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Abstract Efficient mobility is a key aspect for the future
smart cities. The real added value for smart cities is the
real-time optimization of vehicular and public transporta-
tion flows to reduce traffic congestions, costs, and emissions.
Observing constantly the behaviour of peoplemoving around
the city can help policymakers to act promptly and to fix con-
gested flows dynamically. In this paper, we describe from a
technical point-of-view an original use of big data (coming
from the cellular network of the Vodafone Italy Telco opera-
tor) to compute mobility patterns for smart cities. The paper
also discusses five innovative mobility patterns that describe
different mobility scenarios of the city, starting from how
peoplemove around point-of-interests of the city in real time.
The mobility patterns have been experimentally validated in
a real industrial setting and for the Milan metropolitan city.
The study conducted confirmed the quality of the patterns and
their importance in smart cities, by showing how cell phone
big data can complete other sources of people information.
These mobility patterns can be exploited by policy makers to
improve the mobility in a city, or by Navigation Systems and
Journey Planners to provide final users with accurate travel
plans.
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1 Introduction

Efficient mobility is a key aspect for the future smart cities.
The real added value for smart cities is the real-time optimiza-
tion of vehicular and public transportation flows to reduce
traffic congestions, costs, and emissions. Big data coming
from heterogeneous sources are the basis to build an ecosys-
tem of services that exposes aggregated and elaborated data
with a lot of semantics.

In the literature, the active and passive approaches are the
two main ways to collect and expose data: active approaches
require ad hoc infrastructure to collect data, while passive
approaches exploit existing solutions and infrastructure to
collect data passively. For instance, traditional approaches
to compute real-time vehicular traffic situations are based
on dedicated infrastructures, such as road sensors, inductive
loops, closed-circuit televisions (CCTVs), and emergency
calls to actively collect data that are elaborated to provide
final users with traffic estimations. However, these solu-
tions are expensive and invasive for the habitat. Alternatively,
more modern approaches try to exploit passively alternative
sources of data, such as social network discussions, GPS
data, and cellular network data (i.e. data exchanged between
antennas and mobile devices) to compute traffic estimations
[22,23].While approaches based on social networks andGPS
data are quite limited in practice (for example, due to the reli-
ability of social discussions or the limited availability of data
points collected from GPS sources), cellular network data
are pervasive and always available [12–14,19].

In this paper, we focus on the use of an innovative pas-
sive approach where 3G signalling is silently collected from
the Vodafone Italy (VI) cellular network. In this scenario,
mobile users become an alternative source of data to predict-
ing vehicular traffic situations and also to estimatingmobility
patterns of human mobility. This work is part of a bigger
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European project called SUPERHUB (https://ec.europa.eu),
where also GPS and social networks data are used to derive
mobility scenarios.

Mobility patterns describe the behaviour of individual cit-
izens in living the city and in affecting the behaviour of other
people [1–4,10,15,17]. In this paper, we discuss new algo-
rithms to collect and elaborate in real time the big data coming
from the VI cellular network to compute mobility patterns.
These patterns describe different mobility scenarios of the
city, starting fromhowpeoplemove around point-of-interests
of the city, howpeople affect traffic and speed profiles of each
road of the city, how people commute from the outskirt to the
city centre and vice-versa, how people use the subway lines
of the city, and how much subway stations are crowded.

The output of the mobility patterns will then be used, for
example, by Navigation Systems and Journey Planners to
compute the best routes based on real-time traffic and speed
profile information, and also by Policy Makers and Policy
Simulators for urban planning and to enforce some policies
based on traffic data and mobility patterns discovered at run-
time, such as to adapt at runtime the frequency of public
transports, the timing of traffic lights, or the dimension of
congestion-charge areas (C-Areas). The different algorithms
and mobility patterns implemented have been experimented
in the real industrial setting of VI (i.e. in the production
network infrastructure of VI), by using the hundreds of thou-
sands of real mobile users of VI, by elaborating hundreds of
Giga Bytes of data at real time (anonymized for privacy and
security reasons) and for the big city of Milan.

The paper is structured as follows: Sect. 2 introduces
the related work in the field and discusses critically the
main differences with our approach. Section 3 discusses
the technicalities to compute the statistical models that are
at the basis for the mobility patterns described in Sects. 4
(vehicular traffic), 5 (speed profile), 6 (Origin/Destination
matrixes), 7 (point-of-interest people flows), and 8 (subway
people flows). Section 9 reports on Threats to Validity of this
work. We conclude in Sect. 10.

2 Related work

In this section, we introduce the research work available in
the area of Floating Car Data, which is at the basis of the
scenarios presented in this paper.

Floating Car Data (FCD) is a recent research area that
investigates on how to exploit signalling coming from
different electronic devices (for example, mobile phones,
electronic tool collection systems, and GPS-based receivers)
active in private vehicles, in order to derive behavioural
mobility patterns (i.e. vehicular speed, directions of travel,
travel times, traffic info) in one or more points of the city
[11–13,15,16].

A first differentiation on the FCD techniques can be
done between active and passive monitoring systems. In
active monitoring, additional signalling traffic procedures
are defined and then gathered from the devices at runtime
to derive users’ location and position. In passive monitoring,
the already available signalling information are silently col-
lected, without impact on the network load, and then properly
elaborated to derive users’ position.

Another differentiation of the FCD techniques can be done
between Floating Cellular Network Data (FCND) and Float-
ing GPS Data. In FCND, every switched-on mobile phone
(2G, 3G, 4G) becomes a traffic probe and becomes an anony-
mous source of information that can be used to determine
behavioural mobility patterns by elaborating the position of
each mobile equipment (for example, by using triangulation
or algorithms that aggregate low-level events coming from
the network such as handover, location updates, cell updates,
and calls set-up) [19].

Alternatively, in Floating GPSData, GPS user positioning
information is used to derive road traffic data [23–25].

While GPS is more accurate than Cell Net Data, FCND
becomes more accurate than GPS in real conditions where
GPS data are available less than 10% of the time. Moreover,
mobile phones continuously report location events to the cel-
lular infrastructure, thus this type of signalling has no impact
on the performance of the mobile phone (for example, bat-
tery consumption) as in the case of activating GPS tracking
systems.

Regarding Floating Cellular Network studies, the CAPI-
TALproject (Cellular Applied to ITSTracking andLocation)
[26] was the first project that exploited mobile phones as
traffic probes. Mobile phones were used to estimate roughly
traffic conditions limited to eight cellular towers. In our PAPT
approach (Passive Approach for Predicting Traffic), we for-
mally and experimentally validate the derived models, and
we do not limit the scope of the approach to a small number
of cells (for example, as for the Milan area 1900 cells are
covered.)

The European STRIP project [21] aims at computing
travel-time estimates from GSM signalling messages. The
feasibility of the approach has been recently experimented
on the French Rhone corridor network, showing good esti-
mations if compared to the data collected by the detectors. In
PAPT,we use both 2G and 3G interfaces to improve the accu-
racy of the estimation and we compute the traffic estimations
on the granularity of small areas—instead of roads—(i.e. the
city is split into 1200 areas).

More recent papers has been published by Calabrese et al.
[17,18]. In [17], they describe the use of the Enhanced Cell-
ID with Timing Advance (TA) algorithm to localize mobile
phones and to compute behavioural mobility patterns of the
monitored users in Rome. In our approach, we use differ-
ent cellular network data (probed by the A 2G and Iu-CS
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3G interfaces) to predict traffic situations in order to over-
come the limits of solutions based on TA algorithms (i.e. the
high cost of the probes, and the impact of the localization
errors introduced by the TA in urban areas where cells are
small). In [18], the authors show a visual representation of
Origin/Destination flows to optimize Public Transport. This
work is very recent (2016) and in line with the scenario and
definitions we described in 2014 in the SUPERHUB Euro-
pean project (https://ec.europa.eu).

