Figure 3 shows j vs. (E - Eeq), being Eeq : E00 under
the assumed conditions, i.e. j(t) vs. g curves computed by

Eq. (10), for a given j0 value, i.e. for a given reversibility

degree of the charge transfer. The voltammetric curves

consist of both an anodic and a cathodic portion. The

further assumption that a = 0.5 implies that j(t) is an

antisymmetric function of the t variable, i.e. of the linearly

related E variable.

Equation (10) is the current-overpotential equation. As a

version of the EGV equation, it expresses the actual density

current that considers for the concentration values of the

electroactive species at the electrode that are different from

those in the bulk of the solution. The finite rate at which Red

and Ox species are supplied to and subtracted from the

electrode surface, respectively, is considered, despite the

mechanisms through which mass transport is operative are

not explicitly dealt with. The corresponding effects are evi-

denced by Eq. (10): the concentration values at the electrode

are predicted by the Nernst equation in the case of a rever-

sible charge transfer, and for non-reversible processes, they

can be computed once ks,h and a, or j0, are known. j(t) is then
computed by Eq. (2), and consequently, cRed(0; t) and cOx(0;

t) are drawn out by Eq. (3). According to Eq. (10), this

means that, at a given value of j0, the lower cRed(0; t) or and

the higher cOx(0; t) to realise the higher has to be the over-

potential to impose to the electrode. On the other hand,

j(t) increases at increasing j0 for each overvoltage value,

cOx(0; t) and cRed(0; t) being fixed. The plateau values of the

anodic and cathodic currents are defined as the limiting

currents for anodic oxidation and cathodic reduction; they

correspond to the overvoltages high enough to make cRed(0;

t) = 0 or cOx(0; t) = 0, respectively.

The electrode process as a whole: charge transfer

plus mass transport

The most physically perceivable approach to the calcula-

tion of current/time or current/potential curves is quite

τ-1 

km,Red ks,h

reversible quasi-rev. irreversible

quasi-rev. irreversible

ks,h(2)

ks,h(1)

Fig. 2 Illustration of the conditional reversibility degree of charge

transfers as a function of the relevant intrinsic characteristics, of the

diffusion rate, and of the time window of the experiment, s. Two
systems with different electron-transfer rates [ks,h (1) and ks,h (2)] are

considered. The standard rate constants [ks,h(1) and ks,h(2)] are the

characteristics of the charge transfer kinetics of two exemplificative

systems and km,Red accounts for the diffusion rate for the reduced

reactant species [see Eq. (1)] in solution. If ks,h � km,Red, the system

appears as a reversible one, while in the case of km,Red � ks,h,

irreversible behaviour is observed. Adapted from Ref. [11]
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different with respect to that followed to draw out Eq. (10).

Figure 4 shows the sequence of steps of an uncomplicated

charge transfer, i.e. a process not involving either chemical

reactions or adsorption events in charge of reactants or

products, which are both soluble in the solution phase.

Considering the sequence of steps constituting the elec-

trode process as a whole, the charge transfer at the elec-

trode clearly acts as the primary source of the perturbation.

Actually, the events at the electrode|solution interface are

often complex; in series or in parallel to more or less

reversible charge transfer(s), homogeneous reactions and

weak or strong adsorptions may take place in complex

mechanisms. The fitting with theoretical responses or with

calculated trends of typical quantities of the responses is of

help. In particular, the changes occurring at the elec-

trode|solution interface, e.g. adsorptions, are often defined

by proper fitting with the responses of the so-called

equivalent circuits.3

As discussed above, the occurrence of the reaction in

Eq. (1) causes inhomogeneity in the solution, as to both

composition and electric charge: gradients different from

zero arise for both Ox and Red concentrations, as well as

for electric potential.

The mass transport

The general formula accounting for all mechanisms of

mass transport for the i species along any directions is

given by the following general equation:

Ji ¼ �Dirci �
ziF

RT
Dicirþ �mci ð11Þ

where Ji represents the flux of the transferring species i, i.e.

the number of moles through a unitary surface area in a

unitary time interval, expressed in mol cm-2 s-1; Di is the

diffusion coefficient of the ith species, in cm2 s-1; zi is the

charge of the ion considered; ci is the concentration of the

ith species, expressed in mol cm-3; �m is the vectorial sum

Fig. 3 Current-overpotential

curve for an uncomplicated

electrochemical oxidation with

c�Red = c�Ox and a = 0.5:

Eeq : E00. The dotted lines

represent the anodic and the

cathodic components, whereas

the solid line represents the total

current. jL and -jL are the

limiting currents at sufficiently

positive and negative potentials,

respectively. j0 = 0.2 jL, which

fixes a ratio between the charge

transfer and the diffusion rates.

Every j, except for j0, stands for

j(t). Adapted from Ref. [8]

Red(x=0) 

Ox(x=0) 

e- 

mass
transport 

mass
transport 

Red(x=∞) 

Ox(x=∞) 

Fig. 4 Scheme of an uncomplicated charge transfer

3 So-called equivalent circuits consist of suitable resistances, capac-

itances, and even inductances, both in series and in parallel to each

other. They are typically drawn to give reason for the behaviour of an

electrode|solution system in the so-called impedance or faradic

impedance technique, as deduced from measurements performed, at a

constant d.c. potential, by applying alternating voltages at different

frequencies: the relevant in-phase and out-of-phase current compo-

nents are analysed. By fitting modulus and phase of the experimental

current to those computed for a given equivalent circuit, precious

information about the structure of the electrode|solution double layer,

crossed or not by electrons, may be gained. In measurements at

controlled potential, i.e. in continuous current amperometric tech-

niques, the relationship between the experimental responses and the

relevant equivalent circuits is very much more labile. However,

invoking a sort of equivalent circuit at a qualitative level may be

helpful in similar cases as well.
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of the fluid velocity in the three Cartesian coordinates:

vx ? vy ? vz; and r is the divergence vector operator or

Laplace operator (¼ o
ox
þ o

oy
þ o

oz
in a system of the three

Cartesian coordinates), accounting for the vectorial sum of

the concentration or inner potential gradients, in the first

and second terms of Eq. (11), respectively.

