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Abstract
Purpose  Attentiveness recognition benefits the detection of the mental state and concentration when humans perform spe-
cific tasks. Hilbert–Huang transform (HHT) is useful for the analysis of nonlinear or nonstationary bio-signals including 
brainwaves. In this work, a method is proposed for the characterization of attentiveness levels by using electroencephalogram 
(EEG) signals and HHT analysis.
Methods  Single-channel EEG signals from the frontal area were acquired from participants at different levels of attentive-
ness and were decomposed into a set of intrinsic mode functions (IMF) by empirical mode decomposition (EMD). Hilbert 
transform analysis was applied to each IMF to obtain the marginal frequency spectrum. Then the band powers and spectral 
entropies (SEs) were selected as the attributes of a support vector machine (SVM) for a two-class classification task.
Results  Compared with the predictive models of approximate entropy (ApEn) and fast Fourier transform (FFT), the results 
show that the band powers extracted from IMF2 to IMF5 of � and � waves and their SE can best discriminate between atten-
tive and relaxed states with the average classification accuracy of 84.80%.
Conclusion  In conclusion, this integrated signal processing method is capable of attentiveness recognition that can offer 
efficient differentiation and may be used in a clinical setting for the detection of attention deficit.
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1  Introduction

Attention is an important feature that reflects the mental 
state of the brain and can be measured by using electroen-
cephalography (EEG). The measurement of the degree of 
attention is mainly associated with α and β waves [1]. In 
particular, α waves between 8 and 13 Hz with amplitudes 
from 30 to 50 μV are evident on the EEG of a relaxed par-
ticipant with closed eyes. The β oscillations between 14 and 

30 Hz with amplitudes from 5 to 20 μV are evident during 
active attention. Therefore, quantifying these frequency-
specific features using EEG can be used to probe the level 
of attentiveness [2–4].

Previous studies have shown that for EEG attentiveness 
recognition, using a k-nearest neighbor (KNN) classifier 
based on the self-assessment manikin model can yield an 
average accuracy of 57.03% [5], and using support vector 
machine (SVM) model of power spectral density resulted in 
an average accuracy of 76.82% [6]. In addition, the accuracy 
can be increased to 81% when taking into account approxi-
mate entropy using fuzzy entropy [7]. For identifying atten-
tion during the learning process, KNN combining correla-
tion-based feature selection (CFS) yields a classification rate 
of 80.84% [8]. On a single subject level, the accuracy is up 
to 89.4% when using the integration of common spatial pat-
tern filtering and nonlinear mutual information method [9]. 
Taken together, frequency-specific and nonlinear features 
extracted from EEG are essential for attentiveness recog-
nition. Therefore, in this study, we proposed a method for 
the characterization of the levels of attentiveness based on 
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Hilbert–Huang transform (HHT) and SVM. HHT and empir-
ical mode decomposition (EMD) have been used to process 
nonlinear and nonstationary brainwave signals [10, 11] in 
EEG analysis and clinical applications, such as emotion rec-
ognition [12, 13], motor imaginary [14], seizure detection 
[15–17], anesthesia monitoring [18, 19], and arousal detec-
tion [20]. For attentiveness recognition, HHT combined with 
extreme learning machine (ELM) has been proposed and 
yielded the highest accuracy of 85.5% (average accuracy of 
72.1%) [21]. SVM, a machine learning technique, gradually 
becomes a popular translation method for classification with 
high accuracy [22–24]. Given a set of training samples for 
supervised learning, SVM can build a predictive model of 
the specific EEG features to perform a classifier for atten-
tiveness recognition.

In this study, we measured the brain activity from the 
frontal area with one channel EEG device during partici-
pants solving some puzzles shown on the screen or dur-
ing a resting period. EEG signals were first decomposed to 
intrinsic mode functions (IMF) by EMD, after which the 
instantaneous frequencies of IMFs were obtained by HHT. 
The resulting marginal spectra (MS) of specific frequency 
bands and spectral entropy (SE) entered an SVM as the fea-
ture attributes for the characterization of attentiveness.

2 � Materials and Methods

2.1 � Data Collection

EEG data were measured by using a commercial mobile 
EEG monitor (MindWave, NeuroSky) at a sampling rate 
of 512 Hz [25]. The unipolar recording device has a fixed 
channel position on the scalp surface of the forehead (Fp1), 
according to the International 10/20 system [26]. An ear clip 
(A1) of the device was used to provide a ground reference to 
filter out the electrical noise.