In [14], an empirical evidence is provided to describe
the strong relation between road traffic and 3G signalling,
but the paper leaves as future work the implementation of
an algorithm that considers jointly: changes in the location
updates, increases in the number of call and SMSs, and sud-
den changes in the number of users in a cell, in order to
predict traffic anomalies.

3 The phases of the PAPT approach

Our approach to estimate all the presented scenarios starts
from the passive analysis (i.e. network signalling is silently
collected from theVI infrastructure) of cellular network data.
It is called PAPT: Passive Approach for Predicting Traffic.
PAPT starts from the assumption that statistical models can
describe the correlations between real traffic situations and
cellular network events collected by the probes. With this
assumption,we canuse thesemodels to define all themobility
scenarios presented in the following sections. Hence, it is
important to understand themain phases that compose PAPT,
starting from the statistical models detection to the use of the
models with real-life data.

The PAPT approach is based on four main phases, start-
ing from (1) the detection of correlations and the definition
of statistical models for the two sources of data: cellular net-
work data collected by the VI probes, and traffic situations
collected by other external sources such as feed rss, Google
traffic, or manual sampling, (2) the real-time collection of
VI cellular network data, (3) the execution of the statistical
models against the real-time data collected by the probes to
predict the current traffic situation, and finally (4) the com-
putation and graphical representation of a set of indicators
that describe the current traffic situation.

Figure 1 summarizes the phases of the approach, high-
lighting the phases that occur offline or online.

3.1 Phase 1: deriving statistical models

In this first phase, historical data, which are collected by the
probes and stored in a dedicated database (DB), are corre-
lated with other sources of traffic (such as feed rss, Google
traffic, social GPS navigation system, Waze (www.waze.
com), and manual sampling of the traffic in target points

Fig. 1 Phases of the PAPT approach

of the city). These correlations are modelled by means of
Regression functions that try to model relationships between
dependent variables Y (in our case, the data collected by the
other sources of real traffic) and independent variables X (in
our case, the data collected by the VI probes). After deriving
such models, if an additional value of X is detected (in our
case, the data collected at runtime by the probes), it is pos-
sible to predict the future value of y (in our case, the actual
status of traffic) without having the actual observation of y.

PAPT exploits both Linear regression and also Logistic
Regression in case of univariate independent variable X and
also in case of multivariate X .

In general, Linear regression produces the slope of a line
that best fits a single set of data. For instance, suppose you are
interested in projecting the appropriate price for a house in a
target area, based on square footage. Using a linear regres-
sion formula, you can estimate a price, based on a database of
information gathered from existing houses. Logistic regres-
sion produces an exponential curve that best fits a set of data
that you suspect does not change linearly. Multiple regres-
sion is the analysis of more than one set of data (for the
independent variable X ), which often produces a more real-
istic projection. In this case, you can perform both linear
and exponential multiple regression analyses. Taking the
previous example, the appropriate price for a house can be
projected focusing not only on square footage, but also on
number of bathrooms, age, etc. Using a multiple regression
formula, you candescribe relationships between the price and
all the characteristics of the house. Focusing on our scenario,
take as example these data:

In Table 1, Column<Y : traffic_Indexes> lists the indexes
of traffic that are observed for a specific area in a specific
timeslot by analysing the data coming from the external
sources of traffic. The indexes follow the four traffic cate-
gories we identified (i.e. 1= free flow, 2=high, 3=congested,
4= impossible) in compliance with the definitions available
in DATEXII [www.datex2.eu].
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Table 1 Example of correlating data

Y : traffic_Indexes X1: #ofLocation_
Update_Reqs

X2: #ofHandover

1 10 4

1 12 3

2 25 7

4 160 23

4 210 21

– – –

Column<X1: #ofLocation_update_Reqs> lists the num-
ber of Location Update Request events that are registered by
the probes for a specific area in a specific timeslot. Column
<X2: #ofHandover> lists the number of Handover (i.e. the
event when an in progress phone call is redirected from its
current cell to a new cell) events that are registered by the
probes for a specific area in a specific timeslot. In this exam-
ple, it is clear that a linear relation between the dependent
variable Y and the independent variable X1 exists: when the
number of Location Update Requests grows, the traffic index
increases accordingly. It is also obvious that a multivariate
analysis suggests a linear relation between Y and<X1,X2>.
Of course, to havemodels that are statistically significant, we
need a data set of hundreds of observations. In case of lin-
ear univariate regression, we are interested in computing the
following equation:

Formula 1: f (x) = m ∗ x + b
where f (x) is the dependent variable as function of the inde-
pendent variable x ;m is a coefficient for x , and b is a constant.
m is computed as:

Formula 2: m =
∑

(x−x̄)(y−ȳ)
∑

(x−x̄)2

In case of linear multivariate regression, we are interested
in computing the following equation:

Formula 3: f (x) = m1∗ x1+m2∗ x2+· · ·+mi ∗ xi +b
where f (x) is the dependent variable as function of the inde-
pendent variables xi ; mi are the coefficients for xi , and b is
a constant.

The statistics related to the regression we are interested in
are the following:

• Seb: standard error values for the constant b;
• Sey: standard error value for y;
• Sem: standard error values for coefficient m;
• R2: coefficient of determination. It describes the correla-

tion degree between y and x . If the data set has a perfect
correlation R2 = 1. In the worst case R2 = 0;

• Df: degrees of freedom;
• F and t tests: F and t tests verify whether the relation-

ships between y and x are random relations. For example,
with a p value=0.05 and Df=6, the critical level of F is

Fig. 2 Time-event diagrams and associated traffic indexes

F = 4.53. If the computed value of F is greater than its
critical level, the correlation is not a random correlation.
The same happens with the t test (with different values);

• Ssreg: regression sum of squares;
• Ssresid: residual sum of squares.

The output of this phase is firstly a set of significant models
(i.e. a set of matrixes) that describe the correlation computed
by the regressions for a meaningful sample of cells for the
VI network, and secondly a set of time-event diagrams that
describe the historical number of network events for each VI
cell (i.e. area of the city) and in a specific time-window (for
example, in the week), as shown in Fig. 1.

Time-event diagrams (see Fig. 2) are computed by the sta-
tistical tool “R” [8] by averaging the historical observations
collected by the probes. Correlation data and time-event dia-
grams are mapped to provide the four levels of traffic (“free
flow”, “heavy”, “congested”, and “impossible”) as shown in
Fig. 1.

3.2 Phase 2: elaborating VI cell net data

In this second phase, real-time VI cellular network data are
gathered by the installed probes (deployed around the VI
Network on MSSs to monitor Iu-CS RANAP and GSM-A
BSSAP traffic), elaborated (i.e. data are compressed, aggre-
gated and anonymized) by the TAMS Server, and then stored
in a dedicated VI server (called Floating Car Data Platform),
as depicted in Fig. 4.

The output of the TAMS server is a set of files in .csv
format that contains the following network information:

• Timestamp: the elapsed time since 01/01/1970 expressed
in seconds;

• Transaction type: the event gathered by the network. The
following events are monitored: CM Service Request,
Common ID, Paging Response, Location Updating
Request, LocationUpdatingAccept, TMSI Reallocation,
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Location Report, Relocation Command (temporary),
Location Report, Handover;

• LAC: the Location Area Code;
• SAC or CI Identifier: the Service Area Code or the Cell
Identifier;

• O-IMSI: the International Mobile Subscriber Identity
obfuscated by mean of hashing mechanisms;

• 2G/3G Indicator: UTRAN / GERAN indicator to disam-
biguate from data coming from the A interface to data
coming from the Iu-CS interface.

