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Abstract
In engineering geodesy, the technical progress leads to various kinds of multi-sensor systems (MSS) capturing the environ-
ment. Multi-sensor systems, especially those mounted on unmanned aerial vehicles, subsequently called unmanned aerial 
system (UAS), have emerged in the past decade. Georeferencing for MSS and UAS is an indispensable task to obtain further 
products of the data captured. Georeferencing comprises at least the determination of three translations and three rotations. 
The availability and accuracy of Global Navigation Satellite System (GNSS) receivers, inertial measurement units, or other 
sensors for georeferencing is not or not constantly given in urban scenarios. Therefore, we utilize UAS-based laser scanner 
measurements on building facades. The building latter are modeled as planes in a three-dimensional city model. We determine 
the trajectory of the UAS by combining the laser scanner measurements with the plane parameters. The resulting implicit 
measurement equations and nonlinear equality constraints are covered within an iterated extended Kalman filter (IEKF). We 
developed a software simulation for testing the IEKF using different scenarios to evaluate the functionality, performance, 
strengths, and remaining challenges of the IEKF implemented.

Keywords  Iterated extended Kalman filter · 3D city model · Unmanned aerial system · Laser scanner measurements · 
Implicit measurement equation · Equality constraint

Zusammenfassung
Georeferenzierung von Unmanned Aerial Systems mit Hilfe eines iterativen erweiterten Kalman Filters und eines 3D Gebäu-
demodells. In der Ingenieurgeodäsie führt der technische Fortschritt zu verschiedenen Arten von Multisensorsystemen 
(MSS), die der Erfassung der Umgebung dienen. In der vergangenen Dekade sind sehr viele MSS hinzugekommen, die auf 
einem Unmanned Aerial Vehicle montiert wurden. Diese MSS werden nachfolgend als Unmanned Aerial Systems (UAS) 
bezeichnet. Die Georeferenzierung von MSS und UAS ist ein notwendiger Schritt zur weiteren Datenverarbeitung. Die 
Georeferenzierung beinhaltet mindestens die Bestimmung von drei Translationen und drei Rotationen. Die erforderlichen 
Daten aus GNSS-Empfängern, inertialen Messsystemen oder anderen Sensoren zur Georeferenzierung sind in urbanem 
Umfeld nicht immer lückenlos und mit der erforderlichen Genauigkeit verfügbar. Deshalb werden in diesem Ansatz die Mes-
sungen UAS-basierter Laserscanner auf Gebäudefassaden verwendet. Letztere sind als Ebenen in einem 3D-Gebäudemodell 
modelliert. Die Trajektorie des UAS wird durch Kombination der Laserscanner-Messungen mit den Ebenenparametern 
ermittelt. Die daraus resultierenden impliziten Beobachtungsgleichungen und die nichtlinearen Restriktionsgleichungen 
werden innerhalb eines iterativen erweiterten Kalman-Filters (IEKF) modelliert. Außerdem wurde eine Softwaresimulation 
für den Test des IEKF entwickelt, um mit verschiedenen Szenarien die Funktionalität, Leistungsfähigkeit und verbleibende 
Herausforderungen zu bewerten.
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1  Introduction

It is possible nowadays using the increasing capability and 
ongoing miniaturization of hardware and sensors to con-
struct various kinds of multi-sensor systems (MSS). The 
MSS are frequently used in engineering geodesy to capture 
the environment. It is crucial to know the position and orien-
tation of the MSS with respect to a superordinate coordinate 
system1 for a further processing of the data captured. The 
task to determine position and orientation in a superordinate 
coordinate system is called georeferencing. Georeferencing 
usually comprises the determination of three translations 
and three rotations, also known as six Degrees of Freedom 
(DoF) or pose.

Unmanned aerial vehicles (UAV) have become a wide-
spread, useful and affordable platform for the MSS in the 
past decade, optimally suited to capture common scenarios 
in engineering geodesy. The MSS mounted on a UAV are 
subsequently called unmanned aerial systems (UAS).

Precise georeferencing of a UAS is a challenging task, 
especially in urban areas. Global Navigation Satellite System 
(GNSS) data are affected by shadowing and multipath effects 
and are, therefore, inaccurate or even unavailable. Basically, 
low-cost GNSS receivers obtain positional accuracies of a few 
meters. These accuracies may be improved to decimeter or 
even centimeter level under good GNSS conditions and using 
satellite-based augmentation systems, differential GNSS, or 
real-time kinematics. Lightweight and low-cost inertial meas-
urement units (IMU)2 obtain orientation accuracies of 0.1◦ for 
roll and pitch and slightly worse accuracy, 0.8◦ , for heading. 
Combined GNSS-IMU systems improve the heading accuracy 
to 0.2°–0.5◦ . However, a general problem with IMU data is 
that it is often seriously affected by drifts.

A further possibility for georeferencing of an MSS is 
tracking using an external sensor. This is a cumbersome and 
inefficient task in the case of georeferencing a UAS due to 
limited measuring ranges and occultations.

In this paper, we present the georeferencing of a UAS, 
which is equipped with a three-dimensional (3D) laser scan-
ner, a low-cost GNSS receiver, and an IMU, among other 
sensors. We set ourselves the requirement to determine the 
pose of the UAS with a precision (as a measure of the accu-
racy) better than 10 cm in position and 0.1◦ for orientation. 
The accuracy of the pose is decisive for the further results 
derived, such as digital terrain models or detailed 3D city 
models. Therefore, we fused the UAS-based laser scanner 
measurements towards building facades, which are mod-
eled in a 3D city model, and the other sensor data within 
an iterated extended Kalman filter (IEKF). We developed 

a software simulation for testing the IEKF developed using 
different scenarios to evaluate the functionality and per-
formance of the IEKF implemented. All results presented 
are part of a research project, subsequently called the UAS 
project.

1.1 � Georeferencing of MSS/UAS

The strategies to accomplish the georeferencing vary 
depending on the measurement configuration, the sensors 
and hardware available, the environment, and the accuracies 
to be fulfilled. The georeferencing strategies can be gener-
ally classified into direct, indirect, and data-driven georef-
erencing (see, e.g., Schuhmacher and Böhm 2005; Paffen-
holz 2012; Holst et al. 2015). An alternative classification 
regarding indoor applications is given in Vogel et al. (2016).

For direct3 georeferencing, sensors which measure the pose 
of an MSS directly are integrated into the MSS. These sensors 
could be, for example, a GNSS receiver (Paffenholz 2012; 
Talaya et al. 2004), an IMU (Talaya et al. 2004), or an external 
sensor, such as a total station or a laser tracker (Dennig et al. 
2017; Hartmann et al. 2018), which determine the pose by 
angle and distance measurements to a reflector on the MSS.

Indirect4 georeferencing comprises methods where the 
pose of the MSS is determined by measurements towards 
known targets. These targets may be flat markers with a 
specific pattern (Abmayr et al. 2008) or simple 3D geom-
etries, such as cylinders or spheres (Elkhrachy and Niemeier 
2006). The position of the targets within the superordinate 
coordinate system is determined using an external sensor, 
for example, a total station. Indirect georeferencing is com-
monly used in bundle adjustment or for the georeferencing 
of static terrestrial laser scanners (TLS).

Data-driven georeferencing conforms basically to the 
indirect georeferencing. Instead of known targets, the data 
sets are matched to reference data sets. These reference 
data sets may be point clouds georeferenced already (Solo-
viev et al. 2007; Glira et al. 2015), digital surface models 
or 3D city models (Hebel et al. 2009; Li-Chee-Ming and 
Armenakis 2013; Unger et al. 2016, 2017). The matching 
is accomplished, for instance, via point-to-point assign-
ment, for example, an iterative closest point algorithm (Besl 
and McKay 1992) or point-to-object assignment (see, e.g., 
Schuhmacher and Böhm 2005). Please note that data-driven 
georeferencing approaches vary widely. A huge part can be 
found in the commonly used Simultaneous Localization and 
Mapping (SLAM) approaches (see, e.g., Nguyen et al. 2006; 
Lee et al. 2007; Jutzi et al. 2013; Kaul et al. 2015; Nüchter 
et al. 2015).

1  Also called the world coordinate system.
2  E.g. the GNSS-IMU system in SBG Systems (2019).

3  Also called sensor-driven.
4  Also called target-based.
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In principle, all the georeferencing strategies mentioned 
are suitable for georeferencing static and kinematic MSS. 
For a static MSS, the six DoF have to be determined only 
once, whereas for a kinematic MSS, the six DoF for each 
measuring epoch should be determined. It may be indispen-
sable to model the pose almost continuously depending on 
the measuring frequency of the sensors used.