The concentration gradients of both reactant and product

induced by the electrode charge-transfer forces their dif-

fusion toward and away from the electrode surface, to

pursue homogeneity of the solution. On the other hand, the

inner potential gradient, r, forces the charged species to

migrate: in the case of the oxidation reaction expressed by

Eq. (1), migration of anionic species toward and of cationic

species away from the proximity of the electrode occur.

Actually, in controlled potential amperometric techniques,

an inert salt, also called supporting electrolyte, is deliber-

ately added to the solution to compensate the unbalance of

electric charges for the very most part. The additional basic

role of the supporting electrolyte is to lower the solution

resistance as much as possible. To achieve these goals, it is

added to the solution in a large excess with respect to the

electroactive species. The denomination ‘inert salt’ is due

to the requirement not to alter the nature of the species in

solution, as well to be resistant with respect to anodic

oxidation or cathodic reduction as much as possible. This

property widens the so-called potential window of the

solution, i.e. the potential range within which electro-

chemical processes due to solvent or to inert salt oxidation

or reduction do not take place, allowing there the detection

of species of interest (see Fig. 5).

As a support to homogenisation of the solution, hence,

to diffusion, solution stirring or electrode movement with

respect to the solution may be applied: in this case, con-

vection also concurs to mass transport. However, precise

control of such a mass transport mechanism can be

achieved using an RDE; reproducibility is possible with

such a setup, and the hydrodynamic equations have been

solved in this case. On the other hand, in the most widely

used diffusion controlled potential techniques, e.g.

chronoamperometry, linear sweep and cyclic voltammetry,

or pulse techniques, convection is absent and carefully

prevented from incidentally occurring. Diffusion plays,

hence, the role of mass transfer process.

Diffusion

What described above suggests privileging the treatment of

one among the mass transport mechanisms, namely, dif-

fusion. Experimental situations are often realised in order

that semi-infinite linear diffusion condition is well

approximated: the flux of species to a planar electrode

surface occurs orthogonal to the diffusion direction. This

process allows the easy computation of the current density.

Strictly speaking, semi-infinite linear diffusion conditions

require a perfectly planar electrode surface of infinite area,

the solution extending at infinite distance from it. Under

similar conditions, the concentration gradient of the dif-

fusing species is only different from zero along the direc-

tion orthogonal to the electrode surface, and the

perturbation arising at the electrode is allowed to extend

away from it without meeting with any physical boundary.

In the frame of a Cartesian system in which the x axis is

orthogonal to the electrode surface, the following rela-

tionships hold:

ocRedðx; y; z; tÞ
oy

¼ 0 ð12Þ

ocOxðx; y; z; tÞ
oy

¼ 0 ð13Þ

ocRedðx; y; z; tÞ
oz

¼ 0 ð14Þ

ocOxðx; y; z; tÞ
oz

¼ 0 ð15Þ

On the other hand, it holds that:

lim
x!1

cRedðx; y; z; tÞ ¼ c�Red ð16Þ

lim
x!1

cOxðx; y; z; tÞ ¼ c�Ox ð17Þ

The conditions required by the semi-infinite linear diffu-

sion are seemingly impossible to realise in an experimental

frame.Actually, experimental conditions arewell possible in

which the responses differ from those computed under the

theoretical model to a negligible extent, actually much less

than the experimental uncertainty. In the case of a disk

electrode, a diameter of 3 or 4 mm is high enough tomake the

diffusion component along the directions parallel to the

electrode surface negligible, satisfying, hence, Eqs. (12–15).

Fig. 5 Current vs. potential plots in the presence of a given solvent

and an inert salt in solution. Three possible situations are illustrated:

(1) solvent and supporting electrolyte are not electroactive at all (solid

line); (2) solvent or supporting electrolyte is oxidised at the anode

(dash-dotted line); (3) solvent or supporting electrolyte is reduced at

the cathode (dashed line)
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Furthermore, if the walls of the electrochemical cell, which

constitute the obvious physical boundary to diffusion, are

located a few micrometres far from the electrode surface,

cRed and cOx at such a distance are meaninglessly different

from c�Red and c
�
Ox, respectively. Under conditions in which x

axis constitutes the only diffusion direction, the cRed vs. x and

cOx vs. x plots are called the concentration profiles of Red

and Ox species, respectively.

In this respect, let us consider that the most dramatic

effect of the charge transfer at the electrode on the con-

centration values clearly occurs when a sudden change in

the electrode potential is applied, suitable to ‘instanta-

neously’ force to zero the concentration of electroactive

species at the distance of closest approach. The following

equation expresses the concentration profile for Red spe-

cies in similar conditions:

cRed x; tð Þ ¼ c�Rederf
x

2 DRedtð Þ1=2

" #
ð18Þ

where erf is the so-called error function. The values of the

error function rise very rapidly toward the unitary asymptotic

value:when the argument of erf holds 1, 2, and 3, i.e.when x is

2, 4, and 6 times the expression
ffiffiffiffiffiffiffiffiffiffiffi
DRedt

p
, the ratio

cRed x; tð Þ=c�Red assumes values of 0.84, 0.995, and 0.99998,

respectively. As a consequence, the diffusion layer thickness,

within which the concentrations of the electroactive species

are significantly different from those in the bulk of the solu-

tion, is quite reasonably limited by a distance of 6
ffiffiffiffiffi
Dt

p
cm. A

typical value of D for small molecules in liquids at room

temperature is ca. 10-6 cm2 s-1; a potential step imposing

c(x = 0; t) = 0 for t[ 0, only involves a 0.002 % concen-

trations changewithin a layer of ca. 60 lm, at 1 s polarisation,

which is commonly a longenough time: a 60-lm-thick layer is

wide enough to describe semi-infinite diffusion.