The records are structured as in the following example:
1297868695,3,51504,6360,3E6AF3303D865D23,1
The records managed by the TAMS server and stored in

the Floating Car Data Platform are elaborated to filter all the
cellular events that are not relevant for computing vehicular
traffic predictions. To this end, we act in two ways:

1. Detect the mobility modalities associated with each
tracked mobile equipment, and filter all the network
events that refer to mobile users, which probably are still
or are moving on foot or by bike. To do this, we imple-
mented an algorithm that computes at real time the speed
of each mobile user between the centroid of the cell with
respect to its previous one. Velocity tags are then set and
all the tags with current speed <15 are discarded;

2. Detect and filter ping-pong hops (and network anomalies
such as too fast movement between adjacent cells) from
the sequence of cells traversed by a target mobile equip-
ment. A ping-pong hop occurs when, given two cells Ca
and Cb, a mobile equipment moves from Ca to Cb and
back to Ca within an adaptive time-window. For space
reason,we do not describe in detail the defined and imple-
mented algorithm.

When all the network events are filtered, the numbers of
aggregated events are used to train the statistical models and
forecast the current traffic situation.

3.3 Phase 3: exercising statistical models

The correlations detected during Phase 1 are trained with
the current number of events to detect the associated level
of traffic. Hence, the current number of events is seen as an
additional value of X that is used to predict the future value
of y (i.e. the actual real-time status of traffic) without having
the actual observation of y. For each cell Ci of the VI net-
work, the associated time-event diagram is retrieved from the
Floating Car Data Platform and the current number of events
is compared with the time-event diagram. For example, if we
take as target timeframeMonday 3:00PM and the number of

computed real-time events is in line with the curve of Fig. 2,
the correlated level of traffic is equal to “congested”.

3.4 Phase 4: predicting traffic situations

In the last phase, the maps with traffic situations are gener-
ated. To this end, three layers are merged: the target map of
the city, the topology of the cells for the VI network, and
the layer that describes the traffic index computed at runtime
for each cell. Because of traffic indexes can vary at runtime,
these maps are updated online, accordingly.

4 Vehicular traffic estimations

4.1 Overview of the scenario

Vehicular Traffic estimations from the VI cellular network
provide policy makers with real time and historical vehicular
traffic indicators for sub-areas of Milan [4] (see Fig. 3 for the
graphical output of our approach.)

As stated in Sect. 3, our new passive approach starts from
the assumption that statistical models can describe the cor-
relations between real traffic situations and cellular network
events collected by theVI probe. The probe sniffs in real time
the events (voice, data, SMS, etc.) generated by the A Inter-
face and IU-CS Interface of the 2G (GSM) and 3G (UMTS)
cellular network. It is important to notice that the adopted
probing infrastructure is primarily used for monitoring the
VI network quality; hence, this approach does not introduce
further costs for the telco operator from an infrastructural
point-of-view.

4.2 Technical aspects

In our work, we started by finding significant regression
models able to describe these correlations. We sampled six
different areas of Milan. The six areas have been selected
with the heterogeneity requirement in mind in order to apply
the methodology to different areas of the city with differ-
ent peculiarities (areas characterized by small streets, very
large roads, very congested areas, etc.)We used as dependent
variable X , the number of network events collected for one
hundred different sample data points. We started collecting
data points from 12/02/2013 to 29/04/2013 in different hours
of the day. The number of network events (#ofEvents) is com-
puted by considering all the transaction types of theVodafone
network, and with time granularity of 2mins (across the
timestamp of the invocation.) As for the independent variable
Y , we collected and used the data provided by the InfoBlu
source [www.infoblu.it]. InfoBlu is a service that provides
real-time traffic data for the most important roads of the Ital-
ian network.
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Fig. 3 Output of the vehicular traffic estimator service

Weapplied linear, loglog, andpolynomial regression func-
tions to the six case studies, using theOrdinary Least Squares
(OLS) regression [21]. We used the stringent 0.01 as the
statistical significance threshold, as is customarily done in
empirical studies. Therefore, all the reported models have
pvalue <0.01. The normality of the distribution of the resid-
uals, which is a statistical requirement for safely applying
OLS regression, was tested by means of the Fisher Test [5]:
consistentwith our statistical significance threshold, p-values
>0.01 do not allow the rejection of the normality hypothesis.

In this phase, we obtained several models and we selected
the most performing one (with a determination coefficient
R2 = 0.7229, while all the other models have a determina-
tion coefficient R2 < 0.5). If we denote by TrafficPrediction
the traffic index with a value ranging from 1=fluid to
6= impossible (following the values provided by InfoBlu)1

and by #ofNetEvents the total number of detected VI net-
work events (such as location updates, handovers, timsi
relocations), the obtained most statistically significant OLS
regression model (polynomial), which describes the correla-
tion between VI cell events and real traffic data for all the
areas of the city, is the following (the reader can find addi-
tional details on how coefficients are computed in our paper
[5].)

1 It is important to observe that the InfoBlu traffic scale (from 1 to 6)
must be normalized to our scale (from 1 to 4).

T ra f f icPredictionT hresholds = 2.3652 ∗ #of Net Events3

−18.522 ∗ #of Net Events2 + 78.896 ∗ #of Net Events (1)

The precision of the fitting is good. The regression sum
of squares is ssreg=41.28, the residual sum of squares
is ssresid=19.20 and the value of the standard error is
sev=0.57. The residuals are normally distributed (i.e. the
normality hypothesis cannot be rejected), because the Fisher
Test Value F (124.68) is greater than the critical value (7 in
case of 100 d f2), thus the null hypothesis H0 is refusedwith a
probability p < 0.01. The determination coefficient is good
(R2 = 0.7229) also. So, around 72% of the variability in the
degree of traffic prediction is explained by the total number
of network events collected by the probe.

This model can then be used to generate in real time the
map with vehicular traffic info of Fig. 3. The reader can find
additional details in [5].

The current implementation of the VI infrastructure,
which elaborates these data to estimate vehicular traffic infor-
mation, is depicted in Fig. 4. The figure highlights three main
sources of data: (1) The data coming from the probe and the
TAMS Server (Troubleshooting and Monitoring System) to
collect the data coming from the probe and to assemble it
in the correct format for transmitting it to the main infras-
tructure, where data are elaborated to derive the dynamic
distribution of the SIM cards in the area monitored by the
probes. From the TAMS Server, .csv files with the cellular
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Fig. 4 VI infrastructure for the
traffic estimation service

network data are pushed to the VI Floating Car Data Server;
(2) The data coming from the VI External Server fromwhich
the RAW_DATA DB receives the topological network of the
VI cells as shape .shp files; (3) The data coming from the
OpenStreetMap (OSM) Central Repository from which the
OSM_MILAN DB receives the OSM maps [9].

4.3 Experimental activities

We extensively experimented the Vehicular Traffic Estimator
in a real environment (i.e. the VI production environment),
with thousands of real VI mobile users, and in the crowded
city of Milan. The experimentation leads us the possibility to
test the infrastructure against millions of network events and
GBof data generated in fewminutes.With these experiments,
we were interested in collecting data to show whether the
detected regression model (Formula 1) and the estimations
coming from our approach are better than the estimations
provided by two of the major traffic info providers in Italy:
GoogleTraffic and InfoBlu, when compared against real traf-
fic situations.