1.2 � Filtering Techniques for Georeferencing

Georeferencing of a kinematic MSS is commonly covered as 
part of the state parameter vector within a filtering approach. 
Filtering is a two-step procedure in which the current state 
parameter vector is estimated based on the previous state 
parameter vector and the current observations. In the first 
step, called prediction, the current state parameter vector 
is predicted using the previous state parameter vector and a 
specific system model. The system model takes into account 
all the controlling variables and environmental noises that 
affect the current state. In the second step, called the meas-
urement update step, the predictions are modified based 
on the observation equations which compare the predicted 
observations with the current original ones.

In recent years, many pose estimation algorithms based 
on the extended Kalman filter (EKF) have been success-
fully applied to solve the pose estimation problem of a UAS. 
Tailanian et al. (2014) focus on the sensor fusion of the local 
sensors of a UAS in which the GNSS and the IMU have been 
combined by means of an EKF. In Hol et al. (2007), pose 
estimation on a six DOF robot using an EKF to fuse this 
information has been shown. Forster et al. (2013) use the 
collaboration of multiple UAS for pose estimation to com-
bine multiple SLAM algorithms and create an accurate pose 
estimation. In their approach, real-time camera pose estima-
tion is accomplished by combining the inertial and vision 
measurements using nonlinear state estimation approaches.

In the case of using nonlinear observation equations, a 
linearization (realized by means of Taylor series expansion) 
has to be applied to overcome the nonlinearity issue (see 
Denham and Pines 1966). In the case where the effects of the 
linearization errors tend to affect the efficiency of the filter 
or its convergence, the re-linearization of the measurement 
equation around the updated state may reduce these difficul-
ties. Therefore, such a procedure is called IEKF. Researchers 
commonly use explicit observation equations in the IEKF. 
This means that the observations are considered as a func-
tion of the state parameters. Such an observation model is 
generally called a Gauss Markov model (GMM).

If the equations relating the observations to the state 
parameters are condition equations, for example, some 3D 
points should fulfill the plane equations, then we do not 
exhibit the typical formulation of the GMM. In other words, 
the observations and the state parameters are not separable 

(implicit measurement equations, see Dang 2007). In such a 
case, we are dealing with a Gauss Helmert model (GHM). In 
Dang (2007, 2008), Steffen and Beder (2007), Steffen (2013) 
and Ettlinger et al. (2018), an IEKF is used which deals with 
implicit measurement equations. In Vogel et al. (2018), an 
IEKF is used for georeferencing and extended with addi-
tional nonlinear equality constraints. In Vogel et al. (2019), 
the approach is further extended by integrating nonlinear 
inequality constraints. With the ability to handle implicit 
measurement equations and nonlinear inequality constraints, 
it is possible to depict almost any mathematical relationship 
within an IEKF.

1.3 � Contribution

In this paper, we present an adaption of the IEKF in Vogel 
et al. (2018) for data-driven georeferencing of a UAS with an 
accuracy better than 10 cm in position and 0.1◦ in orientation. 
The highlight of the IEKF presented is the fusion of laser 
scanner measurements towards building facades, modeled 
as planes in a 3D city model, with the corresponding plane 
parameters of the 3D city model. This fusion leads to nonlin-
ear implicit measurement equations and additional nonlinear 
equality constraints, which are covered within the IEKF. To 
evaluate the functionality and performance of the IEKF, we 
developed a simulation tool with a simple dynamic system 
model defining the state of the UAS and other states. On the 
basis of the states defined, we simulated sensor measure-
ments regarding the sensor specifications and further char-
acteristics. We tested the IEKF for different scenarios and 
analyzed its sensitivity towards different data characteristics.

1.4 � Outline

The dedicated sections are as follows:
In Sect. 2 we give a detailed description of the UAS, the 

IEKF implemented and the entire workflow for georefer-
encing. Section 3 displays the simulation tool developed 
and gives an overview of the specifically chosen values for 
the IEKF. We present and discuss the results of the IEKF 
applied to the simulation in Sect. 4. Finally, conclusions and 
an outlook are drawn in Sect. 5.

2 � IEKF for Georeferencing of a UAS

The Geodetic Institute (GIH) and the Institute of Photo-
grammetry and GeoInformation (IPI) of Leibniz University 
Hannover (LUH) are currently working on the UAS project. 
The UAS project deals with the precise determination of the 
trajectory of a UAS by integrating camera and laser scanner 
data in combination with generalized object information. 
Within this paper, we will focus on the usage of laser scanner 
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data in combination with a non-generalized 3D city model. 
We will exclusively use simulated data to evaluate the func-
tionality and performance of the algorithms developed. The 
simulation scenarios were chosen in accordance with com-
mon measurement scenarios and data characteristics.

2.1 � General Idea

The UAS moves through an urban area where the building 
facades are modeled as planes within a 3D city model. Three-
dimensional city models with a level of detail 1 (block model) 
and a level of detail 2 (model with differentiated roof struc-
tures and boundary surfaces) are freely available for many cit-
ies. A detailed classification of the different levels of detail is 
given in Gröger et al. (2012). The pose of the UAS is roughly 
known, for example, from measurements of a GNSS receiver 
and an IMU. A 3D laser scanner captures the environment 
(red dots in Fig. 1) continuously. These captured 3D points 
may represent the ground, vegetation, building facades, or 
other objects. The laser scanner measurements are given in the 
local sensor coordinate system. The laser scanner measure-
ments are transformed in a superordinate coordinate system 
according to the roughly known translation t =

[

tx, ty, tz
]

 and 
orientation o = [�,�, �] (see Fig. 2). The transformed laser 
scanner measurements are assigned to planes of the 3D city 
model based on the distance between the scanner points and 
the planes of the building model (see Sect. 2.3). Only the 
points that are close enough to a plane of the 3D city model 
(green points in Fig. 2) are used as observations afterwards. 
The final pose parameters are estimated within a GHM, resp. 
filtering approach, by minimizing the distance between the 
assigned laser scanner measurements and the planes of the 
3D city model to which they are assigned.

2.2 � UAS

A UAV is equipped with a 3D laser scanner, cameras, a 
GNSS receiver and an IMU in the UAS project. Figure 3 
depicts a simplified sketch of the platform setup (without 
cameras). The laser scanner5 scans 16 scan lines which are 
nearly perpendicular to the sensors’ vertical axis (that cor-
responds to the z-axis in Fig. 3). The divergence between 
each scan line is 2◦ . Thus, the laser scanner has a field of 
view of 30◦ × 360◦ . It is possible to set the resolution of the 
points in the scan lines between 0.1° and 0.4◦ . The rotation 
rate depends on that setting and is between 5 Hz and 20 Hz. 
We set the resolution to 0.4◦ to obtain a higher rotation rate 
of 20 Hz. Furthermore, it is possible to exclude certain angle 
areas from the measurement, because they cannot provide 
any data or the data generated are not needed for further pro-
cessing. In our case, it would make sense to exclude the angle 
areas where the laser scanner measures towards the UAV.

Fig. 1   Schematic depiction of the UAS capturing the environment. 
The points measured (red dots) may represent the ground, vegetation, 
building facades, or other objects

Fig. 2   Schematic depiction of the assignment of the transformed 
measured points. Some building facades are represented as planes 
in a generalized 3D city model (solid blue lines). The laser scanner 
measurements are transformed in the superordinate coordinate system 
according to roughly known translation t =

[

tx, ty, tz
]

 and orientation 
o = [�,�, �] . The origin of the laser scanner is depicted in the upper 
left corner. Note the slight difference to the original measurement 
configuration due to the roughly known pose. The transformed points 
which are close to one of the planes are assigned to that plane (green 
dots). The closeness is determined by a distance threshold (dashed 
blue lines). In this example, 5 points are assigned to plane 1 and 4 
points are assigned to plane 2, whereas the other points (red dots) are 
not assigned. Subsequently, only the green dots are used as observa-
tions in the GHM, resp. filtering approach

5  Conforms to the Velodyne LiDAR PUCK VLP-16.
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2.3 � Assignment Algorithm

A crucial task of our georeferencing process is the assign-
ment of measured 3D points Cloc , given in a local coordinate 
system of the laser scanner, to a plane of the city model, 
given in the global coordinate system. Therefore, we first 
have to transform Cloc to Cglo:

The parameters of the translation t describe the position of 
the origin of the local coordinate system. The rotation matrix 
R is obtained based on the orientation o = [�,�, �] of the 
local coordinate system according to  Luhmann (2013):

(1)Cglo = t + R ⋅ Cloc.