The diffusion to and from the electrode follows the

equations developed long time ago for the diffusion of

heat: Fick’s first and second laws of diffusion. However,

the boundary conditions under which the corresponding

system of differential equations is solved are peculiar for

the situations examined here.

The expression of Fick’s first law of diffusion is very

simple in the case of semi-infinite linear diffusion along the

x axis; as above discussed, only
ocRedðx;tÞ

ox

� �
and

ocOxðx;tÞ
ox

� �
are different from 0:

JRed x; tð Þ ¼ �DRed

ocRedðx; tÞ
ox

	 

ð19Þ

JOx x; tð Þ ¼ DOx

ocOxðx; tÞ
ox

	 

ð20Þ

where JRed and JOx account for the flux of the reduced and

oxidised species, respectively, at an x distance from the

electrode. The reliability of the algebraic signs in Eqs. (18,

19) is clear by recalling that, in the present case of an

anodic oxidation, the concentration gradient is positive for

Red and negative for Ox species, respectively.

The flux of electroactive species at the electrode, i.e. at

x = 0, leads to the current density, j(t), by transforming

mol s-1 into C s-1:

jðtÞ ¼ nFDRed

ocRedð0; tÞ
ox

	 

¼ �nFDOx

ocOxð0; tÞ
ox

	 


ð21Þ

According to Eq. (21), the current results positive in

sign for the oxidation reaction considered here and nega-

tive for an eventual reduction.

For semi-infinite linear diffusion, the following form of

Fick’s second law expresses the change in concentration in

any points of the solution as a function of time: at any x

distance from the electrode, it takes simply into account for

the difference between the flux into and the flux out from a

volume possessing dx width.

ocRedðx; tÞ
ot

	 

¼ DRed

o2cRedðx; tÞ
ox2

	 

ð22Þ

ocOxðx; tÞ
ot

	 

¼ DOx

o2cOxðx; tÞ
ox2

	 

ð23Þ

More complex expressions account for regimes different

from semi-infinite diffusion, such as those that are opera-

tive at a mercury drop electrode, at microelectrodes, at

porous electrodes, and so on.

Mass transport coupled to charge transfer

Mass transport and charge-transfer processes interplay with

each other in determining the conditional reversibility

degree of a charge-transfer process. As far as the Nernst

equation is obeyed, whatever electrochemical technique is

used to look at the Ox/Red system, the relevant responses

are typical of a reversible charge transfer. As already evi-

denced, in fact, only a certain degree of reversibility is

what makes sense in the real world: ideal reversibility

requires infinite rate in the achievement of equilibrium,

implying that the electrochemical activation free energy at

E = E0 should be equal to zero for both forward and

backward reactions [2]. Apart from this limiting case, the

faster the achievement of the equilibrium between elec-

trode and redox system immediately close to it, the ‘more

reversible’ the electrode–redox couple system.

By considering quite an extreme situation, in the case of

potentiometric measurements, no current is involved, so that

the solution is homogeneous at any distance from the indi-

cator electrode: cRed 0; tð Þ ¼ c�Red and cOx 0; tð Þ ¼ c�Ox. The

potential of the electrode is given such a long time to assume
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the value predicted by the Nernst equation that not so few

redox systems, in which both the oxidised and the reduced

forms of the redox couple are stable, and appear to behave

reversibly. In this case, reversible behaviour implies the

assumption by the electrode of the potential value that can

theoretically be computed by the Nernst equation on the

basis of c�Red=c
�
Ox ratio. In other words, in potentiometry,

once the concentrations of Ox and Red are fixed, we require

E to assume the value predicted by Eq. (8).

On the other hand, whenever the electrode is polarised at

a given E value, as it is the case of all controlled potential

techniques, the ratio cOx(0; t)/cRed(0; t) must assume the

value predicted by the Nernst equation. When the potential

is changed, either continuously or by subsequent steps, less

time is given to the electrode-solution system to reach

equilibrium, with respect to potentiometry. In conclusion, a

redox system may appear reversible when ‘observed’ with

a given technique, e.g. in potentiometry, or under given

experimental conditions, e.g. when the potential applied to

the electrode varies slowly, though appearing non-re-

versible when the potential is changed at higher rates. This

means that, in the case of a controlled potential technique,

reversibility is achieved under the condition that modifi-

cations of the potential causes novel concentrations at the

electrode that are in agreement with the Nernst equation:

more and more rapid the potential change, shorter and

shorter the time window, faster and faster the change of the

concentrations of the electroactive species at the surface

has to be, in order that the response accounts for the

occurrence of a reversible process. Thermodynamics may

not be obeyed anymore: kinetic arguments concur to con-

dition the current flowing, i.e. the rate of conversion of one

to the other partner of the redox couple, namely, of Red to

Ox in the example considered here.