This study, numbered 201812EM027, was approved by 
the Research Ethics Committee of National Taiwan Uni-
versity, Taiwan. Twenty participants were recruited: eight 
males and twelve females, whose ages ranged from 20 to 26 
(average age = 21.9). The participants were instructed to sit 
still in a quiet room, wearing the EEG monitor. Two tasks 
were conducted by the participants: (1) pay their attention 
to solving designated spot-the-difference puzzles shown on 
a screen for 5 min; (2) then relax with their eyes opened and 
fixated at a blank screen for 5 min. Figure 1 shows the EEG 
of a representative participant during the two tasks. The 
dashed lines indicate the onset of the rest task. The continu-
ous EEG signal was epoched as a collection of time-locked 
trials with a time length of 1 s. The middle 200 epochs of 
each task were analyzed to build a classifying model. As 
shown in Fig. 1, the red block is considered as the atten-
tion data (200 epochs), and the green block is the relaxa-
tion data (200 epochs). Therefore, 200 attention and 200 
relaxation epochs of twenty participants were analyzed to 
build individualized classifiers. Besides, both of the last 50 
epochs were used as the testing data to validate the models. 
The flowchart of this study is shown in Fig. 2. The selected 
features of EEG data extracted by Hilbert–Huang analysis 
(EMD, HT, and MS) were entered the SVM for attentiveness 
recognition.

2.2 � Hilbert–Huang Transform

HHT [27] is a time–frequency–energy method for the anal-
ysis of nonlinear or non-stationary data sets, the process of 
which can be divided into two parts: EMD and the Hilbert 
transform (HT) [28]. For extracting the basis for the HT, 
EMD has been proposed to generate finite component sets 
empirically from the original data. The repetitive extrac-
tion of EMD is based on the oscillatory modes and wave-
forms of signals in the time domain. An IMF of a signal 
is a function with (1) the same number of zero-crossings 
and extrema, and with (2) symmetric envelopes defined by 

Fig. 1   A continuous raw EEG 
signal of a representative 
participant while conduct-
ing two tasks. The participant 
paid attention for 5 min (until 
the dotted line) and then took 
a break with eyes opened for 
another 5 min. The epochs in 
the red block were collected as 
attention data, and the epochs in 
the green block were collected 
as relaxation data for further 
analysis
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local maxima and minima. Meeting these conditions, IMFs 
form an orthogonal basis for the original signal. Due to its 
simple oscillation, the definition guarantees the HT of IMF 
has well behavior to analyze the instantaneous frequency. 
The sifting process of EMD should be repeated as many 
times as necessary to convert the extracted signal into an 
IMF. Thus, a signal, x(t) , can be represented as

where ci(t) and rn(t) are the ith IMF and the residue, respec-
tively [14, 27]. Each raw EEG epoch in this study was 
decomposed into 8 IMFs and a residue, the number of which 
was determined by the sample length and stopping criteria 
of the sifting process.

After the EMD process, the HT of the ith IMF can be 
calculated as [29] 

where P is the Cauchy principal value. By arranging ci(t) 
and yi(t) into a complex pair, an analytic signal zi(t) can be 
formed as

(1)x(t) =

n
∑

i=1

ci(t) + rn(t),

(2)yi(t) =
1

�
P

∞

∫
−∞

ci(t)

t − �
d�,

(3)zi(t) = ai(t)e
j�i(t) = ci(t) + jyi(t),

where ai(t) is defined as the instantaneous amplitude, and 
�i(t) is defined as the instantaneous phase. Hence all HT 
of IMFs constitute the HHT spectrum H(�, t) of the whole 
signal x(t) , presenting time–frequency-energy information 
as a 3D spectrum:

where �i(t) is defined as the instantaneous angular frequency 
d�i(t)∕dt , and the residue rn(t) is omitted. Finally, the MS, 
representing the accumulated energy over the entire data 
span from the contribution of each frequency value, can be 
defined as:

Moreover, SE was further used to measure the quantities 
of signal disorder in the frequency domain [30], and SE can 
be evaluated by the normalized powers of frequencies:

where ĥ(f ) = h(f )
∑

h(f )
 is the normalized frequency component, 

and m is the number of frequency components. The normal-
ized entropy values were between 0 (complete regularity) 
and 1 (maximum irregularity), showing the concentration of 
frequency distribution [31].