(2)R� =

⎡

⎢

⎢

⎣

1 0 0

0 cos� − sin�

0 sin� cos�

⎤

⎥

⎥

⎦

(3)R� =

⎡

⎢

⎢

⎣

cos� 0 sin�

0 1 0

− sin� 0 cos�

⎤

⎥

⎥

⎦

(4)R� =

⎡

⎢

⎢

⎣

cos � − sin � 0

sin � cos � 0

0 0 1

⎤

⎥

⎥

⎦

The assignment is realized by a simple distance criterion, as 
described in  Unger et al. (2016, 2017). The Euclidean dis-
tance to each plane of the city model is calculated for each 
3D point in Cglo . Whether the projection of the points into 
the plane lies within the bounding polygon of the planes is 
checked for points where the distance to the nearest plane is 
less than a threshold value dassign . If it is outside, the distance 
from the point to the boundary polygon of the plane is calcu-
lated and replaces the orthogonal distance. Points that pro-
ject inside the boundary or are closer than dassign are assigned 
to their closest plane. dassign has to be selected regarding the 
accuracy of the points as well as the accuracy of the city 
model. The accuracy of the points depends mainly on the 
accuracy of the translation and orientation parameters t and 
o and the accuracy of the measured points Cloc . The accuracy 
of the city model depends on the geometrical accuracy of 
its vertices and the extent of generalization effects by which 
the model deviates from the reality captured. The larger the 
threshold is fixed, the more points are assigned to planes, but 
the higher the probability is that incorrect assignments will 
be set that lead to incorrect results.

2.4 � IEKF (Iterated Extended Kalman Filter)

The IEKF which we adapted for georeferencing of the UAS 
is given in Vogel et al. (2018). This approach can be applied 
for many different use cases. All available observations, 
types of prior information, and requested states need to be 
linked with the respective uncertainty information. Based on 
this, all information can be introduced into the IEKF.

According to the respective application, several relation-
ships have to be established by means of linear or rather non-
linear functional models. A system model f (⋅) is needed for the 
requested states xk to describe the physical behavior of the sys-
tem from epoch k − 1 to the current epoch k . Realization of this 

(5)R = R� ⋅ R� ⋅ R� .

Fig. 3   Sketch of the platform setup. The x-axis of the local laser scan-
ner coordinate system (red) points in readers line of sight

Fig. 4   Simplified basic workflow of the IEKF (grey) for georeferenc-
ing of a UAS by means of unknown states (yellow), available obser-
vations (green), and known prior information (blue)
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transfer is carried out within the prediction step of the IEKF. 
Suitable functional relationships for each observation lk have 
to be formulated within the measurement model h(⋅) . Based 
on implicit ( h(E(l), x) = � ) or explicit ( E(l) − h(x) = 𝟎 ) for-
mulations, relations between the observations available and 
requested states are considered. E(⋅) is the expected opera-
tor of a random vector; here, the expected value of the obser-
vation vector l , which can be replaced by E(l) = l + v . This 
consideration of current observations is carried out within the 
measurement update step. Available prior information can 
also be integrated within the measurement model during the 
measurement update step. In addition, further suitable prior 
information can also be applied in terms of state constraints by 
means of additional linear ( Dxk = d ) or nonlinear ( g

(

xk
)

= b ) 
functions. Here, D is a known matrix and d and b are known 
vectors with respect to related state constraints. Formulation 
of such restrictions can be implemented by means of equality 
constraints within the constraint step.

The basic workflow of this IEKF is depicted in Fig. 4 in a 
simplified way. Detailed equations for initialization, prediction, 
measurement update, and constraints are given in the following 
Sects. 2.4.1–2.4.6. Algorithm 1 given in Sect. 2.5 summarizes 
the required input, different computations steps and the output.

2.4.1 � State Parameter Vector

The state parameter vector xk consists of two parts, as 
already depicted in Fig. 4. The first part xState,k ∈ ℝ

9 con-
sists of the current position tk , orientation ok and velocity vk 
of the UAS (see Eq. 6). These state parameters describe the 
state of the UAS.

The second part consists, on one hand, of the vector 
xPlane,k ∈ ℝ

4⋅E , which contains the parameters of all the E 
city model planes in Hesse normal form (see Eq. 7). The 
Hesse normal form is defined by the 3 × 1 normal vector 
ne = [nx,e, ny,e, nz,e]

T and the distance to the origin de with 
e = 1…E . On the other hand, it consists of the vector 
xV ,k ∈ ℝ

3⋅M , which contains all the M vertices of the build-
ing model (see Eq. 8):

(6)xState,k =

⎡

⎢

⎢

⎢

⎢

⎣

tx,k, ty,k, tz,k
⏟⏞⏞⏟⏞⏞⏟

tk

,�k,�k, �k
⏟⏞⏞⏟⏞⏞⏟

ok

, vx,k, vy,k, vz,k
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

vk

⎤

⎥

⎥

⎥

⎥

⎦

T

(7)xPlane,k =

⎡

⎢

⎢

⎢

⎣

n1,k;d1,k
⏟⏟⏟
plane 1

;⋯ ; nE,k;dE,k
⏟⏟⏟
plane E

⎤

⎥

⎥

⎥

⎦

(8)xV ,k =
[

V
glo

1,k
;… ;V

glo

m,k
;… ;V

glo

M,k

]

with

The integration of plane parameters and vertices into the 
state parameter vector is used to identify and correct planes 
that are not accurately represented in the 3D city model. 
Although this purpose is not part of this paper, we are 
already introducing the mathematical relationship.

The complete state parameter vector xk is arranged 
according to:

2.4.2 � Observation Vector

The MSS mentioned in Sect. 2.2 provides discrete 3D laser scan-
ner point clouds (LSC) and 6D pose information by means of 
a GNSS receiver and an IMU. An LSC consists of a full scan 
rotation ( 30◦ × 360◦ ). For the sake of simplification, we will not 
consider the movement of the UAV during the period of a full 
scan rotation in the following. This time period is a maximum 
of 0.05 s for the configuration chosen. It is possible to exclude 
certain angle areas of the laser scanner, as has already been 
described in Sect. 2.2. The time period for the non-excluded 
areas is further reduced by excluding the angular areas in which 
the laser scanner measures in the direction of the UAV. This 
is acceptable due to the planned velocity of the UAV of about 
1m s−1 and an angular velocity of 2◦ s−1 . In further development 
steps, the LSC should consist of fewer and temporally closer 
3D points, for example, just a half or a quarter scan rotation. In 
addition, the initial vertices of the 3D city model are introduced 
as observations into our approach. The observation vector lk 
consists of three parts for each epoch k = 1…K . The first part 
lloc
Scan,k

 consists of the measured LSC in the local sensor coordi-
nate system with a total of N 3D points. lloc

Scan,k
 only contains the 

3D points, which were assigned to a plane of the city model6 
(for the assignment algorithm, see Sect. 2.3). These points are 
assorted on the basis of the planes they are assigned to:

with

and

(9)V
glo

m,k
=
[

V
glo

x,m,k
,V

glo

y,m,k
,V

glo

z,m,k

]T

.

(10)xk =
[

xState,k; xPlane,k; xV ,k
]

.

(11)lloc
Scan,k

=
[

lloc
Scan,1,k

;… ; lloc
Scan,e,k

;… ; lloc
Scan,E,k

]

(12)lloc
Scan,e,k

=
[

ploc
e,1,k

;… ; ploc
e,i,k

;… ; ploc
e,Ne,k

]

(13)ploc
e,i,k

=
[

Xloc
e,i,k

, Y loc
e,i,k

, Zloc
e,i,k

]T

.

6  In photogrammetry, tie points are observed in more than one image 
and, therefore, connect poses. By contrast, points measured by the 
laser scanner are only observed from one pose and do not, therefore, 
contribute to pose estimation in this scenario as long as they are not 
related to a model plane.
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lloc
Scan,e,k

 is representing the vector with all Ne points assigned 
to plane e. The total number N of 3D points of the LSC 
stored in the observation vector is calculated by:

The second part lglo
Pose,k

 consists of the direct GNSS and IMU 
observations for the position and orientation:

Finally, the third part lglo
V,0

 consists of the, in total M, initial 
vertices of the E model planes7:

with

representing a 3D point which is the vertex of at least one 
plane.

The observation vector is arranged as follows:

We apply Eq. (19) for building the stochastic model of the 
observation vector. We neglect correlations in all cases for a 
better discussion of the mainly important issues:

The standard deviation of a laser scanner coordinate compo-
nent is denoted by �LS . �t =

[

�t, �t, �t
]

 and �o =
[

�o, �o, �o
]

 
denote the standard deviation of the GNSS and IMU obser-
vations, and �V denotes the standard deviation of the initial 
vertices.