The strict interplay between intrinsic reversibility of a

charge transfer, as directly accounted for by j0 or ks,h, the

time window on which the process is tested and the speed

at which the mass transport of electroactive species occurs

are of basic importance in conditioning the conditional

degree of reversibility exhibited by an electrochemical

response, as discussed with respect to Fig. 2.

As already underlined, mass transport and charge

transfer can be considered as two processes in series: mass

transport should necessarily supply the electroactive spe-

cies that undergoes charge transfer. The current only

depends on the rate of diffusion if it is the slower (more

hindered) one, while the rates of both steps condition the

overall rate in the case of a slower second step. It follows

that for reversible charge-transfer processes, the diffusion

is always the slower step: at any polarisation potential, the

rate of the process is only conditioned by diffusion. This

implies that, whenever the charge-transfer rate is high

enough with respect to diffusion, the responses exhibit the

same shape, in terms of E vs. t or of j vs. E, and appear as

those of ‘reversible processes’: they are the so-called dif-

fusion-controlled charge-transfer processes.

On the other hand, the responses are different from one

another whenever the charge transfer is slower than dif-

fusion: a variety of responses, depending on the individ-

ual kinetic parameters, are obtained. For non-reversible

processes, in fact, a number of different situations are

found, since the rate of the charge transfer depends on E,

increasing at increasing E. While at low overvoltages, the

charge transfer constitutes the slower step, and the rate of

diffusion becomes limiting when high enough overvolt-

ages are applied. In other words, the rate of the same

process progressively shifts from being controlled by both

charge transfer and diffusion, to be only diffusion-con-

trolled. This always occurs in correspondence to the

limiting current.

A quick look at controlled potential techniques

It seems spontaneous to introduce here a first controlled

potential technique that measures the current flowing at an

electrode polarised at a constant potential after stepping

the potential from a value at which no electrode process is

active: the chronoamperometry. As already underlined,

our aim is not to furnish details about this and other

controlled potential techniques, but only to better exem-

plify what discussed about mass transport coupled to

electrode kinetics in conditioning the relevant responses,

specifically with respect to the reversible or non-re-

versible character.

Figure 6 shows the typical potential waveform for

chronoamperometry, together with a few concentration

profiles for Red electroactive species, along the unique

diffusion direction, x. Semi-infinite linear diffusion condi-

tions are assumed to be operative. In the case of Fig. 6, the

potential is ‘suddenly’ stepped from E1 to E2; corre-

sponding to the already mentioned ‘limiting current: the

concentration of Red at the electrode is 0 for any t[ 0, so

that Eq. (18) expresses the concentration profiles for dif-

ferent t values. It is evident from Fig. 6b that the gradient

of the electroactive species at the electrode progressively

decreases, and the diffusion layer thickness concomitantly

increases. No assumption is made about the reversibility

degree. The following equation holds:

j tð Þ ¼ nFC�
RedD

1=2
Redp

�1=2t�1=2 ð24Þ

Equation (24) is the so-called the Cottrell equation. The

general expression, valid for any potential in the case of a

reversible process, is:
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j tð Þ ¼ nFD
1=2
Red

p1=2t1=2ð1þ nHÞ ð25Þ

where

n ¼ DRed

DOx

	 
1=2

ð26Þ

and

H ¼ exp
nF

RT
ðE00 � E2Þ

� �
¼ CRedð0; tÞ

COxð0; tÞ
ð27Þ

The dependence of the current on the square root of

time, as expressed by Eqs. (24) and (25), accounts for the

occurrence of a diffusion-controlled charge-transfer pro-

cess: the diffusion constitutes the rate limiting step of the

whole process, the charge transfer being much faster. This

is the reason why, in the above-reported equations, no

kinetic parameter is included: the expressions of the current

for reversible processes only make use of Fick’s laws of

diffusion.

The Cottrell equation does not consider the differential

capacitive current that has been claimed to couple to the

faradic one whenever changes in the electrode potentials

are operative. Proper geometry of the electrochemical cell,

as well as low electrode capacitance and solution resis-

tance, makes it falls to zero after a time as short as few tens

of milliseconds after the imposition of E2.

Figure 6c shows a typical chronoamperometric

response, as predicted by the Cottrell equation.

Despite the popularity of Eq. (24), Eq. (25) deserves

particular attention when considering the validity of the

thermodynamic Nernst equation in the frame of a process

in which flow of current does occur. As specified above,

Eqs. (24, 25) hold along the whole time interval explored,

at whatever potential value, when the charge transfer is

reversible in nature. However, reversibility requires that

the values of the concentrations at the electrode fit those

predicted by Nernst’s equation in a time as short as pos-

sible. The shorter the time required to achieve these values,

the more reversible the charge transfer, so that the pre-

dicted values may not be reached within the time duration

of the experiment for high irreversibility of the system.

Cottrell equation is obeyed only since the time at which the

values predicted by the Nernst equation are reached

onwards. The shorter the sampling time at which Nernst

equation is first obeyed, the higher the conditional

reversibility degree. Noteworthy, factors additional to non-

reversibility should be considered at very short times.

By considering voltammetric techniques, CSV can be

considered strictly related to normal pulse polarography;

however, using a solid electrode is particularly helpful to

understand the interrelationships occurring between

reversibility degree and experimental conditions. More-

over, it is also suitable to draw experimentally a current vs.

potential curve. In these techniques, the electrode is sub-

sequently polarised, in short duration pulses, at increasing

potential values; two subsequent pulses differ of a few

millivolts. The time duration of each pulse is typically of a

few hundreds of seconds. The circuit is open between two

subsequent pulses, and different experimental conditions

are adopted to reestablish cOx and cRed initial concentra-

tions along the whole diffusion layer, in order that each

pulse is applied under the conditions: cOx(0;0) = cOx* and

cRed(0;0) = cRed*. At each pulse, the current is sampled at

a given time and the current vs. potential curve consists of

a sequence of points, which may eventually interpolated or

regressed to trace a continuous voltammetric curves. It is

evident that, for the arguments discussed for chronoam-

perometry, the sampling time may play a fundamental role:

the shorter the time, the higher the reversibility degree

requested to the charge transfer in order that the j vs.