To this end, we used the model of Formula 1 to eval-
uate in real scenarios whether—for a specific area of the
city—our estimations better approximate the traffic status
than the results provided by the two companies (they build
their estimations by using GPS traces.) In order to validate
the comparison, we conducted two experiments: the first one
for primary roads, and the second one for secondary roads
in Milan (for the used classification of roads see [9]). As for
the first experiment, we collected 68 real traffic situations
by means of the Autostrade.it web site (www.autostrade.it),
which provides real-time traffic situations computed by eval-
uating webcam frames and inductive loops data dislocated in
the most relevant area of Milan. In this way, we are able to
collect data points that are reliable. As for the second experi-
ment, we collected 40 traffic situations by observingwebcam
frames for a secondary Milan road and we use the observa-
tions as benchmark for our approach.

To evaluate the precision of our approach, we computed
the Standard Error (std.err) of each solution, by applying the
following equation:

STD.ERR.YX

=
√
√
√
√ 1

(n − 2)

[
∑

(y − y)2 −
[∑

(x − x)2 (y − y)2
]

∑
(x − x)2

]

As for the first experiment, our approach overestimates a lit-
tle bit the traffic status (the average of traffic indexes from
Autostrade.it is equal to 1.59, while the average from our
approach is 1.90) and the standard deviation of 0.87. Our
estimations are quite good with a std.err=0.58 (a little bit
greater than the std.err of GoogleTraffic and InfoBlu of 0.46
and 0.51, respectively). All the three approaches were able
to provide estimations for all the 68 observations (unavail-
ability=0%). This experiment clearly shows that for areas
where GoogleTraffic and InfoBlu can count on a lot of GPS
data (primary roads of the city), our approach is a little bit less
precise than the other two sources. However, as for the sec-
ond experiment (e.g. on a second experiment for a secondary
road of the Milan city: Viale Monza Street), our approach is
more precise if compared to InfoBlu and GoogleTraffic. In
this case, we use as source of real traffic situations, a webcam
[7] installed inVialeMonzaStreet (lat/long: 45.5172/9.2255)
to manually evaluate the traffic level. We collected 40 data
points spanned in 10 data-times. In this case, the estimations
of our approach are very good with a std.err equals to 0.35
(smaller than the std.err of GoogleTraffic of 0.64). InfoBlu
was not able to compute traffic predictions for any of the
40 observations, whileGoogleTraffic did not provide predic-
tions for 8 out of 40 observations (unavailability=20%), and
our approach just for 2 observations due to probe connec-
tivity problems (unavailability=5%). At the time of writing,
all connectivity problems are solved with an availability of
the service equals to 99.99%. Tables 2 and 3 summarize the
results of the experiments conducted in Milan.
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Table 2 Vehicular traffic:
excerpt of real traffic versus
PAPT estimations versus
InfoBlu and GoogleTraffic
(primary roads in Milan)

Timestamp Where (Lat/Long) Real traffic PAPT InfoBlu GoogleTraffic

120/05/2013 at 17.18 45.5158/9.1214 3.0 3.0 2.0 3.0

45.5351/9.1609 3.0 3.0 2.0 2.0

45.5023/9.1305 1.0 1.0 1.5 1.0

45.4282/9.2459 1.0 3.0 1.0 1.0

– – – – – –

Average 1.59 1.90 1.75 1.54

SD 0.83 0.87 0.66 0.68

SE − 0.58 0.51 0.46

Unavailability (%) 0 0 0 0

Table 3 Vehicular traffic:
excerpt of real traffic versus
PAPT Estimations versus
InfoBlu and GoogleTraffic
(secondary roads in Milan)

Timestamp Where (Lat/Long) Real traffic PAPT InfoBlu GoogleTraffic

10/06/2013 at 15.48 45.5172/9.2255 1.0 1.0 n.a. 2.0

– – – – – –

Average 1.34 1.28 n.a. 1.86

Std deviation 0.41 0.52 n.a. 0.96

Std error – 0.35 n.a. 0.64

Unavailability 0% 5% 100% 20%

Table 4 Speed reduction
coefficients for speed profile

Free (%) Heavy (%) Congested (%) Impossible (%)

Daytime

Residential/other 50.0 30.0 15.0 12.0

Tertiary/unclass 55.0 40.5 18.5 15.0

Secondary 60.0 50.0 20.5 15.5

Primary 70.0 55.5 25.2 15.5

Motorway 80.0 65.0 30.0 16.0

Night-time

Residential/other 60.0 30.0 16.0 12.0

Tertiary/unclass 75.0 40.5 18.7 15.0

Secondary 80.0 50.0 20.5 15.5

Primary 84.0 55.5 25.2 15.5

Motorway 88.0 65.0 30.0 16.0

5 Speed profile estimations

5.1 Overview of the scenario

SpeedProfile estimations from theVI cellular network expose
real time and historical average speeds for each Open-
StreetMap OSM edge (i.e. road) of Milan (more than 300k
edges covered).

The computation of SpeedProfile predictions starts from
the observation of the traffic situations (see Sect. 4 for more
details) computed from the VI cell net, from the maximum
speed limit of each edge (as reported by OSM tags), and also

from a set of coefficientswe defined toweigh eachOSMedge
in relation to the road type (as categorized by OSM tags) and
the time of the day. The estimated Speed can be calculated
as:

estimatedSpeed = maxRoadSpeed*coeff (2)

where 0 < coeff <=1 are calculated as detailed in Table 4.
Figure 6 shows a Milan area with related speeds and traffic
indications computed by the SpeedProfile service for each
OSM road segment.
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Fig. 5 VI Infrastructure for the
SpeedProfile service

5.2 Technical aspects

SpeedProfile estimations refer to OSM road segments, that
have been uploaded in a postgres/postgis DB, and that are
referred to the OSM origin and end-points identifiers of the
line representing the road segment. The OSM road segment
identifiers are used by all sources to merge different speed
predictions together. As a first step, we have to map the OSM
road segments with the VI cellular network areas so as to use
the traffic predictions during the speed profile calculation.
For this purpose, postgis functions have been used to iden-
tify the VI network cell or cells that contain and cover the
road segments. If a road segment is covered by more than
one network cell, the cell that covers the biggest area of the
road segment is the one associated with the road segment. A
registry table has been created to store this mapping.

SpeedProfile estimations from VI cellular network are
updated every 5 minutes by using the Postgres job schedul-
ing agent pgAgent. SpeedProfile estimations are recorded in
a dedicated VI database (see Fig. 5). The service can provide
a completely update picture of all the 300k road segments
with associated speed profiles.

The core of the algorithm is the way each OSM road type
is weighed by a specific coefficient (computed both theoreti-
cally and also empirically) to provide differentiated average
speeds for each road segment.

Table 4 summarizes the speed reduction coefficients for
the SpeedProfile. The speed reduction factors depend on
(1) the time period of the day: daytime or night-time; (2)
the OSM road type classification: residential, tertiary, sec-
ondary, primary,motorway; (3) the traffic indicator: free flow,
heavy, congested, impossible. The coefficients have been
computed following the speed reduction ranges provided by
DATEXII (http://www.datex2.eu), and they have been tuned
overtime following the results of our experimental activities
(see Sect. 3.3) Since these coefficients are an asset for VI,

Table 4 lists fake values that are not real ones used in the VI
production environment.

Taking into consideration themaximumallowed speed per
road types, which are stored into the OSM DB, can generate
a set of possible combinations of speeds.