2.4.3 � System Equation

Formulating the system equation of the kind:

(14)N =

E
∑

e=1

Ne.

(15)l
glo

Pose,k
=

⎡

⎢

⎢

⎢

⎢

⎣

tGNSS
x,k

, tGNSS
y,k

, tGNSS
z,k

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�GNSS
k

,�IMU
k

,�IMU
k

, �IMU
k

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�IMU
k

⎤

⎥

⎥

⎥

⎥

⎦

T

.

(16)l
glo

V,0
=
[

V
glo

1,0
;… ; V

glo

m,0
;… ; V

glo

M,0

]

(17)V
glo

m,0
=
[

V
glo

x,m,0
,V

glo

y,m,0
,V

glo

z,m,0

]T

(18)lk =
[

lloc
Scan,k

; l
glo

Pose,k
; l

glo

V,0

]

.

(19)�ll,k = diag

⎛

⎜

⎜

⎜

⎝

�2
LS
,… , �2

LS
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

3⋅N

, �2
t
,�2

o
⏟⏟⏟

6

, �2
V
,… , �2

V
⏟⏞⏞⏟⏞⏞⏟

3⋅M

⎞

⎟

⎟

⎟

⎠

.

we neglected the control vector u by setting it to zero. The 
system noise is normally distributed with wk−1 ∼ N(0,�ww) . 
Equation (20) can be formulated as:

where Fx,k denotes the transition matrix:

Due to the fact that we do not intend to develop an optimal 
system model within this paper, we applied rather simple 
linear system equations. Nevertheless, a subsequent adaption 
of the system model with more complex system equations is 
easily possible if the future flight characteristics of the UAS 
require it. For the system equations chosen, the transition 
matrix Fx,k is given by:

with

Δ� is the time period between two consecutive epochs.
We apply the following equations for building the vari-

ance–covariance matrix (VCM) of the system noise �ww:

The standard deviations of the system noise for trans-
lation, orientation, and velocity are denoted by 
�t,w =

[

�t,w, �t,w, �t,w
]

 ,  �o,w =
[

�o,w, �o,w, �o,w
]

 a n d 
�v,w =

[

�v,w, �v,w, �v,w
]

 . The system noise for the plane 
parameters and vertices is given by the standard deviations 
�n,w =

[

�n,w, �n,w, �n,w
]

 , �d,w and �V ,w.

(20)xk = f
(

xk−1, uk−1
)

+ wk−1,

(21)xk = Fx,k ⋅ xk−1 + wk−1,

(22)Fx,k = 𝜕f∕𝜕x|x̂k−1,uk−1 .

(23)Fx,k =

⎡

⎢

⎢

⎣

Fx,State,k[9×9]
0[9×4⋅E] 0[9×3⋅M]

0[4⋅E×9] I[4⋅E×4⋅E] 0[4⋅E×3⋅M]

0[3⋅M×9] 0[3⋅M×4⋅E] I[3⋅M×3⋅M]

⎤

⎥

⎥

⎦

,

(24)Fx,State,k =

[

I[3×3] 0[3×3]diag([Δ�,Δ�,Δ�])[3×3]
0[6×3] I[6×6]

]

.

(25)�ww,State = diag
(

�
2
t,w
,�2

o,w
,�2

v,w

)

(26)�ww,Plane = diag
(

�
2
n,w

, �2
d,w

,… ,�2
n,w

, �2
d,w

)

(27)�ww,V = diag
(

�2
V ,w

,… , �2
V ,w

)

(28)�ww =

⎡

⎢

⎢

⎣

�ww,State 0 0

0 �ww,Plane 0

0 0 �ww,V

⎤

⎥

⎥

⎦

.

7  Please note the missing k in the index, which implies that this 
observation remains unchanged over the epochs.
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2.4.4 � Measurement Equation

With the state parameter and observation vector given in Sects. 
2.4.1 and 2.4.2, we can formulate three types of nonlinear 
implicit measurement equations. The first type of measure-
ment equation hI causes that each transformed LSC lglo

Scan,e,k
 has 

to be located in the assigned plane of the city model repre-
sented by ne and de . If the point ploc

e,i,k
=
[

Xloc
e,i,k

, Y loc
e,i,k

, Zloc
e,i,k

]T

 is 
in lloc

Scan,e,k
 , which consists of all points assigned to plane e of 

the 3D city model, the following measurement equation is 
applied:

with i ∈ {1…N}.
The rotation matrix Rk is calculated based on the current 

orientation ok according to Eqs. (2)–(5). Subsequently, we 
obtain N measurement equations of type hI:

(29)
hI,i

(

E(lk), xk
)

∶ nT
e
⋅

[

tk + Rk ⋅ E(p
loc
e,i,k

)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

p
glo

e,i,k

−de = 0,

(30)hI
(

E(lk), xk
)

=
[

hI,1
(

E(lk), xk
)

,… , hI,N
(

E(lk), xk
)]T

.

Figure 5 shows an illustration of the relationship between 
state parameters, observations, and measurement equations.

In the second type of measurement equation hII , we cal-
culate the difference between the estimated pose 

[

tk;ok
]

 and 
observed pose lglo

Pose,k
 of GNSS and IMU:

If the GNSS and IMU data are available, we obtain six meas-
urement equations of type hII . When the GNSS signal is 
missing, the measurement equation changes to:

and we only obtain three measurement equations of this 
type.

The third type of measurement equation hIII is introduced 
to avoid a datum defect. It computes the difference between 
the estimated vertices in xV ,k and the initial vertices in lglo

V ,0
 . If 

the vertex Vglo

m,k
 is stored in xV ,k and Vglo

m,0
 is its initial observa-

tion stored in lglo
V ,0

 , the following measurement equations are 
applied:

with m ∈ {1…M}.
For a three-dimensional vertex Eq. (33) consists of three 

measurement equations. Subsequently, we obtain 3 ⋅M meas-
urement equations of type hIII:

Altogether, the measurement equations are given by:

2.4.5 � Nonlinear Equality Constraint for the State 
Parameters

We apply two types of nonlinear equality constraints for the state 
parameters in our IEKF. The prior information which we want 
to model describes hard constraints which have to be fulfilled.

The first type of nonlinear equality constraint gI arises due 
to the fact that we are using plane parameters within the state 
parameter vector xk . Here, we must ensure unit normal vectors 
by means of a length of one. For this, we can make use of the 
nonlinear equality constraints:

(31)hII
(

E(lk), xk
)

∶
[

tk; ok
]

− E(l
glo

Pose,k
) = 0.

(32)hII
(

E(lk), xk
)

∶ ok − E(oIMU
k

) = 0,

(33)hIII,m
(

E(lk), xk
)

∶ V
glo

m,k
− E(V

glo

m,0
) = 0,

(34)hIII
�

E(lk), xk
�

=

⎡

⎢

⎢

⎣

hIII,1
�

E(lk), xk
�

⋮

hIII,M
�

E(lk), xk
�

⎤

⎥

⎥

⎦

.

(35)h
�

E(lk), xk
�

=

⎡

⎢

⎢

⎣

hI
�

E(lk), xk
�

hII
�

E(lk), xk
�

hIII
�

E(lk), xk
�

⎤

⎥

⎥

⎦

.

(36)gI,e
(

xk
)

= ||ne|| =
√

n2
ex
+ n2

ey
+ n2

ez
= bI,e = 1,

Fig. 5   Example of the relationship between state parameters, obser-
vations, and measurement equations in an arbitrary epoch k: The 
N1 = 26 blue points pglo

1,1,k
 to pglo

1,26,k
 are assigned to plane 1. Subse-

quently, lloc
Scan,1,k

 consists of these blue points in local sensor coordi-
nate system. The N2 = 22 purple points pglo

2,1,k
 to pglo

2,22,k
 are assigned 

to plane 2. Subsequently, lloc
Scan,2,k

 consists of these purple points in 
local sensor coordinate system. If we assume that there are only those 
E = 2 planes in the 3D city model, the observation vector lloc

Scan,k
 has 

the dimension [144 × 1] . According to Eq. (14), N is equal to 48. The 
state parameter vector xV ,k consists of the six vertices Vglo

1,k
 to Vglo

6,k
 (in 

global coordinate system) and has the dimension [18 × 1] . The vector 
l
glo

V ,0
 has the same dimension. With solely two planes in the 3D city 

model, xPlane,k has the dimension [8 × 1]
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with e ∈ {1…E}.
The nonlinear equality constraint of type gI applies to each 

of the E planes normal vectors:

The right side of the equal sign is stored in vector bI:

With the second type of nonlinear equality constraint gII , we 
ensure that each vertex of a plane is located in the plane. By 
this, we preserve the topology of the 3D city model. If we 
assume that Vglo

m,k
 is a vertex of plane e, represented by ne and 

de , the following equality constraint is applied:

with i ∈ {1… 4 ⋅ E}.
This type of nonlinear equality constraint must be fulfilled 

for each vertex of all planes. In general, 3D city model planes 
have 4 vertices, but it is also possible for them to have 3 or 
more than 4 vertices. Thus, the number 4 ⋅ E is just a rough 
estimate for the total amount of equality constraints of type gII:

The right side of the equal sign is stored in vector bII:

A comparable procedure can be found in Unger et al. (2016). 
Altogether, the nonlinear equality constraints for the state 
parameters are given by:

2.4.6 � Initialization

The initial state parameter vector x0 is created by the GNSS 
and IMU observations. We assume zero for the velocity in 
each coordinate component:

The initial plane parameters ne,0 and de,0 were estimated 
from the planes’ vertices stored in the city model by the 
Drixler algorithm (Drixler 1993). We make use of the ver-
tices of the 3D city model given for the initial vertices xV ,0:

(37)gI
(

xk
)

=
[

gI,1
(

xk
)

,… , gI,E
(

xk
)]T

.