E curve is typical for a reversible one. On the other hand, at

high enough potential, the /M - /s value is high enough

to make in all cases the rate of the charge transfer so high

to force cRed(0; t) to 0, whatever the sampling time is. The

response accounts for a reversible charge transfer at the

potentials of the limiting current: the charge-transfer step is

in no cases the rate limiting one.

Actually, since the increase in the potential makes the

charge-transfer step faster and faster, it is clear that the

conditional reversibility degree exhibited by the response

for a non-reversible process even changes in the potential

Fig. 6 Chronoamperometry at a potential corresponding to cRed(0;

t) = 0: a potential waveform; b cRed concentration profiles at

different times [Eq. (16)]; and c sketch of a typical signal recorded.

Normalization in b is performed by dividing cRed(x; t) by c�Red.
Reprinted with permission from Ref. [12]
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interval in which the current increases, before reaching the

limiting value.

Figure 7 accounts for different current vs. potential

curves for the same process for different sampling times,

implying, however, the same conditional reversibility.

A further typical example of different possible time

windows over which a charge-transfer process is observed

is met with when linear changes of the potential are

applied, namely, in linear sweep voltammetry (LSV) and

cyclic voltammetry (CV) [14]. In this case, at increasing the

potential sweep rate, i.e. at lowering the time given to the

system to reach equilibrium, a charge-transfer process may

exhibit a progressive transition of the relevant responses

from those typical of a reversible to those of a non-re-

versible process.

Because of these characteristics, LSV and CV are the

most suitable techniques to evidence different conditional

reversibility degrees of the charge-transfer process. In

LSV, the linear potential scan is limited to one single

direction (see Fig. 8a). As it is well evident in Fig. 8b, CV

is the corresponding ‘reversal technique’: a backward (re-

verse) scan follows the forward (direct) one. In Fig. 8c,

some representative concentration profiles for the Red

electroactive species, at different potential values of the

forward scan, are reported for the case of a reversible

charge transfer. The LSV response only consists of the j vs.

E curve relative to the upper trace of the CV response in

Fig. 8d. The j and E points of the curve that are most

significant for both analytical and mechanistic purposes are

also indicated in Fig. 8d.

Fig. 7 a Plots showing the

collected current vs. time

transients and b the relevant

SCV curves constructed from

currents recorded at times s1, s2,
s3, and s4. Reprinted with

permission from Ref. [13]

Fig. 8 Potential waveform for

a LSV and b CV. c A few

concentration profiles for the

Red electroactive species in the

case of a reversible charge

transfer (forward potential scan)

are shown. d CV curve with

meaningful current and

potential quantities indicated.

Noteworthy, the highest value

for the gradient at the electrode,

corresponding to the maximum

in the response in d, occurs at a
potential at which

cRed x ¼ 0ð Þ[ 0. Reprinted with

permission from Ref. [12]
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In LSV, the evolution of the concentration profiles for

the electroactive species is affected by two counteracting

factors: at increasing the potential, the concentration of the

reacting species at the electrode progressively decreases

either for thermodynamic or for kinetic reasons (think of

Nernst or at EGV equations, respectively). This decrease,

on its own, makes the gradient at the electrode increase. On

the other hand, the perturbation arising at the electrode

extends into the solution, lowering the gradient of the Red

electroactive species (think of the evolution of the con-

centration profiles in chronoamperometry—Fig. 6b). The

consequent lowering of the relevant flux at the electrode

causes, on its own, a decrease in the current density for

both reversible and non-reversible charge-transfer pro-

cesses. As a result, the response exhibits a relative maxi-

mum before and after which the former or the latter effect

prevails, respectively.

In the backward scan of a CV, over a first potential

range, the current still has the same (positive) sign, due to

the higher value of the forward with respect to the back-

ward redox reaction. Past this value, the reverse redox

process, due to the reduction of the species formed in the

forward scan in the proximity of the electrode, assumes

progressively increasing prominence: the net current flows

in the opposite direction, and a backward (cathodic)

response is recorded. The shape of the LSV and of the CV

responses allows qualitative and quantitative conclusions

about the nature of the electrode charge transfer, i.e. about

the relevant reversibility degree. This also holds for the

parameters defining more complex mechanisms, in which

homogeneous or heterogeneous events are coupled to the

charge transfer.

The expressions accounting for the peak current for an

uncomplicated reversible charge transfer:

jp
� �

rev
¼ 2:688 � 108n3=2D1=2

Redc
�
Red

oE

ot

	 
1=2

ð28Þ

and for an uncomplicated totally irreversible charge

transfer:

jp
� �

irrev
¼ 2:987 � 108 /1=2 n3=2D

1=2
Redc

�
Red

oE

ot

	 
1=2

ð29Þ

show that in both cases, a dependence of jp on oE
ot

� �1=2
is

exhibited. Noteworthy, a process is often claimed to be

‘diffusion controlled’ when it exhibits LSV responses

with peak current intensity linearly dependent on the

square root of the potential scan rate, which is actually

not true, in view of Eq. (29). Figure 9 shows that the

quasi-reversible charge-transfer processes do not obey

such a trend, since increase in the scan rate implies

progressive decrease in the reversibility degree, according

to what discussed above.