The current infrastructure for the SpeedProfile estimations
from the VI cellular network implementation is illustrated in
Fig. 4. In the diagram, we can see the three input data flows
listed below:

1. From TAMS server, .csv files containing VI network
events are pushed into the VI server, stored in a 2TB
archive, and uploaded toRAW_DATADBvia the pgbulk-
load Postgres utility;

2. From VI external server, .shp files containing the VI net-
work cellular configuration are provided and uploaded
to the PostgreSQL/PostGIS Cellular Net data DB via the
pgbulkload and the shp2pgsql utilities;

3. OSMgeographical data extractions, includingMilanmap
and road segments, loaded in the local Postgres/postgis
OSMDB.Mobility Patterns and SpeedProfile DBs are in
the same PostgreSQL DB Cluster, on VI server.

5.3 Experimental activities

This section explains the number of experiments we con-
ducted in the VI production environment and with thousands
of real VI mobile users to validate the SpeedProfile compu-
tation both from functional and non-functional perspectives.

From a functional point-of-view, we focused on under-
standing the quality of the SpeedProfile estimation as output
of the designed algorithm and coefficients. From a non-
functional perspective, we were interested in understanding
whether the designed infrastructure is able to compute and
update all the 300k OSM edges of Milan in real time. To
this end, we set up the following real-world experiment: we
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Table 5 SpeedProfile estimations versus GPS real data

TRACK1
21/02/2014
8.46AM

TRACK2
06/03/2014
8.18AM

TRACK3
14/03/2014
11.42AM

TRACK4
21/03/2014
01.35PM

TRACK5
21/03/2014
11.36PM

TRACK6
31/03/2014
1.15PM

Algorithm version 1.0 Algorithm Version 2.0

GPS avg real speed (km/h) 18.2 26.0 42.5 22.0 59.8 29.6

SpeedProfile avg speed
(km/h)

20.7 30.0 52.4 29.8 59.6 30.4

GPS total time (min) 57.0 55.0 6.7 35.0 10.35 40.3

SpeedProfile tot time (min) 42.4 48.0 5.4 26.2 10.09 39.3

Diff. GPS speed versus
SpeedProfile speed (%)

+12.14 +13.45 +18.90 +26.18 −0.44 +2.53

asked VI colleagues to install the myTracks app for iPhone.
This app allows tracking and saving .gpx files containing all
the coordinates, lengths, real speeds, and elevations of a trip,
in the form:

We selected a set of 6 tracks collected in February/March
2014 and in different daytimes, for a total distance of
100kms. We then compared the real GPS data with our
SpeedProfile estimations to evaluate the percentage of error
of our solution against real GPS data. Please note that coeffi-
cients have been fine-tuned overtime (the last two tracks use
the current available coefficients.) As shown in Table 5, the
SpeedProfile predictions overestimate the average speed in
case of Track1, Track2, Track3, and Track4 (before the final
tune of the coefficients as used in the current version of the
algorithm V2.0.) In case of Track5 and Track6, the average
trip speeds and times are more or less equal to the real data
collected by the myTracks app. We are conducting extensive
experiments to understand the quality of the predictions with
additional journeys.

All the predictions have been computed in real time with
the current version of the infrastructure, thus suggesting that
the architectural and infrastructural choices wemade are able
to elaborate in real time the big data related to the Speed-
Profile. Currently, we have also a running instance of the
SpeedProfile service on a production environment, which
is updated constantly—every 5min—with the SpeedProfile
estimations from the VI cell net and then used by a journey
planner. The only problem experienced—and now solved—
was related to disc space usage.

6 Origin/destination matrixes

6.1 Overview of the scenario

The Origin/Destination Matrix Mobility Patterns from VI
cellular network describe the behaviour of people moving
from an area i to an area j of Milan [11]. The city has been
divided into several areas following the polygonalmap drawn
by the VI cellular network, for this purpose.

The two patterns provided for the O/D Matrix are the
Density and the Distribution Pattern. The Density Pattern
estimates the number of people moving from an origin area i
to a final destination area j ofMilan in one-hour time interval;
theDistribution Pattern returns the list of densities of people
moving from a Milan target area to a destination Milan area,
for a one-daytime interval.

The algorithm to infer O/D Matrix exploits the track-
ing of mobile users (anonymized) to study the O/D flows
of commuters and people in a city at real time. The algo-
rithm provides the ability to track and analyse incoming and
outcoming flows from the outskirts to the city centre and
vice-versa or it facilitates the identification of the most con-
gested roads in target hours of the day or of the week. For
instance, this can be useful to plan logistics movements of
hazardous goods.

The pattern provides a view of O/D matrixes with a
refresh time every 30mins. The tuple <i,j> for the origi-
nating cell and the destination cell is stored in a dedicated
DB, which contains the whole matrix of all possible com-
binations between origin and destination cells. Practically,
for Milan, the DB stores 3000 × 3000 combinations of
<i,j> cells. The diagonal of the matrix reports the num-
ber of mobile users that are considered by the algorithm
as stationary (i.e. the mobile users that do not change their
position in the last 5mins of elaboration.) The implementa-
tion of the algorithm is parametric against all the discussed
timeframes. Simplifying, the algorithm gets as inputs the fol-
lowing events:
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Fig. 6 Milan area showing the
real-time speeds computed by
the SpeedProfile service

Event t : O-IMSI, cellID O, Timestamp, A;
Event t + 1: O-IMSI, cellID D, Timestamp, A + x .
These two events describe themovement fromone point A

(contained into the Originating Cell<CellIDO>) to another
point A+x (contained into theDestinationCell<CellIDD>)

of a mobile phone described by its O-IMSI (i.e. an identifier
derived by the IMSI through a crypto- algorithm in order
to maintain the privacy of the mobile phone related to the
collected network events.) Generalizing the discussion to all
�T and to all cells of the network, the O/D matrixes are
defined as:

6.2 Technical aspects

The elaboration of the O/D Matrix Mobility Patterns refers
to the VI cellular network coverage areas and to one-hour
timeframe, or a day timeframe, depending on the pattern type.
The density estimations are scheduled at every hour of the
day, using the Postgres job scheduling agent pgAgent, and
recorded in the VI O/D Patterns DB.

The algorithm for elaborating the patterns makes use
of the VI cells coverage information, and the O/D Matrix
areas strictly depend on it. The algorithm computes the cel-
lular network signalling events collected by the VI probe,
sent by the TAMS server to the VI server and uploaded to
the RAW_DATA DB, corresponding to the cellular network
areas and to the related timeframe. The Patterns are com-

puted and then placed in the O/D Pattern DB and one-month
history is maintained.

The Distribution Pattern stores the list of the calculated
densities for the day and the related target and destination
areas. All the signalling events generated by VI mobile users
are read from the raw data table associated with the time
interval to be observed. A count of unique users that move
froman area i to an area j of theMilanmap is then performed.
The current VI infrastructure we set up for the O/D Matrix
Mobility Patterns is the one already illustrated and discussed
inFig. 5.Note that, as in the case of the other patterns, theO/D
MatrixMobility Patterns only apply toMilan city trial, as the
Mobility Patterns provided are built up based on traffic events
generated in the Vodafone Italy cellular network, collected
by the probe and transferred by the TAMS server to the VI
server (Fig. 6).

The raw data files are an input source to the Mobility Pat-
terns infrastructure, together with the cellular network input
files that provide theVodafone cellular coverage information,
needed to map the events to the areas of the city, accordingly.
These files are uploaded into the postgres databases using
the pgbulkload utility. Mobility Patterns are then valued and
stored in the related MobilityPatterns DB.