(38)bI =
[

bI,1,… , bI,E
]T
.

(39)gII,i
(

xk
)

= nT
e
⋅ V

glo

m,k
− de = bII,i = 0

(40)gII
(

xk
)

=
[

gII,1
(

xk
)

,… , gII,4⋅E
(

xk
)]T

.

(41)bII =
[

bII,1,… , bII,4⋅E
]T
.

(42)g
(

xk
)

=
[

gI
(

xk
)

; gII
(

xk
)]

(43)b =
[

bI; bII
]

.

(44)v0 = 0[3×1].

(45)xState,0 =
[

tGNSS,0; oIMU,0; v0
]

(46)xPlane,0 =
[

n1,0; d1,0;… ; nE,0;dE
]

(47)xV ,0 =
[

V
glo

1,0
;… ;V

glo

M,0

]

We apply the following equations for building the VCM of 
the initial state parameter vector �xx,0:

The standard deviations of the initial state parameters 
of translation, orientation, and velocity are denoted 
by  �t,0 =

[

�t,0, �t,0, �t,0
]

 ,  �o,0 =
[

�o,0, �o,0, �o,0
]

 ,  a n d 
�v,0 =

[

�v,0, �v,0, �v,0
]

 . The standard deviations of the 
initial plane parameters and vertices are denoted by 
�n,0 =

[

�n,0, �n,0, �n,0
]

 , �d,0 and �V ,0.

2.5 � Workflow

The workflow of our algorithm is summarized in Algo-
rithm 1. This is an adaption of the algorithm proposed in 
Vogel et al. (2018). We highlighted the cross references 
to equations and sections in blue. The partial derivatives 
(see lines 9, 22, 23, and 40) were obtained once using 

(48)x0 =
[

xState,0; xPlane,0; xV ,0
]

.

(49)�xx,State,0 = diag
(

�
2
t,0
,�2

o,0
,�2

v,0

)

(50)�xx,Plane,0 = diag
(

�
2
n,0
, �2

d,0
,… ,�2

n,0
, �2

d,0

)

(51)�xx,V ,0 = diag
(

�2
V ,0

… , �2
V ,0

)

(52)�xx,0 =

⎡

⎢

⎢

⎣

�xx,State,0 0 0

0 �xx,Plane,0 0

0 0 �xx,V ,0

⎤

⎥

⎥

⎦

.

Fig. 6   Top view of the simulation environment with a simulated 
point cloud (blue dots) of the first epoch and trajectory of the UAS 
(magenta line)
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the symbolic Math toolbox of Matlab© . Subsequently, we 
implemented the partial derivatives in a function. Another 
possibility to obtain the partial derivatives could be the 
use of INTLAB (Rump 1999). We fixed the stop criterion 
cstop to 1 × 10−12 in the measurement update step. This stop 
criterion was reached after an average of six iterations in 
the subsequent simulation. 

Algorithm 1: Iterated extended Kalman filter
with nonlinear implicit measurement equation
and nonlinear equality state constraints
1 System model (see Eqs. 20-28):
2 xk = f (xk−1,uk−1)+wk−1, wk−1 ∼ N (0,Σww)
3 Observation model (see Eqs. 29-35):
4 h (E(lk),xk) = h (lk + vk,xk) = 0, vk ∼

N (0,Σvv)
5 Initial parameter vector and its VCM (see Eqs.

44-52):
6 x̂+

0 = x0, Σ+
x̂x̂,0 = Σxx,0, k = 1

7 while k < K do
8 Prediction step
9 F x,k = ∂f/∂x|x̂+

k−1,uk−1
(see Eqs. 22-24)

10 x̂−
k = f

(
x̂+

k−1,uk−1

)
(see Eqs. 20-21)

11 Σ−
xx,k = F x,kΣ

+
xx,k−1F

T
x,k +Σww

12 Assignment (see Section 2.3 and Eq. 1)

13 lgloScan,k = t̂
−
k + R̂

−
k · llocScan,k

14 Assign lgloScan,k to the planes of the city model
15 Arrange observation vector (see Eqs. 11-19)
16 Store all points, distinctively assigned to a plane,

in llocScan,k =
[
llocScan,1,k, . . . , l

loc
Scan,E,k

]

17 Arrange the observation vector

lk =
[
llocScan,k, lV,0, lPose,k

]T
and its VCM

Σll,k

18 Measurement-update step
19 ľk,0 = lk, x̌k,0 = x̂−

k
20 ∆x = ∞, ∆l = ∞, m = 0
21 while max(∆x) > cstop ∨max(∆l) > cstop do
22 Hx,k,m = ∂h/∂x|̌lk,m,x̌k,m

23 Hl,k,m = ∂h/∂l|̌lk,m,x̌k,m

24 Ok,m = Hx,k,mΣ−
xx,kH

T
x,k,m

25 Sk,m = H l,k,mΣvvHT
l,k,m

26 Kk,m = Σ−
xx,kH

T
x,k,m · (Ok,m + Sk,m)−1

27 rk,m =

H l,k,m · lk − ľk,m
)
+Hx,k,m ·

(
x̂−

k − x̌k,m

)

28 x̌k,m+1 = x̂−
k −Kk,m · h ľk,m, x̌k,m

)
+ rk,m

)

29 Gk,m = ΣvvHT
l,k,m (Ok,m + Sk,m)−1

30 ľk,m+1 = lk −Gk,m · h ľk,m, x̌k,m
)
+ rk,m

)

31 ∆x = |x̌k,m+1 − x̌k,m|, ∆l = |̌lk,m+1 − ľk,m|
32 m = m+ 1

33 x̂+
k = x̌k,m

34 l̂
+
k = ľk,m

35 Lk = I
j×j

−Kk,m−1Hx,k,m−1

36 Σ+
x̂x̂,k = LkΣ

−
xx,kL

T
k +Kk,m−1Sk,m−1KT

k,m−1

37 Uk = Gk,m−1 ·Hx,k,m−1

38 Σ+
v̂v̂,k =
Σvv +Gk,m−1Sk,m−1GT

k,m−1 −UkΣ
−
xx,kU

T
k

39 Constraint step (see Eqs. 36-43)
40 D = ∂g/∂x|x̂−

k

41 d = b− g
(
x̂−

k

)
+D · x̂−

k

42 Set W = I
j×j

43 x̃+
k =

x̂+
k −W−1DT DW−1DT

)−1
(
Dx̂+

k − d
)

44 Σ+
x̃x̃,k =

Σ+
x̂x̂,k −Σ+

x̂x̂,kD
T
(
DΣ+

x̂x̂,kD
T
)−1

DΣ+
x̂x̂,k

45 Set x̂+
k = x̃+

k and Σ+
x̂x̂,k = Σ+

x̃x̃,k

Fig. 7   Side view of the simulation environment with a simulated 
point cloud (blue dots) of the first epoch and trajectory of the UAS 
(magenta line)

Fig. 8   Oblique view of the simulation environment with a simulated 
point cloud (blue dots) of the first epoch and trajectory of the UAS 
(magenta line)

Fig. 9   3D city model with a simulated point cloud (blue dots) of the 
first epoch and trajectory of the UAS (magenta line)
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3 � Simulation

Computer simulations are a great tool for analyzing and 
interpreting engineering systems. Here, we intended to 
evaluate the functionality and performance of the IEKF 
implemented. Therefore, we focused on two scenarios which 
basically conform to the testing environment designated for 
the UAS Project. Furthermore, we focused on the challeng-
ing initialization phase of the IEKF and analyzed a rather 
short trajectory of 2.5 m length and with 50 epochs.