A possible distinction of quasi-reversible from totally

irreversible processes is based on the impossibility to

define, in the latter case, a finite width potential region in

which the response is conditioned significantly by both the

forward (oxidation) charge transfer and the backward (re-

duction) charge transfer. The dimensionless parameter, W:

w ¼
DRed=DOx

� �a=2
ks;h

D
1=2
Red

nF=RT

� �1=2
p oE

ot

� �1=2� � ð30Þ

identifies a family of responses, accounting for (1) the

intrinsic reversibility degree of the charge transfer, as

defined by ks,h and a; (2) the time window, approximately

defined as the time necessary to cross the whole LSV

response, directly related to the potential sweep rate, qE/qt;
and (3) the diffusion rate of the electroactive species, as

defined by the relevant diffusion coefficient, DRed and Dox.

W gives a quantitative estimate of the conditional

reversibility degree of the charge-transfer process as a

whole,4 in agreement with the discussion reported above as

to the factors affecting it. A given response accounts for a

Fig. 9 Plot of jp vs. oE
ot

� �1=2
for a quasi-reversible charge-transfer

process, where transition from a reversible to a totally irreversible

behaviour is observed (dotted and broken lines, respectively).

Reprinted with permission from Ref. [14]

4 A digital simulation technique has been adopted to calculate the

curves reported in Supplementary Material. Noteworthy, the equa-

tions accounting for the values of the significant quantities of

responses relative to LSV and CV, as well to other controlled

potential techniques, reported in the text and drawn out from the cited

literature, have been originally computed by solving the system of

equations representing the so-called boundary value problem, some

examples of which are given in this study. Through the Laplace

transform method, the differential equations are converted into a

proper dimensionless integral equation. Different analytical, numer-

ical, series methods have been proposed for its solution. Among the

dimensionless parameters that have been defined to achieve solution

allow to draw the equation for the current/potential curves, the

dimensionless parameter W is introduced, as defined in Eq. (27).
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number of different situations sharing the value of the

dimensionless parameter W.

In other words, a family of responses with increasing

conditional reversibility, i.e. increasing W values, accounts

for a number of processes with increasing ks;h values and/or

recorded at decreasing potential scan rates oE
ot

� �
and/or for

decreasing rate for mass transfer, as accounted for by DRed.

Similarly, W assumes a constant value, leading to one

single response accounting for a number of intrinsically

differently reversible charge transfers, once the potential

scan rate progressively changes and/or the diffusion rate

changes as well. Typically, it will be very difficult, or even

impossible, to realise a combination of the factors leading

to the definition of W, i.e. of the intrinsic character of the

charge-transfer process and of the experimental variables,

so that responses shifting from those typical for a reversible

to those for a totally irreversible process are recorded.

According to the literature, responses characteristic of a

reversible charge-transfer processes is obtained for W[ 7,

while responses typical of totally irreversible processes are

recorded for W\ 10-3.

In the file available as Supplementary Material, CV

responses for uncomplicated charge transfers with different

reversibility degree are shown, together with the concen-

tration profiles of reactant and product at some selected

potentials along the forward and the backward sweeps.

Since LSV and CV are the most widely used voltam-

metric techniques to study and even quantify the kinetic

parameters characterising an electrode process, we insert

here a discussion of the quantities defining the relevant

responses, for an uncomplicated electrode charge transfer,

at varying the reversibility degree [15–17]. In addition to

the peak current densities, as expressed by Eqs. (28) and

(29), other typical quantities, referred to the potential scale,

distinguish LSV and CV responses for reversible from

totally irreversible processes. For a reversible response:

Ep;f�Ep=2;f ¼ 2:199
RT

nF
¼ 56:5=n mV at 25 �Cð Þ ð31Þ

where Ep,f and Ep/2,f are the potential corresponding to the

peak of the forward scan and to the half the current peak,

respectively, and

Ep;f � Ep;b ¼ 2:218
RT

nF
¼ 57=n mV at 25 �Cð Þ ð32Þ

Moreover, the ratio between the backward and forward

peak currents for a reversible response tends to unity once

the baseline for the backward peak is properly computed

[14]. The unity value and the 57/n mV for peak-to-peak

separation are actually asymptotic values, reached by

switching the potential scan direction at more and more

positive values. At increasing the non-reversible character

of the process, the relevant peak-shaped responses exhibit

progressive broadening, implying higher and higher values

of the potential differences given above. As a consequence

of the further and further location of the backward and

forward peaks, the ratio between current peak values pro-

gressively decreases, due to the time elapsed between

generation of Ox species and polarisation of the electrode

at potentials at which it is reduced back to Red. As an

example, the values for (Ep,f - Ep,b) 9 n have been com-

puted to 63 mV for W = 7, to 84 mV for W = 1, and to

212 mV for W = 0.1 [17]

A further example of changes of the conditional

reversibility degree of the charge transfer, as evident from

the relevant voltammetric responses, may be given by a

process occurring at an RDE [11, 18–20]. If the electrode is

disc-shaped, embedded in a rod of an insulating material

and rotating with an angular velocity xr, the axis of rota-

tion passes through the centre of the disc and results per-

pendicular to the surface: the diffusion layer thickness, d,
accounts for the concentration gradient in the x-direction.

The diffusion layer thickness is a crucial parameter in

the diffusion equations for RDE. It accounts for the dis-

tance from the electrode surface at which no hydrodynamic

motion of the solution is assumed to occur: the mass

transport takes place by molecular mechanism, mostly by

diffusion. The exact solution of the respective convective–

diffusion equations is very complicated.