2.3 � Feature Selection and Support Vector Machine

Having extracted the frequency-specific power from HHT 
and computed the SE, we employed the linear forward selec-
tion method to reduce the number of attributes that enter 
SVM.

The SVM was developed from statistical learning theory 
to analyze a data set for the classification of multi-classes 
[32, 33]. A data set is trained to acquire a mathematical 
model, which is used to discriminate a testing data set. For 
binary classification, an SVM model constructs a hyperplane 
that optimally separates data sets into one of two classes, and 
the distance from the hyperplane to the nearest data points 
on each side is maximized.

Assuming the testing data set is linearly separable, a 
general form of hyperplane can be defined by �T

� + b = 0 , 
where � is the normal vector to the hyperplane, and b is 
the bias term, and a classifier, d = sgn(�T

� + b) , can be 
selected. For each data point �i , the following equation must 
be satisfied:

(4)H(�, t) = HHT{x(t)} =

n
∑

i=1

ai(t)e
j ∫ �i(t)dt,

(5)h(�) =
T

∫
0

H(�, t)dt.

(6)SE = −

∑

f (ĥ(f ) log2 ĥ(f ))

log2 m
,

(7)di(�
T
�i + b) ≥ 1, for 1 ≤ i ≤ n.

Fig. 2   The flowchart of the proposed method. The EEG data were 
treated with Hilbert–Huang analysis to obtain the time–frequency 
information. The extracted features were the input of the support vec-
tor machine to build a proper classifier for attentiveness recognition
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� and b are then optimized to set an optimal separating 
hyperplane, and the margin between the two classes is maxi-
mized [32].

If the testing data set is not linearly separable, slack vari-
ables �i are introduced to measure the degree of misclassifi-
cation, and the primal problem is modified to [33] 

where C is the regularization parameter, which controls the 
punishment for misclassified data points and �(�i) maps �i 
into a higher dimensional space to make the separation in 
that space easier. To reduce the computational load, the Rep-
resenter Theorem [34] shows that � with large dimension-
ality can be written as a linear combination of the training 
data, � =

∑

�idi�(�i) . Therefore, we can optimize �i instead 
of � , and the decision function becomes

where K
(

�i, �
)

= �(�i)
T
�(�) is the kernel function. The 

new dual problem is modified to [35]:

In this study, a Gaussian radial basis function (RBF) ker-
nel, K(�, ��) = exp(−�� − �

�2) , was used. Both C and γ are 
carefully chosen to obtain optimal results.

A typical procedure of LIBSVM [33] involves several 
steps: (1) the input of attributes of a data set with pre-clas-
sified indices, (2) training the data to build a model, and (3) 
predicting the classification or information of a test data set 

(8)

minimize ∶ �
2∕2 + C

∑

�i

subject to ∶ di
(

�
T
�(�i) + b

)

≥ 1 − �i, for 1 ≤ i ≤ n,

(9)f (�) =
∑

�idiK
(

�i, �
)

+ b,

(10)

maximize ∶
∑

i

�i − 1∕2 ×
∑

jk

�j�kdjdkK
(

�j, �k
)

subject to ∶ 0 ≤ �i ≤ C, and
∑

i

�idi = 0.

from the model. In the c-support vector classification in this 
study, the attribute vectors of attention epochs were labeled 
as class 1 in advance, while those of relaxed epochs were 
labeled as class − 1. These attribute vectors with two-task 
labels comprised an input matrix for SVM training. After 
building the models, the classification of new epochs can be 
predicted using these models.

3 � Results and Discussion

Figure 3 presents the full HHT 3D spectrum of the signal 
in Fig. 1, providing the time–frequency–energy distribu-
tion of the continuous data. In this trial, one of the partici-
pants paid attention for 300 s and then relaxed for another 
300 s. The high energy located in a low-frequency band 
may include artifacts such as blinks. It is noted that the 
energy of high frequencies in the red block is statistically 
more significant than those in the green block, indicating 
that the alpha and beta waves are indeed different in atten-
tion/inattention tasks (T = 4.4049, p < 0.05).