Therefore, we created a model of a fictitious building 
and a ground plane. Subsequently, we determined a ficti-
tious trajectory beside this building. We assumed a constant 
velocity for the UAS of 1 m s−1 and simulated laser scanner 
measurements with a frequency of 20 Hz. Consequently, the 
epochs simulated are at constant distances of 0.05 m. Each 
of the epochs consists of a laser scan and the desired values 
of position and orientation obtained from the determined 
trajectory at a certain time.

Figures 6, 7 and 8 depict different views of the building 
and ground plane created. The building created contains 
roof planes (in dark grey), wall planes (in red), and win-
dow planes (in transparent blue). Figure 9 depicts the cor-
responding 3D city model of the building. As we can see, 
the ground plane is not part of the 3D city model. The 3D 
city model contains the vertices of each plane and is given in 
the superordinate coordinate system. The simulated and cor-
rectly georeferenced point cloud (blue dots) of the first epoch 
and the trajectory of the UAS (magenta line) is depicted in 
each figure.

3.1 � Scenarios

We simulated two scenarios in which the laser scanner and 
IMU measurements were generated differently under cer-
tain assumptions regarding measurement accuracy and bias. 
We repeated the simulation 500 times ( S = 500 ) for both 
scenarios. In scenario 1, we only added normally distrib-
uted noise on the laser scanner measurements, the position 

(representing the GNSS receiver), and the orientation (repre-
senting the IMU). In scenario 2, we systematically perturbed 
the laser scanner measurements, hitting the windows of the 
simulated building, and increased the (standard deviation 
of the) noise for laser scanner measurements, hitting the 
windows and the ground. The systematic and increased ran-
dom disturbances of the measurements hitting the windows 
simulate the infiltration behavior for glass. We included the 
increased measurement uncertainty and the actual infiltra-
tion of the laser into the increased noise of these measure-
ments. The increased noise for measurements hitting the 
ground simulates possible unevenness and vegetation. Thus, 
this increased noise is more justified by actual structures 
in the object space than by an increased uncertainty of the 
measurement. Furthermore, we added a drift on the �-com-
ponent of the IMU. Therefore, we linked the systematic 
effect Δ to the epoch number k ∈ {1,… ,K} . The �-com-
ponent conforms to the heading of the UAS. All assumed 
systematic effects Δ and standard deviations � of the added 
noise are depicted in Table 1. Basically, the assumptions 
of scenario 1 should be consistent with the manufacturer’s 
specifications of the sensors used or planned for our UAS. 
The assumptions in scenario 2, especially the ones for the 
laser scanner, are based on experience from test measure-
ments. In our simulation, we assume that the positions and 
orientations of all sensors in a platform coordinate system 
or body frame have already been determined in a calibra-
tion process. We also assume that the sensors are properly 
synchronized. To neglect the effect of generalization in the 
3D city model, we used the same model for simulation and 
in the following IEKF algorithm.

Table 1   Assumed systematic effects Δ and standard deviations � of 
the added noise for all sensors and observations (Obs.)

Sensor Obs. Scenario 1 Scenario 2

� Δ � Δ

Laser scanner Wall, roof 0.02 m 0 m 0.02 m 0 m
Ground 0.02 m 0 m 0.2 m 0 m
Window 0.02 m 0 m 0.1 m 0.6 m

GNSS tx , ty , tz 0.5 m 0 m 0.5 m 0 m
IMU � , � 0.2◦ 0◦ 0.2◦ 0◦

� 0.2◦ 0◦ 0.2◦ 0.01◦⋅k

Table 2   Assumed standard deviations � for the initial VCM of the 
state parameters �

xx,0 , the system noise �
ww

 , and the observation vec-
tor �

ll

Initial state noise �t,0 = 0.5 m
�o,0 = 0.2◦

�v,0 = 1 m s−1

�n,0 = 0.0001
�d,0 = 0.001 m
�V ,0 = 0.0001 m

System noise �t,w = 3 ⋅ Δ� m
�o,w = 3 ⋅ Δ�◦

�v,w = 5 ⋅ Δ� m s−1

�n,w = 0
�d,w = 0 m
�V ,w = 0 m

Measurement noise �LS = 0.02 m
�t = 0.5 m
�o = 0.2◦

�V = 0.0001 m
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3.2 � Values Chosen for the IEKF

We used a constant distance threshold dassign = 0.3m for the 
assignment algorithm (see Sect. 2.3) in our simulation. This 
chosen threshold is a trade-off between the rather imprecise 
pose in the first epochs and the more precise pose in the last 
epochs.

The standard deviations used for building the initial VCM 
�xx,0 (see Eqs. 49–52) are depicted at the top of Table 2. The 
standard deviations of the initial position �t,0 and orienta-
tion �o,0 conform to the standard deviations of the GNSS 
and IMU observations. We assume a standard deviation for 
the initial velocity �v,0 which includes the planned maximal 
velocities of the UAV. For the standard deviations of the 
initial plane parameters �n,0 and �d,0 , we met the assumption 
that these values should be very small. Thus, they corre-
spond roughly to the standard deviation of the initial verti-
ces �V ,0 , which, in turn, conform to the standard deviation 
chosen for the observation vector. If the accuracies of the 
planes’ vertices are known, the standard deviations of the 
plane parameters could also be determined by means of vari-
ance propagation.

The standard deviations chosen for the system noise (see 
Eqs. 25–28) can be found in the middle of Table 2. We set 
the standard deviation for translation �t,w , orientation �o,w 
and velocity �v,w depending on the time period Δ� between 
two epochs and regarding possible unpredictable movements 
of the UAS in this time period. We set the system noise to 
zero for �ww,Plane and �ww,V , because these parameters are 
constant over time. Consequently, �n,w , �d,w , and �V ,w are 
zero.

We used the simulated standard deviation �LS = 0.02m of 
the laser scanner measurements for the stochastic model of 
the observation vector (see Eq. 19). We also introduced the 
simulated standard deviations �t = 0.5m and �o = 0.2◦ for 
the GNSS and IMU observations. In the case of the initial 
vertices of the 3D building model, we introduced a small 
standard deviation of �V = 0.1mm . The 3D city model is, 
thus, almost introduced as a fixed feature. We are aware that 
this assumption is too optimistic and that the accuracy of 

Fig. 10   Median and confidence intervals of tx in scenario 1

Fig. 11   Median and confidence intervals of ty in scenario 1

Fig. 12   Median and confidence intervals of tz in scenario 1

Fig. 13   Median and confidence intervals of � in scenario 1

Fig. 14   Median and confidence intervals of � in scenario 1
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the introduced 3D city model is rather in the range of a few 
centimeters. However, in the context of this paper, the influ-
ence of a less precise 3D city model will not be considered 
in more detail.

We assume that �ll,k and �ww do not contain correlations 
on their own and among themselves.

4 � Results and Discussion

In the following, we depict the results of the IEKF for both 
scenarios and compare them with the results of a linear 
Kalman filter (LKF), which only uses the simulated GNSS 
and IMU observations. The comparison between LKF and 
IEKF evaluates the benefit of introducing laser scanner 
observations and a city model. The state parameter vector 
xk of the LKF solely consists of xState,k (Eq. 6). The obser-
vation vector lk consists of lglo

Pose,k
 (Eq. 15). The transition 

matrix Fx,k of the LKF is given by Fx,State,k (Eq. 24). Con-
sequently, the VCM of the observation vector and of the 
system noise have to be adapted. The LKFs’ only remaining 
measurement equation (Eq. 31) has to be transformed in 
explicit form. For the LKF, no linearization is necessary 
and no constraints are used. For more information concern-
ing the LKF, see (Simon 2010). Figures 10, 11, 12, 13, 14 
and 15 depict the median values (solid lines) and 68%(1� ) 
confidence intervals (CI) (dashed lines) for the translation 
parameters tx , ty , tz (Figs. 10, 11, 12) and orientation param-
eters � , � , � (Figs. 13, 14, 15) in scenario 1. The CI are cal-
culated numerically using the total number of simulated runs 
S according to Alkhatib et al. (2009). The red lines result 
from the filtered state parameters x̂+

k
 of the IEKF after the 

constraint step. The blue lines result from the filtered state 
parameters x̂+

k
 of the LKF, respectively. The true values are 

plotted in a dashed black line.
The median of the IEKF result for tx (across flight direc-

tion) in Fig. 10 is very close to the true translation, whereas 
we can see slight random deviations between the median of 
the LKF results and the true values. The latter can be seen 
for each pose component and is not explicitly mentioned 

again in the following. The CI of the IEKF and the LKF 
shrink rapidly in the first 5 epochs. Whereas the CI of the 
IEKF is very close to the median, the CI of the LKF is 
significantly broader. The latter can be seen for each pose 
component and is also not explicitly mentioned again. The 
IEKF performs well for that pose component because of the 
measurement constellation. Each measurement distinctively 
assigned to a plane provides information for that pose com-
ponent. In other words, each measured plane of the 3D city 
model is sensitive for that pose component.