In the case of a laminar flow, the flow velocity is zero at

the plane electrode surface, then continuously increases

within a given layer (the Prandtl boundary layer), and

eventually reaches the value characteristic to the stirred

liquid phase.

The convective–diffusion equations have been solved

for RDE:

dRed ¼ 1:61D
1=3
Redx

�1=2m1=6 ð33Þ

j ¼ 0:62nFD
2=3
Redx

1=2m1=6½cRed x ¼ 0ð Þ�c�Red� ð34Þ

where m is the kinematic viscosity. When cRed(x = 0) = 0,

i.e. j = jL, Eq. (34) is called the Levich equation.

The higher the rotation speed, x, the higher the mass

transport rate to and from the electrode surface, the higher

the flux of the electroactive species at the electrode, and the

higher the current. High charge-transfer rates are also

required to possibly achieve Nernstian equilibrium.

By operatively defining a ‘mass transfer constant’,

km,Red, related to the rotation speed and, hence, to what this

implies as to mass transfer rate of the electroactive reactant

species, a comparison is possible with the charge-transfer

rate, as expressed by the standard heterogeneous charge-

transfer constant, ks,h, or by the exchange current density,

j0. The plot in Fig. 10 shows how a given process may lead

to responses with different conditional reversibility degrees

and, at the same time, how charge transfers with actually
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different reversibility degrees may exhibit similar

responses.

The standard rate constants [ks,h (1) and ks,h (2)] are the

characteristics to the charge-transfer rate of the given

systems. The diffusion rate constants km,Red are varied by

the rotation rate of the electrode. Two systems with dif-

ferent electron-transfer rates [ks,h (1) and ks,h (2)] are

considered. If ks,h � km,Red the system is reversible, while

in the case of km,Red � ks,h, irreversible behaviour is

observed. The values of the diffusion coefficients are taken

equal for both systems. Adapted from Ref. [11].

Figure 11 shows different RDE voltammetric curves

relative to different charge-transfer processes. By

decreasing the conditional reversibility degree, either by

increasing the rotation speed x or by decreasing ks,h, the

current lowers and the charge transfer overvoltage shifts

the response to higher potentials. The different shapes of

the responses are also evidenced, as well as the dependence

of the mass transfer rate, as expressed by the concentration

of electroactive species reacting at the electrode, on x1/2 or

by j0, or by a combination of the two parameters; this is the

case of a mixed control, i.e. of quasi-reversible charge-

transfer processes. The limiting current values do not

depend on the reversibility degree of the charge transfer,

but depend on the RDE rotation speed.

Figure 12a shows the directions along which the rota-

tion of the RDE induces mass transport by convection.

Turbulent flow activates uncontrolled convection and

should be minimised: laminar flow is given account in

Fig. 12a. Figure 12b shows the concentration profiles of

the electroactive species at different rotation rates. The j vs.

E curves assume sigmoidal shapes, exhibiting the already

cited limiting current, at high enough potentials: in the case

of reversible processes, Nernst equation imposes cRed(0;

t) = 0 and, in the cases of non-reversible charge transfers,

cRed(0; t) = 0 is a consequence of high enough overvolt-

ages, imposing a charge-transfer rate much faster than

diffusion.

Boundary value problem for different reversibility
degrees

As above cited, whenever the value of the electrode

potential is controlled according to a given dependence on

time, the so-called potential waveform defines the relevant

controlled potential technique: the potential applied to WE

is either fixed or differently varied over time. Two cases

are defined, in which (1) the computation of the current

density comes out only from the concentration profiles of

the species involved in the electron-transfer process, hence,

on the concentration gradient at the electrode surface, or

(2) the concentration gradient is ‘filtered’ by the EGV

equation. In the reversible case, every single Red entity that

arrives at the electrode reacts or not only in dependence of

the requirements of the Nernst equation, and EGV equation

does not play any role. In a non-reversible charge-transfer

case, the flux conditions the Red concentration at the

electrode that reacts to an extent conditioned by EGV

kinetic equation. In the latter case, a number of situations

are possible, in which the rate of the mass transfer plays

anyway a role.

For an uncomplicated charge transfer, in which both

Red and Ox species are soluble and stable in solution, a

system of differential equations of parabolic type, consist-

ing of the expressions of Fick’s second law referred to Red

and Ox species [Eqs. (22) and (23)], should be solved

under proper boundary conditions. These differ in part

from one another in dependence of the reversibility degree

of the charge transfer. The whole of the differential

ω1/2

km,Red ks,h

reversible quasi-rev. irreversible

quasi-rev. irreversible

ks,h(2)

ks,h(1)

Fig. 10 The same as in Fig. 2 for the case of an RDE; the time

window s-1 is accounted for by x1/2

Fig. 11 Steady-state polarization curves (j vs. g) for a reversible (j0
(2)) and an irreversible (j0 (1)) anodic process, respectively, at two

different stirring rates. jL represents the limiting current. The

following parameters refer to the different curves: j0 (1) and km,Red

(1) (curve 1–1); j0 (1) and km,Red (2) (curve 1–2); j0 (2) and km,Red (1)

(curve 2–1) and j0 (2) and km,Red (2) (curve 2–2); The same diffusion

coefficients for both systems are considered. Adapted from Ref. [11]
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equations and the proper boundary conditions is often

indicated as boundary value problem.