6.3 Experimental activities

Observations and extractions of the O/D Matrix flows Pat-
terns have been performed; no strong validations have been
performed for this algorithm, since the most updated census
data, related to Milan, are back to year 2006. Hence, here we
only show some graphical representations of the O/D matrix
data. In Fig. 7, a central area of Milan is highlighted together
with morning incoming flows during a one-hour observation
(green arrows), and outgoing flows from the same area (red
arrows), for an evening hour.Areaswith higher densities have
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Fig. 7 Incoming/outgoing flows (morning and evening)

Fig. 8 Milan area with most relevant commuters’ flows (morning)

been observed separately, as the complete picture of Milan
results in a very dense diversified and overlying O/D flows.
In Fig. 8, we show the most congested Origins and Desti-
nations of Milan. The picture refers to the day May 27th at
8.00AM and highlights the O/D trips and directions in this
rush hour, showing how commuters move in the morning.

Additional analysis can be further investigated by exploit-
ing the concepts introduced in the Spatial Interaction Model
approaches [20]. Heterogeneous areas of a city can be
grouped to determine a limited number of locations in geo-
graphical space and thus to observe specific behaviours and
specific phenomena that are subjected to dependency and
heterogeneity. For example, in the context of O/D matrixes,
policy makers can be interested in understanding if indigent
outskirts of the city have an impact on traffic congestions
more or less than other areas of the city, or to understand how
these areas use public transportations. Moreover, geographi-
cal and behavioural data can be enrichedwith third-party data
(e.g. census data) to create heterogeneous spatial profiles and
new scenarios of data elaboration.

It is important to highlight that the geometry of these
geographical spaces is fixed, because we use the network
topology of the Telco operator as starting point of movement
observations.

7 POI mobility study

7.1 Overview of the scenario

The point-of-interests (POIs) Mobility pattern estimates the
number of people stationing/moving around a set of tar-
get Milan POIs, in a certain time interval. The list of POIs
includes Milan architectural buildings, museums, theatres,
andmain railway stations.We selected eleven POIs ofMilan,
as working examples. In any case, this list can be updated
and extended with new POIs, by simply adding new POIs in
a dedicated .csv file.

The available types of POI Mobility Patterns are theDen-
sity POI Pattern and the Distribution POI Pattern, which
estimate the number of people situated nearby a POI in a
target time interval and also the daily distribution of densi-
ties of people in the POI areas, respectively. The densities
are related to one-hour time intervals. The densities are cal-
culated as soon as the data acquisition from the Vodafone
cellular network—for the target time interval—completes. It
has been decided to set the time interval for densities calcu-
lation to one-hour, but there is no restriction for providing
the patterns for smaller/bigger time intervals.

Figure 9 shows the selected POIs, their geo-locations in
the map of Milan, and an example of the real-time density of
each POI (proportionally to the bubbles dimension.)

For instance, we used the POI mobility pattern to observe
in real time the behaviour of people during big events, such
as how people reach stadium or arena for football matches
or concerts. This is important for policy makers to under-
stand how to avoid congestions in the city and how to act
on Public Transportation to rule people flow. As an example,
we observed the behaviour of people during the football big
matchMilan versus Barcelona (Championshipmatch 20 Feb.
2013—75.000 total spectators). Figure 10a shows a graphi-
cal representation about how people in the San Siro Stadium
interact with their smartphones. It is interesting to observe
that the graph shows four peaks (e.g. when the match started;
during the first opportunity of goal by Milan; at the first goal

Fig. 9 Milan POIs selected for the POI service
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Fig. 10 Champions big match,
San Siro Stadium—Milan
versus Barcelona

by Milan; at the second goal by Milan), thus indicating that
people strongly interact with their smartphones (for exam-
ple, to postphotographs of the stadium, andupdate their social
network profiles.).

Figure 10b shows the people flow when the match ended.
During the match, the people are exclusively in the stadium
(9.30PM—red area). At the end of the match, people start
exiting the stadium, thus overcrowding the areas around San
Siro (11.00PM). The overcrowded areas overtimemove away
from the stadium (11.15PM), and the overcrowded situation
around the stadium is completely free at 11.30PM.

7.2 Technical aspects

The infrastructure for the POIs pattern is the one depicted in
Fig. 5. The POIs basic information is saved in the POI Pattern
DB registry, where also network cells coverage information
is stored. The size of the geographical area covering the POI
is taken into consideration. Consequently, the number of peo-
ple observed in the area strictly depends on the VI cellular
network topology and on the layout of the cell or cells that
intersect with the geographical area covering the POI. Hence,
the first step to the definition of the POI Pattern is to create
the registry of the POIs. This can be done by the following

algorithm that (1) extracts from a .csv file all target POIs to
be considered, (2) creates the geometry for each POI, and (3)
relates each POI geometry with the VI cell/cells that cover
each POI.

The core of the POI Pattern is the algorithm to esti-
mate people densities around POIs. The algorithm takes in
input the raw data coming from the TAMS server to return
the total count of people moving around POIs. The algo-
rithm (1) extracts, for each POI, the cells that intersect with
the geographical area covering the POI; (2) counts the dis-
tinct Obfuscated-IMSI (O-IMSI) present in these cells in the
selected time interval; (3) updates the POI DB table with the
result of the count.

People densities are provided to external third-party
journey planners or policy makers after multiplying the cal-
culated values by a multiplication factor, which we derived
from the analysis of the 3Gpenetration and theVodafone Italy
market share, and by averaging these values with empirical
values collected during big events in the city. To this end, we
observed the ratio between cellular network distinct events
and the real number of people during football matches in the
San Siro Stadium. Averaging the 3G penetration, the “phone
on and with me” percentage as reported in [8] and the VI
market share, we obtained a multiplication factor equals to
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Fig. 11 Milan Assago Forum crowd estimations (May2014) 9.00PM)

11.9. The empirical part, with 26 data points and referring
only to VI primary cells, suggested a factor equals to 13.6.
The final average value we used to count people is: 12.7.
When considering also VI secondary and tertiary network
cells, the average value decreases to 9.5. We use this factor
to multiply the number of people detected by the algorithm
to have people count estimations close to the reality. This
coefficient is applied to all Mobility Patterns generated by
the VI cellular network.

7.3 Experimental activities

We validated the POI patterns calculated from real data
collected from the VI network by means of the k-fold cross-
validation technique [6] to understand the quality of our
people estimations. In k-fold cross-validation, our original
sample composed of 26 data points, is randomly partitioned
into k equal size subsamples. Of the k subsamples, a sin-
gle subsample is retained as the validation data for testing
the model, and the remaining k − 1 subsamples are used as
training data. The cross-validation process is then repeated k
times (the folds), with each of the k subsamples used exactly
once as the validation data. We created 5 folds (each with
5 randomly selected data points), and we used the Standard
Error SE (see Formula 3) to evaluate the quality of each fold
and the relative average quality of our people count (one out-
lier has been discarded in the analysis.) The k-fold average
SE is equal to 5489 and the relative RSE is 13,8%. Since the
RSE is less than 25%, the people count estimation can be
considered reliable enough for general adoption.

As for the confidence intervals for the mean of people
counted in this cross-validation experiment:

Upper 95% limit = 34.524 + (5489*1.96) = 45.282
Lower 95% limit = 34.524 − (5489*1.96) = 23.766

where 34.524 is the avg predicted value and 1.96 is the 0.975
quantile of the normal distribution. It can, therefore, be con-
sidered with 95% reliability that the true value of people
count is between 23.766 and 45.282. In this case, the avg
real count is: 39.769.