The raw signals and their IMFs of an attention epoch 
and a relaxation epoch are presented in Fig. 4a, b, respec-
tively. 8 IMFs and a residual trend of the epoch were 
extracted by EMD. After performing the Hilbert transform, 
we found that IMF2, IMF3, IMF4, and IMF5 contained the 
power within the desired frequency range (8–30 Hz) while 
the IMF1, IMF6–8 contained statistically no power in the 
frequencies of interest (p < 0.05). The marginal spectrum 
of an IMF presents the time integration of its 3D spectrum 
and describes the distribution of power contained in the 
IMF as a function of frequency. Figure 5 shows the mar-
ginal spectra of IMF2 to IMF5, which were used to derive 
the features of frequency.

Table 1 lists the attention assessment results using dif-
ferent attribute vectors of the representative participant. 

Fig. 3   The HHT spectrum of 
the representative participant 
while conducting two tasks. The 
colorbar shows the magnitude 
of the energy distribution. The 
conducted task was switched 
at the 300th second. The time–
frequency-energy information 
of attentive and relaxed tasks 
are illustrated in red and green 
blocks, respectively
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Fig. 4   a IMFs of an EEG epoch when the representative participant was paying attention to solve a puzzle. b IMFs of an EEG epoch when the 
representative participant had been instructed to relax and take a rest

Fig. 5   Marginal spectra of 
IMF2–5 when the representative 
participant was a paying atten-
tion and b taking a rest
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Regarding the impact of attributes on the accuracy, the 
features comprising of � and � powers estimated from 
{IMF2 to IMF5 and SE} #6 obtained the best classifica-
tion result with the accuracy of 93.25%. Figure 6 presents 
an exemplary SVM parameter selection using attribute #6. 

The best set of C and � were chosen for building the SVM 
predictive model according to the scanning contour of the 
accuracy rate. Frequency-specific power attributes of the 
original EEG signal, { �-original, �-original} #1, resulted 
in 85.25% accuracy, suggesting an essential role in reflect-
ing the attentiveness. The result that {SE} #4 feature alone 
could obtain the prediction accuracy of 86.25% suggested 
that the nonlinear characteristics of brain dynamics were 
important indicators of the mental states. Table 1 also 
indicates that using more features as the attributes did not 
help to obtain better accuracy. The result of the feature 
selection of machine learning further confirmed that IMF1 
and IMF6–IMF8 were not important features for classifica-
tion. In other words, the most important EEG features that 
can reflect the state of attentiveness in this study were the 
attributes #6: α-IMF2, α-IMF3, α-IMF4, α-IMF5, β-IMF2, 
β-IMF3, β-IMF4, β-IMF5, α-SE, and β-SE.

Having established the individualized predictive models 
of SVM, we tested the predictive model to classify the atten-
tiveness state of each participant, as listed in Table 2. The 
mean self-accuracy of 84.80% with tenfold cross-validation 
shows that the selected features can offer efficient differen-
tiation for the assessment of attentiveness. To validate the 
individualized models that we built, additional 50 attention 
and 50 relaxation epochs of each participant were treated 
as the independent test data. As listed in Table 3, the model 
predictions of the training data and the test data are in good 
agreement. 

Table 1   The impact of different attribute vectors on the accuracy of 
SVM models of a representative participant

# Attributes Accuracy (%)

1 α-original, β-original 85.25
2 α-IMF4, β-IMF4 82.00
3 α-IMF2, α-IMF3, α-IMF4, α-IMF5,

β-IMF2, β-IMF3, β-IMF4, β-IMF5
88.00

4 α-SE, β-SE 86.25
5 α-original, β-original, α-SE, β-SE 87.50
6 α-IMF2, α-IMF3, α-IMF4, α-IMF5,

β-IMF2, β-IMF3, β-IMF4, β-IMF5,
α-SE, β-SE

93.25

7 α-IMF1, α-IMF2, α-IMF3, α-IMF4, α-IMF5,
β-IMF1, β-IMF2, β-IMF3, β-IMF4, β-IMF5,
α-SE, β-SE

91.25

8 α-IMF2, α-IMF3, α-IMF4, α-IMF5, α-IMF6,
β-IMF2, β-IMF3, β-IMF4, β-IMF5, β-IMF6,
α-SE, β-SE