The results are similar for ty (in flight direction) in Fig. 11. 
Again, the median of the IEKF results is very close to the 
true translation and its CI shrinks within the first epochs. 
For this pose component, the shrinking of the CI (IEKF) is 
slightly slower than for tx and lasts until epoch 10. A rea-
son for that slight difference can be found in the weaker 
measurement constellation for that pose component. Only 
the triangle-shaped protrusions are sensitive for ty . Conse-
quently, there are significantly fewer observations which 
provide information for that pose component.

Figure 12 shows the results for tz (up-direction). The 
median of the IEKF results is very constant, but seems to 
deviate from the true values by a small systematic shift of 
about 3 cm. This systematic shift is caused by ground points 
wrongly assigned to a wall plane of the building. This results 
in a slight rotation around the y-axis (see results for � ) in 
combination with a slight descent of tz . Again, the CI of the 

Fig. 15   Median and confidence intervals of � in scenario 1 Fig. 16   Median and confidence intervals of tx in scenario 2

Fig. 17   Median and confidence intervals of ty in scenario 2
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IEKF translation shrinks rapidly within the first 6 epochs. 
The boundaries of the CI in the first epochs are not sym-
metrical around the median. They are slightly shifted to 
larger tz values. That means that the IEKF converges slower 
towards the true translation with initial tz values larger than 
the true translation. An initial tz value larger than the true 
translation may cause significantly fewer assignments in the 
first epochs. Only the roof planes are sensitive for that pose 
component.

The results for � , which represents the rotation around the 
x-axis, are shown in Fig. 13. After 10 epochs, the median 
of IEKF and LKF obtain comparable results, whereas the 
median of the IEKF seems to vary slightly more. The CI of 
the IEKF shrinks within the first 12 epochs. Similar to the 
tz pose component, there is a shift of the IEKF CI towards 
larger � values. The only sensitive planes for that pose 
component are the triangle-shaped protrusions and the roof 
planes. This may explain the larger variations in the median 
of the IEKF orientation.

Figures 14, 15 show the results for � (rotation around 
y-axis) and � (rotation around z-axis), respectively. We can 
see similar characteristics for these pose components. In 
both cases, the median of the IEKF results is constant but 
systematically shifted by a small value of about 0.05◦ . As 
has already been mentioned for tz , the systematic shift in � 
is caused by wrongly assigned ground points. Because of the 
skewed alignment of the laser scanner, the wrongly assigned 
ground points also cause a slight rotation in � . All planes are 
sensitive for both pose components.

For scenario 2, we depicted the results in a similar way 
in Figs. 16, 17, 18, 19, 20 and 21. In Fig. 16, we can see 
the results for tx . Similar to scenario 1, the median of the 
IEKF results comes very close to the true translation. The 
lower boundary of the CI (IEKF) is farther afield from the 
median than the upper boundary. It shrinks until epoch 
14. An explanation for the one-sided enlarged CI (IEKF) 
is the systematically extended laser scanner measurements 
hitting the windows. With an initial tx translation, which is 
farther afield from the building than the true translation, 
these systematically extended laser scanner measurements 
are wrongly assigned to the walls of the building. After 
some epochs, these false assignments seem to have disap-
peared. These effects are analyzed later on (see Fig. 29).

The median of the IEKF results for ty in Fig. 17 is close 
to the true translation. The upper boundary of the CI 
(IEKF) shrinks until epoch 13, whereas the lower bound-
ary of the CI (IEKF) clearly departs from the median from 
epoch 14 on. Again, these effects are analyzed later on (see 
Figs. 28 and 29).

We can see the results for tz in scenario 2 in Fig. 18. The 
results are comparable to the ones obtained in scenario 
1 for that pose component. A significant difference can 
be found in the upper boundary of the CI (IEKF), which 

Fig. 18   Median and confidence intervals of tz in scenario 2

Fig. 19   Median and confidence intervals of � in scenario 2

Fig. 20   Median and confidence intervals of � in scenario 2

Fig. 21   Median and confidence intervals of � in scenario 2
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converges to the median much slower than in scenario 1. 
In scenario 2, it does not converge until epoch 15. Again, 
initial tz values larger than the true position cause signifi-
cantly fewer assignments in the first epochs.

We observe comparable results to scenario 1 for the 
pose parameters � and � in Figs. 19 and 20. In both fig-
ures, we can observe that one boundary of the CI (IEKF) 
is farther afield from the median than the other and that the 
CI (IEKF) shrinks slower than in scenario 1.

The pose component � is depicted in Fig. 21. The CI 
(IEKF) shrinks until epoch 12. In addition, we can see that 
the simulated drift in � does not affect the IEKF results, 
whereas the median of the LKF departs from the true ori-
entation continuously as simulated.

A suitable value to evaluate the performances of the 
filters is the root-mean-square error (RMSE). In our simu-
lation, the RMSE is the error between filtered state param-
eters and the true state parameters. The RMSE of the pose 
parameter tx for run s ∈ {1,… , S} is calculated according 
to:

 tx,s,k results from the filtered state parameter vector �̂+
k
 from 

the IEKF or the LKF, respectively. t̄x,k are the true values. 

(53)RMSEtx,R.,s
=

1

K

K
∑

k=1

√

(

tx,s,k − t̄x,k
)2
.

Table 3   RMSE of position and orientation in scenario 1 (first row) and 2 (second row)

Criterion RMSEtx
,R [m] RMSEty

,R [m] RMSEtz ,R
 [m] RMSE�,R [ ◦] RMSE�,R [ ◦] RMSE�,R [ ◦]

IEKF LKF IEKF LKF IEKF LKF IEKF LKF IEKF LKF IEKF LKF

Minimum 0.0033 0.1095 0.0018 0.1121 0.0225 0.1106 0.0112 0.0654 0.0489 0.0629 0.0456 0.0622
0.0024 0.0023 0.0166 0.0122 0.0384 0.0333 0.1867

Maximum 2.1173 0.2957 3.4644 0.3348 3.0158 0.3085 1.8773 0.1407 2.5912 0.1426 2.1497 0.1466
2.1955 2.9587 3.2166 2.6897 2.9243 2.3307 0.3233

Mean 0.0654 0.1899 0.1955 0.1941 0.1166 0.1911 0.0694 0.0964 0.1168 0.0973 0.1284 0.0968
0.1080 0.4496 0.1829 0.1648 0.2008 0.2288 0.2535

Median 0.0079 0.1864 0.0177 0.1898 0.0343 0.1897 0.0245 0.0966 0.0621 0.0980 0.0556 0.0968
0.0128 0.0424 0.0417 0.0519 0.0727 0.0585 0.2510

SD 0.2517 0.0337 0.5697 0.0362 0.3254 0.0344 0.1578 0.0130 0.2348 0.0123 0.2536 0.0135
0.3069 0.7712 0.4385 0.2972 0.2933 0.2924 0.0245

↓ CI (68%) 0.0037 0.1561 0.0041 0.1598 0.0246 0.1566 0.0162 0.0834 0.0556 0.0849 0.0501 0.0838
0.0030 0.0048 0.0194 0.0179 0.0434 0.0404 0.2311

↑ CI (68%) 0.0355 0.2271 0.1010 0.2283 0.0901 0.2254 0.0753 0.1090 0.1050 0.1091 0.1150 0.1091
0.1498 1.7169 0.2881 0.2400 0.2707 0.4953 0.2783

↓ CI (95%) 0.0034 0.1306 0.0023 0.1320 0.0234 0.1267 0.0136 0.0735 0.0531 0.0723 0.0475 0.0725
0.0026 0.0028 0.0178 0.0145 0.0402 0.0361 0.2053

↑ CI (95%) 0.7583 0.2614 2.4217 0.2725 0.8801 0.2634 0.5240 0.1229 0.7461 0.1187 1.0262 0.1275
1.5383 2.3080 1.4151 1.0929 1.0209 0.9829 0.3064

Best RMSE 95.0% 5.0% 89.8% 10.2% 90.2% 9.8% 87.6% 12.4% 80.2% 19.8% 80.6% 19.4%
90.2% 9.8% 68.2% 31.8% 81.2% 18.8% 61.2% 38.8% 57.4% 42.6% 65.4% 34.6%

Fig. 22   RMSEtx ,Ep.