Moreover, we used new additional data points to validate
the estimations of the POI pattern. In Fig. 11, we compare
people count estimations in the area of the Milan Assago
Forum (May 2014 at 9.00PM). Data related to days 12th and
13th ofMay are not available due tomaintenance activities of
the VI infrastructure. Higher values correspond to concerts
or big events that took place at the Assago POI: the 6th and
7th of May Baglioni’s concert, the 10th of May Giorgia’s
concert, 16th and 18thof May Final for Basket Euroleague,
21th of May EA7 play-off basket.

Another observation (see Fig. 12) relates to theRadioItalia
live concert that took place on June 1st 2014 in the Milan
Cathedral area. In the figure, we can see a comparison of
crowd densities in the Milan Cathedral area on a day where a
very popular concert takes place, and days before and after,
where no event takes place. The density pattern calculated
for the area in the timeframe shows 91.000 people stationing
at around theMilan Cathedral. This estimation is in line with
the number of participants to the concerts, as reported by
the press article in the newspaper: Corriere.it (http://milano.
corriere.it).
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Fig. 12 Milan Cathedral crowd estimations (June 1st 2014, 9.00PM)

Summarizing, our approach estimated:

Event People count
(estimated)

People count
(real)

Relative error
(%)

Baglio ni’s
concert, May 6th

4000 Na Na

Baglio ni’s
concert, May 7th

5000 Na Na

Giorgi a’s concert,
May 10th

6000 Na Na

Eurole ague, May
16th, 18th

11000 12300 −10.0

EA7 Pl ay-off,
May 21st

5400 6700 −18.5

RadioI talia, June
1st

91000 100000 −9.0

Cyrus’ s concert,
June 8th

10500 10000 +5.0

Ligabu e’s concert,
June 6th

66600 65000 +2.5

EA7 versus Siena,
June 17th

11000 12100 −9.0

Pearl Jam concert,
June 20th

64000 62000 +3.0

AVG −5.1%

Both the k-fold cross-validation and the validation against
new big events in the city show the potentiality of the algo-
rithm. The k-fold RSE is equal to 13.8% (less than the
theoretical max threshold of 25%).Moreover, the real valida-
tion of the algorithm show an increase in precision compared
to the RSE: the average RE for the seven big events analysed
is equal to −5.1%, suggesting that the algorithm underesti-
mate in average a little bit.

8 Subway flows mobility study

8.1 Overview of the scenario

The Subway Flows Mobility Pattern aims at describing the
flows of people entering, moving through stations, and exit-
ing the subway network, in particular the three main lines
of the Milan subway network: the red (M1), the green (M2),
and the yellow one (M3).

The Subway Flows Pattern provides the journey planners
and Policy Frameworks with twomain patterns: The first one
returns real-time density situationswhere the estimated num-
ber of people in a subway station (or line) is computed by
observing the behaviour of VI mobile users in a five minutes
time-window; The second one returns historical distributions
of people where the estimated number of people is computed
for a one-day interval. See Fig. 13 for a graphical represen-
tation of the SubwayMobility Pattern output where numbers
are the real-time density of users (for each station) computed
by the pattern.

8.2 Technical aspects

To support the use of mobile phones in the Milan under-
ground, VI covered the indoor area of the threeMilan subway
lines with 2G/3G micro-cells. A single micro-cell, in the VI
subway network configuration, covers two, three or even four
adjacent subway stations. Hence, the cellular data events,
which are collected by the VI probes, are related to 3G
micro-cells that do not have a one-to-one relation with sub-
way stations. We denominate a cluster of stations the set
of subway stations covered by a unique micro-cell. This
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Fig. 13 Real-time density of Milan subway passengers

strongly complicates the models that we defined to describe
the density and distribution patterns with the single station
granularity.

Our definedmodels treat mathematically the subway lines
as Finite StateMachines (FSMs) where each station is a state
of the FSM. The connections between stations are modelled
as transitions from one state to the other one. Signalling
events generated by the VI cellular network have collected
and seen as weights for each transition. People flow enter-
ing and exiting subway stations is measured by coupling and
counting two events of the same user, in a very short time-
frame, related to a subway cluster. Actions of entering and
exiting subway stations are related to ground level cells that
cover each subway station entrance. To identify the cells that
cover subway entrances, and then be able to calculate peo-
ple entering and leaving the subway stations, we analysed a
one-day set of data, where we observed for very short time
intervals (two/three minutes), the users that move from a
network cell to a subway micro-cell, and vice-versa. Doing
so, we identify those cells covering stations entrances, and,
depending on the direction, we can derive if people are enter-
ing or leaving the stations.

Weights for the FSM transitions are determined by cou-
pling twoevents, in a very short timeframe, related to adjacent
subway clusters and to the same user identified by its O-
IMSI, where the direction is determined by the timestamp of
the generated event. In other words, each time two events for

the same user in a short time period and at adjacent clusters
are detected, a person moving from one station to another is
counted; by counting the number of these detections, the sys-
tem is able to calculate the weight for each station-to-station
transition of the FSM.

Themathematical model we derived is depicted in Fig. 14.
The model describes the case of subway clusters composed
of four subway stations (i.e. each VI micro-cell covers four
subway stations) but it is generalizable also in the case of
subway clusters composed of 2 or 3 stations.

Themathematical model can be defined based upon all the
events related to t0, t1 and t2, and then starting the calcu-
lation of people displacements. Timeslots have been defined
for this purpose, where t0 corresponds to the opening time
of the Milan subway stations, and subsequent intervals of
five minutes correspond to the successive timeslots, till the
time closure of the Milan subway, at the end of the day. We
can detect and sum up the events generated by the cellular
network, which are associated with a target subway clus-
ter, analysing the cell-id reported in the generated event. We
started considering the scenario at time t0, when subway
stations open: At time t0, we expect that only inputs (IN) to
stations (from subway physical station entrances) take place,
because of at t0, neither exits from the subway stations nor
displacement between adjacent stations can occur. At time
t1, we assume that people who entered the subway stations
at t0 start moving to the next station of the same cluster (or to
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Fig. 14 FSM representing a
cluster of four stations

another cluster), and that new inputs to stations (from station
entrances) occur. L , R,U , I identify inputs to the border sta-
tions of the cluster from adjacent stations that do not belong
to the same cluster. A cluster CL might have, or not, one
or two adjacent clusters, depending on the subway network
configuration. So L , R, U , I are optional inputs. Similarly,
M, S, T, H are optional outputs to adjacent stations in a subse-
quent cluster CL. A, B, D, E, F, G identify the displacements
(transitions) between adjacent stations in the cluster, and the
displacements between adjacent stations that belong to dif-
ferent clusters. At t1, outputs are considered as forbidden.
At time t2, we have people entering, exiting and moving
across the whole subway network. Displacements between
interchange stations are to be considered as IN/OUT of the
interchange stations involved. We can generalize the model
to an instant ti and we can mathematically describe each sta-
tion and cluster CL as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S1ti = S1ti−1 + SI Nti,1 − SOUT ti,1 − SI Nti−1,1 + SOUT ti+1,1

S2ti = S2ti−1 + SI Nti,2 − SOUT ti,2 + SI Nti−1,1 − SI Nti−1,2 + SI Nti−1,3 − SOUT ti+1,4 − Mti − Sti + Iti +Uti

S3ti = S3ti−1 + SI Nti,3 + SI Nti−1,2 − SI Nti−1,3 + SI Nti−1,4 − SOUT ti,3 − SOUT ti+1,1 + Lti + Rti − Tti − Hti

S4ti = S4t i − 1 + SI Nti,4 − SOUT ti,4 − SI Nti−1,4 + SOUT ti+1,4

Sti = S1ti + S2ti + S3ti + S4ti = CL

where Sn, SINn and SOUTn, are the outputs of the algorithm
and they correspond to the flows of people entering, moving,
and exiting the subway cluster and network.