Schemes 1, 2 and 3 show the boundary value problems

for reversible, quasi-reversible, and totally irreversible

charge transfers, respectively. The ‘quasi-reversible’

denomination indicates a charge transfer, which, though

non-reversible, is characterised, over a finite potential

range, by significantly different from zero heterogeneous

kinetic constants for both oxidation and reduction (forward

and backward charge transfers, respectively). On the con-

trary, a similar range is not identifiable for totally charge

transfers: either the forward or the backward kinetic rate

constant is only significantly different for 0. Noteworthy,

the term initial conditions is often used for the t = 0

boundary.

The cases of chemical reactions coupled to the charge

transfer are not considered here, though being very

Fig. 12 a Schematic representation of the flux lines for an RDE,

under laminar flow conditions; turbulent flow is minimised by

suitable experimental setup and conditions reproduced with permis-

sion from Ref. [8]. b Concentration profiles for the electroactive

species, along the direction orthogonal to the electrode surface (x-

direction) at two different rotation speeds—xD,1–2 represent the

Nernst diffusion layers, where both diffusion and convection mass

transports occur. Reproduced with permission from Ref. [19]

Scheme 1 Boundary value problem in the case of reversible charge

transfer for uncomplicated electrode processes

Scheme 2 Boundary value problem in the case of totally irreversible

charge transfers for uncomplicated electrode processes
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important in studies of molecular electrochemistry; the

concentration changes due to the events additional to dif-

fusion should be accounted for, integrating the II Fick’s

law constituting the differential equations in the cases

presented here.

Different approaches have been used to solve the

variety of systems of differential equations: from semi-

analytical methods, in which the analytical mathematical

procedure is complemented by numerical techniques, to

fully numerical ones. The so-called digital simulation

techniques have been mainly used for a long time [21]. In

these techniques, the time and the space interested by

diffusion are differently discretised through the so-called

space–time grid, dense enough to account properly for the

concentration changes induced by the charge transfer and

by the diffusion.

References

1. Inzelt G (2014) Crossing the bridge between thermodynamics and

electrochemistry. From the potential of the cell reaction to the

electrode potential. ChemTexts 1(2):1–11

2. Seeber R, Zanardi C, Inzelt G (2015) Links between electro-

chemical thermodynamics and kinetics. ChemTexts 1:1–16

3. Denbigh K (1981) The principles of chemical equilibrium, IV

edn. University Press, Cambridge

4. Southampton Electrochemistry Group (1985) Instrumental

methods in electrochemistry. Ellis Horwood Limited, Cambridge

5. Gileadi E (1993) Electrode kinetics. VCH, New York

6. Brett CMA, Oliveira Brett AM (1993) Electrochemistry: princi-

ples, methods, and applications. Oxford University Press, Oxford

7. Oldham HB, Myland JC (1994) Fundamentals of electrochemical

science. Academic Press, San Diego

8. Bard AJ, Faulkner LR (2001) Electrochemical methods, funda-

mentals and applications, 2nd edn. Wiley, New York

9. Scholz F (ed) (2002) Electroanalytical methods. Guide to

experiments and application. Springer, Berlin, Heidelberg

10. Scholz F (2010) Electroanalytical methods, guide to experiments

and applications, 2nd revised and extendededn. Springer, Berlin

Heidelberg

11. Inzelt G (2010) Kinetics of electrochemical reactions. In: Scholz

F (ed) Electroanalytical methods, guide to experiments and

applications, Ch I. 3, 2nd, revised and extended edn. Springer,

Berlin, Heidelberg, pp 33–53

12. Moretto LM, Seeber R (2014) In: Moretto LM, Kalcher K (eds)

Environmental analysis by electrochemical sensors and biosen-

sors. Fundamentals, vol 1, Ch II 3, Springer, Berlin, Heidelberg,

pp 239–282

13. Perry SC, Al Shandoudi LM, Denuault G (2014) Sampled-current

voltammetry at microdisk electrodes: kinetic information from

pseudo steady state voltammograms. Anal Chem 86:9917–9923

14. Bontempelli G, Magno F, Mazzocchin GA, Seeber R (1989) Linear

sweep and cyclic voltammetry. Ann Chim (Rome) 79:103–216

15. Matsuda H, Ayabe Y (1954) Zur Theorie der Randles-Sevčikschen

Kathodenstfrahl-Polarographie. Z Elektrochem 59:494–503

16. Nicholson RS, Shain I (1964) Theory of stationary electrode

polarography. single scan and cyclic methods applied to rever-

sible, irreversible, and kinetic systems. Anal Chem 36:706–723

17. Nicholson RS (1965) Theory and application of cyclic voltam-

metry for measurement of electrode reaction kinetics. Anal Chem

37:1351–1355

18. Newman JS (1973) Electrochemical systems. Prentice Hall,

Englewood Cliffs

19. Albery WJ (1975) Electrode kinetics. Oxford University Press,

Oxford

20. Pleskov YuV, Yu Filinovskii V (1976) The rotating disc elec-

trode. Consultants Bureau, New York

21. Britz D (2005) Digital simulation in electrochemistry, 3rd edn.

In: Lecture notes in physics. Springer, Berlin, Heidelberg

Scheme 3 Boundary value problem in the case of quasi-reversible

charge transfers for uncomplicated electrode processes

8 Page 16 of 16 ChemTexts (2016) 2:8

123


	The inherent coupling of charge transfer and mass transport processes: the curious electrochemical reversibility
	Abstract
	Introduction
	The electrode charge-transfer process
	Deconvolving the process
	Equilibrium conditions in the absence and presence of current flow
	The electrode process as a whole: charge transfer plus mass transport
	The mass transport
	Diffusion
	Mass transport coupled to charge transfer

	A quick look at controlled potential techniques
	Boundary value problem for different reversibility degrees
	References