91.75

9 α-IMF1, α-IMF2, α-IMF3, α-IMF4, α-IMF5, 
α-IMF6,

β-IMF1, β-IMF2, β-IMF3, β-IMF4, β-IMF5, 
β-IMF6,

α-SE, β-SE

91.75

10 α-IMF1, α-IMF2, α-IMF3, α-IMF4, α-IMF5, 
α-IMF6, α-IMF7, α-IMF8,

β-IMF1, β-IMF2, β-IMF3, β-IMF4, β-IMF5, 
β-IMF6, β-IMF7, β-IMF8,

α-SE, β-SE

91.75

Fig. 6   The contour plot of SVM parameter selection using attribute 
#6

Table 2   The accuracy of SVM 
models of 20 participants using 
attributes #6

Participant Accuracy (%)

1 77.75
2 86.75
3 81.00
4 85.50
5 89.75
6 77.25
7 77.00
8 93.50
9 89.75
10 81.25
11 81.50
12 84.00
13 83.25
14 88.25
15 89.00
16 72.25
17 90.25
18 82.00
19 93.25
20 92.75
Average 84.80
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To compare with the proposed method that generated 
the time–frequency-domain and nonlinear features, we 
also implemented two analytic methods: the approximate 
entropy (ApEn) of original EEG signals as a time-domain 
and nonlinear feature, and the power spectral density of 
original EEG signals estimated by fast Fourier transform 
(FFT) as a frequency-domain and linear feature. These 
features were then respectively input into SVM as the 
attributes to build the predictive models for comparison. 

Figure 7 presents the boxplots of the above three methods, 
and the one-way ANOVA indicates the statistically sig-
nificant differences in their results (p < 0.01). The SVM 
model of ApEn had a mean accuracy of 73.94% with the 
smallest standard deviation compared to the others. The 
SVM model of FFT had a mean accuracy of 77.80%; how-
ever, its large standard deviation pointed out that there was 
considerable between-subject variability in FFT features. 
According to the results, the proposed method of SVM 
combining with HHT can best discriminate between atten-
tive and relaxed states.

Moreover, in this method, we used one-channel data to 
build the predictive models and yielded good accuracy up 
to 93.50%, with an average accuracy of twenty participants 
being 84.80%. EEG recording using more channels may 
help improve the system; nevertheless, the single-channel 
EEG monitor is inexpensive, convenient and portable for 
the publics. Compared with the similar studies for atten-
tiveness recognition including FFT + SVM [6] (the highest 
accuracy of 76.82% and the average accuracy of 75.87%) 
and HHT + ELM [21] (the highest accuracy of 85.50% 
and the average accuracy of 72.10%), our method has 
better performance (the highest accuracy of 93.50% and 
the average accuracy of 84.80%). Our results suggest that 
using nonlinear HHT method instead of FFT and selecting 
appropriate features can improve the accuracy in attention 
recognition. We believe that this convenient method has 
the potential to be used in clinical settings for the detec-
tion of attention deficit hyperactivity disorder (ADHD), or 
even be a therapeutic tool as part of a biofeedback training 
system for people who have difficulty in paying attention.

4 � Conclusion

A method of feature extraction and characterization of 
EEG signals using HHT frequency analysis and SVM has 
been presented. Raw EEG data have been analyzed by 
HHT to obtain marginal spectra for nonlinear and nonsta-
tionary frequency information. The α and β band powers 
of IMF2–5 and their SEs were selected as the attributes of 
SVM to obtain the mean accuracy of 84.80%. We conclude 
that the proposed method can offer efficient differentiation 
for the assessment of attentiveness, showing promise in 
applications of attention deficit detection or biofeedback 
training.
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Table 3   The accuracy of 
predictions with independent 
test data

Participant Accuracy (%)

1 82.00
2 91.00
3 92.00
4 66.00
5 89.00
6 76.00
7 73.00
8 92.00
9 89.00
10 76.00
11 78.00
12 80.00
13 79.00
14 91.00
15 96.00
16 77.00
17 86.00
18 82.00
19 92.00
20 91.00
Average 83.90

Fig. 7   The boxplots of the accuracy of SVM models using HHT mar-
ginal power density, approximate entropy, and Fourier power density 
as the attributes
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