Algorithmically, the Subway Density and Distribution
Patterns is based on both offline and online phases. During
the offline phase, all the data related to the subway network
are managed to create a set of registries with the lattice of
the network and all related information. During the online
phase, the VI cellular network events are elaborated and used
at real time to exercise the subway mathematical model and
to estimate density and distribution values of people moving
around the Milan subway.

To this end,we collect in/out displacements and transitions
among stations. Moreover, we defined an adaptive corrective

factor for each station in a cluster to weight the total number
of distinct O-IMSIs detected for the cluster. The corrective
factor is then used to proportionally divide the total num-
ber of distinct O-IMSIs among the different stations of the
cluster in a specific timeframe. This is an improvement we
applied to the algorithm tomitigate the issue related tomicro-
cells that cover several stations. The corrective factor and the
weight of each station is dynamically computed by counting
the number of people entering and exiting the target station
in a target timeframe, instead of simply dividing the total
number of detected passengers for a cluster by the number
of stations per cluster. Further, as the data collected from the
network refer only to events generated by the 3GVI network,
the people density estimation takes into account the correc-
tive factor that compensates the 3G penetration and the VI
market share, as explained at the end of Sect. 3.2.

Froman infrastructural point-of-view, the algorithmmakes
use of dedicated registries to store data coming from subway

stations and clusters (micro-cells) and ground level data (nor-
mal cells) that cover station entrances. Currently, the Subway
Mobility Pattern has been released as a service to exter-
nal third-party Journey Planners or Policy Frameworks. The
infrastructure for the subway Flows pattern is common to the
VI infrastructure in Fig. 5.

8.3 Experimental activities

We simulated the algorithm in a controlled environment to
detect possible anomalies and misbehaviour in the mathe-
matical model, and then we also experimented the imple-
mentation of the model and algorithms on real data sets
collected from the VI production network to detect func-
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Fig. 15 Milan subway lines 1, 2, 3 daily distribution of users on Mon-
day May 19th (a) and Sunday May 18th (b)

tional and non-functional limits in the algorithm and in its
implementation. The simulations suggested us that the use of
the corrective factors to weight each station is fundamental
to have a real balance among stations, overtime. Exercising
the subway pattern algorithms in a real context, we analysed
the daily distribution of users in the threemainMilan subway
network lines.

In Fig. 15, we can observe the differences of a daily dis-
tribution of users during a working day (Monday May 19th
2014) and during a non-working day (Sunday May 18th
2014) computed by our service. As expected, in the first
case, the highest concentration of people take place during
the early morning hours and evening hours, and are related to
journeys to/fromwork. In the second case, the daily distribu-
tion of users slowly grows in the morning, to slowly decrease
in the evening.

To validate the output of the model and algorithms, we
asked for official statistics. Unfortunately, these data are not
available. Hence, we surfed the web to find statistics related
to how Milan citizens use the three subway lines. No up-to-
date and precise data are available.We found aggregated data
only that refer to year 2012 and that show an average daily
ridership equals to 1.15M users (www.atm.it). Our model
counted for the whole day (Monday May 19th 2014) a total
of daily ridership: 1.43M round trips (e.g. in this case, each
round trip of a single passenger is counted by themodel.) The
count for a non-working day (Sunday May 18th) returned
480k round trips. The average daily value counted in this
target week (21st week of the year) is: 1.21M round trips.
Of course, the two data sets are not comparable for several
reasons: They refer to different periods (2012 for the official
ATM-MI data, 2014 for our counts). ATM-MI is the Milan
Public Transport Company (www.atm.it/en).We are not able

to find details on the ATM-MI statistics, such as if the total
number is computed by counting the total tickets sell or by
counting the accesses to the turnstiles, or by means of other
estimations.

9 Threats to validity

Anumber of threatsmay exist to the validity of a correlational
study like ours. We now examine some of the most relevant
ones.

9.1 Internal validity

We checked whether variables are normally distributed when
carrying out regressions, as required by the theory of regres-
sion. Consistent with the literature, we used a 0.01 statistical
significance threshold, the same we used for all statistical
tests in our paper. The vast majority of statistical tests we
carried out to this end provided quite strong evidence that the
variables are indeed normally distributed for all the evaluated
cells. These values are close to the 0.01 statistical significance
thresholds, but based on the other indicators the models are
not relevant. At any rate, the statistical tests used in regres-
sion are somewhat robust and they can be practically used
even when the variables’ distributions are not that close to
normal.

9.2 External validity

Like with any other correlational study, the threats to the
external validity of our study need to be identified and
assessed. The most important issue is about the fact that
our six selected cells cover Milan areas that are different
each other (this is also highlighted by the different obtained
regression results). In any case, this may have not somewhat
influenced the results.

It was not possible to formally understand why in some
cases the models are relevant and in other cases this is not
true. This is due to the impossibility to access the algorithms
used by the InfoBlu service, thus making hard to understand
the reliability of their predictions. It is quite clear that in case
of areas that cover primary roads, the InfoBlu predictions
are more accurate because based on inductive loops and a
lot of GPS data (this is the case for instance of cells 40972,
63601) while in case of small roads the predictions are less
precise because probably based only on small GPS datasets.
For example, we observed that for the area covered by the cell
40361 (Viale Cirene, Milan) the InfoBlu traffic prediction is
in average equal to 4.8 (impossible traffic) and this is not in
line with the real traffic scenarios for that area.

Moreover, the interpretation of the actual traffic status,
observed by manually analysing the Autostrade, InfoBlu,
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GoogleTraffic diagrams, and the Milan Webcam, is open to
subjectivity. In any case, this does not strongly influence the
computation of the standard error because the subjectivity
errors propagate both when computing the standard error for
all the pairs in our experiments.

9.3 Construct validity

An additional threat concerns the fact that the measures used
to quantify the relevant factors may not be adequate. This
paper deals with the number of network events collected by
the probe and not filtered and elaborated by the algorithms
before their use to compute the models. It is clear that the
algorithms can improve the quality of the models and the
reliability of the traffic predictions by removing “noising”
events (note that these events marginally impact on the total
number of collected events, thus inducing probably a small
quality improvement of the model). The derivation of new
regression models based on filtered data is for future work.

10 Conclusion

In this paper, several big data mining algorithms have been
discussed to support the prediction and estimation of vehicu-
lar traffic conditions, speed profiles for roads, flows of people
moving among subway stations and around POIs of the city,
and also O/D matrices, for future smart cities. The paper
provided the reader with a general description of the features
and their technical aspects to support real-time elaboration
of big data coming from the VI cellular network. All the fea-
tures and mobility patterns have been deeply experimented
in real-life situations and in the VI production environment
with thousands of real VImobile users (anonymized).Where
possible, the estimations have been also validated against real
and official data. The results of the experimental part are very
promising. The quality of the predictions and estimations is
often better thanwell-adopted competitors and inmost cases,
the designed mining algorithms fill the gap of still missing
solutions both from a research as well as from the industrial
point-of-view. Solutions tomodel subways flows are unavail-
able in the literature. This is also true in the industrial setting:
ATM-MI does not have a solution to count people moving
among subway stations in real time. This can be considered
as a real added value for future smart cities.
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