Fig. 23   RMSEty ,Ep.
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The calculation of the RMSE for the other pose parameters 
is carried out analogously.

Table 3 depicts the characteristic criterions: Minimum, 
maximum, mean, median, standard deviation (SD), and the 
lower bound ( ↓ ) and upper bound ( ↑ ) of the 68% and 95% 
CI of different RMSE. In the last row of Table 3, we display 
the rate of runs where the IEKF obtained a smaller RMSE 
than LKF and vice versa. Each criterion is divided into two 
rows regarding scenario 1 (above) and scenario 2 (below).

Table 3 clearly shows that the IEKF obtains better results 
than the LKF. The median values especially are significantly 
smaller in each state parameter and each scenario. By con-
trast, the range of the IEKF results is significantly larger than 
the range of the LKF results, which can be seen in the SD 
and 95% CI values. A possible explanation can be found in a 
larger number of runs, where the IEKF is far away from the 
true values. We will subsequently call these runs failures. 
These failures can be caused by a disadvantageous initial 
pose parameter in the first epoch. By this, a large number of 
laser scanner measurements are assigned to wrong planes 
and the IEKF converges to a wrong pose. The interaction 
between initial pose parameters and performance of the 
IEKF is analyzed at the end of this section. The failures are 
also the explanation for the large discrepancy between the 
mean and median values.

Fig. 24   RMSEtz ,Ep.

Fig. 25   RMSE�,Ep.

Fig. 26   RMSE�,Ep.

Fig. 27   RMSE�,Ep.

Fig. 28   Initial pose values plotted as parallel coordinates in scenario 
1. Total failure rate: 7.6%

Fig. 29   Initial values plotted as parallel coordinates in scenario 2. 
Total failure rate: 20.4%
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To evaluate the performance of the IEKF over the epochs, 
we calculated a mean RMSE for each epoch over all S simu-
lation runs. The calculation is as follows for the RMSE of tx 
in epoch k ∈ {1,… ,K}:

We obtain the RMSE for the other pose parameters analo-
gously. The results can be found in Figs. 22, 23, 24, 25, 26 
and 27.

Figures 22, 23, 24, 25, 26 and 27 generally support the 
interpretations made before. The RMSE of the translation 
parameters tx and tz determined by the IEKF decrease with 
an increasing number of epochs. At the last epoch, the 
RMSEtx,Ep.

 and RMSEtz,Ep.
 of the IEKF is significantly 

smaller than the RMSE obtained by LKF in both scenarios. 
Again, RMSEty,Ep.

 differs and increases after epoch 10 with 
an increasing number of epochs. In both scenarios, espe-
cially in scenario 2, the RMSEty,Ep.

 obtained by the IEKF is 
larger than the one obtained by LKF in the last epochs. The 
RMSE of the orientation parameter show different charac-
teristics, but they are intrinsically quite similar. The RMSE 
obtained by IEKF starts with large values and significantly 
decreases after epoch 10. In the last epoch, RMSE�,Ep. and 
RMSE�,Ep. of IEKF and LKF are quite similar. RMSE�,Ep. of 
the IEKF undercuts the RMSE�,Ep. of the LKF until epoch 9 
(scenario 1), resp. epoch 30 (scenario 2). The RMSE�,Ep. of 
LKF in scenario 2 is clearly affected by the simulated IMU 
drift. It is remarkable that (except in RMSEty,Ep.

 ) the RMSE 
of the IEKF between scenario 1 and scenario 2 is very simi-
lar in the last epoch.

For a deeper understanding of the link between initiali-
zation and performance of the IEKF, we plotted the initial 
values of GNSS and IMU of the first epoch in parallel coor-
dinates. The parallel coordinate representation was first used 
by Inselberg (1985). For this representation, we will show all 
pose components in six parallel axes. On each axis, all initial 
values belonging to this component are depicted. This repre-
sentation is used to identify whether some extreme initial pose 
values could have had a large impact on the divergence of the 
IEKF. In addition, we colored the runs where the IEKF failed 
(failure) in orange and the others (success) in blue. The distinc-
tion in failure and success was selected based on the RMSE of 
the position in the last epoch. The run is classified as a failure 
when there is a value larger than 10 cm.

In scenario 1 (Fig. 28), the failure rate is 7.6%. For the 
initial pose parameters tz , � , � , and � , the failures are dis-
tributed over the whole value range. For tx , the failures are 
slightly concentrated in a range between − 9.2 and − 8.55 m 
and a second range around − 10.6 m. For ty , the failures are 
even more concentrated in a range between 3.72 and 4.3 m. 

(54)RMSEtx,Ep.,k
=

1

S

S
∑

s=1

√

(

tx,s,k − t̄x,k
)2
.

Initial values for ty in a range between 3.72 and 4.3 m lead 
to most of the failures. As previously mentioned, we have a 
weak measurement constellation for ty . Furthermore, the tra-
jectory is parallel to the y-axis with a true value of ty = 7.5m 
in epoch 50, the consequence being that with initial values 
for ty between the true value (5 m) and 6.19 m, the IEKF may 
get back to the true values in a later epoch. This possibility 
is not given for initial values for ty between 3.72 and 4.3 m.

In scenario 2, the failure rate of 20.4% is significantly 
higher. Again, for the initial pose parameters tz , � , � , and � , 
the failures are distributed over the whole value range. For 
ty , the failures are mainly in a range between 3.72 and 5 m. 
The reason for that has already been explained for scenario 
1. For tx , we can see a strong concentration of failures in a 
range between − 11.37 and − 10.4 m. Thus, especially that 
range for tx causes the failures in scenario 2. The reason for 
that can be found in the systematically perturbed laser scan-
ner measurements hitting the windows. These measurements 
are extended by an additive value Δ = 0.6m . In combina-
tion with a disadvantageous initialization, these perturbed 
measurements are wrongly assigned to the wall plane and, 
therefore, cause the failures.

We used GNSS and IMU observations in the measure-
ment update step for all the displayed results in this section. 
We performed the same experiment without using the GNSS 
and IMU observations in the measurement update step. The 
differences in the results are insignificantly small. Therefore, 
we do not show these results here.

5 � Conclusions and Outlook

In this paper, we presented the mathematical basics and the 
workflow of an IEKF which makes it possible to determine 
the trajectory of a UAS better than 5 cm in position (median 
value) and 0.08◦ for orientation (median value). It is not 
mandatory to have continuous GNSS and IMU observations 
for the implemented IEKF. The trajectory is mainly obtained 
using laser scanner measurements of building facades, which 
are modeled as planes in a 3D city model. The laser scan-
ner measurements and the planes of the 3D city model are 
combined by implicit measurement equations and nonlinear 
equality constraints within the IEKF.

To demonstrate the functionality and performance of 
the IEKF implemented, we developed a simulator, which 
showed that the IEKF is even suited to handle systematically 
perturbed observations.

Nevertheless, the algorithm demonstrated may be tuned 
to deal with disadvantageous initial values. A possible start-
ing point can be found in the threshold of the assignment 
algorithm. Instead of a constant value, this value should be 
varied regarding the estimated accuracy of the predicted 
position.
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In the future, we plan to evaluate the performance of the 
IEKF based on real data, especially regarding effects of gen-
eralization of the 3D city model and effects of a 3D city 
model with larger uncertainties. Thus, we can also check 
whether the assumptions made for the simulation (see 
Table 1) are also valid in reality. In particular, the perfor-
mance of the GNSS receiver can deviate strongly from the 
simulated data with the same precision.

In the IEKF presented, the plane parameters and vertices 
are introduced as parameters to preserve the topology of the 
3D city model. With an increasing number of planes and 
vertices, the computation becomes inefficient. Here, we plan 
to reorganize the IEKF presented by means of a dual-state 
Kalman filter.

As has already been mentioned, we plan to integrate cam-
era measurements into the IEKF. This enables the stabiliza-
tion of the trajectory in the long term and the improvement 
of the IEKF’s initial behavior. Therefore, we have to inte-
grate the collinearity equations into our approach. Subse-
quently, we have to integrate the object coordinates of the 
tie points into the state parameter vector. This emphasizes 
the need to use a dual-state Kalman filter. By integrating 
the camera measurements8 into the IEKF, we must deal 
with observations captured in different epochs: one or more 
images observing a tie point were taken in a past epoch and 
only one image is taken in the current epoch.

Finally, we aim to analyze the benefit of integrating 
further geometries in addition to the planes of the 3D city 
model. There are many cylindrical-shaped objects in urban 
areas, such as lantern, traffic lights or street signs, which may 
be used in the IEKF.
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