
Vol.:(0123456789)1 3

PFG (2020) 88:43–61 
https://doi.org/10.1007/s41064-020-00095-z

ORIGINAL ARTICLE

CityGML 3.0: New Functions Open Up New Applications

Tatjana Kutzner1   · Kanishk Chaturvedi1 · Thomas H. Kolbe1 

Received: 18 September 2019 / Accepted: 24 January 2020 / Published online: 26 February 2020 
© The Author(s) 2020

Abstract
The development of the next major version 3.0 of the international OGC standard CityGML is nearing its end. CityGML 3.0 
will come up with a variety of new features and revisions of existing modules that will increase the usability of CityGML 
for more user groups and areas of application. This includes a new space concept, a revised level-of-detail (LOD) concept, 
the representation of time-dependent properties, the possibility to manage multiple versions of cities, the representation of 
city objects by point clouds, an improved modelling of constructions, the representation of building units and storeys, an 
improved representation of traffic infrastructure as well as a clear separation of the conceptual model and the data encod-
ings that allow for providing further encoding specifications besides GML. This paper gives an overview of these new and 
revised concepts, and illustrates their application through selected use cases.

Keywords  CityGML 3.0 · 3D city models · Space concept

Zusammenfassung
CityGML 3.0: Neue Funktionen eröffnen neue Anwendungen. Die Entwicklung der nächsten Hauptversion 3.0 des 
internationalen OGC-Standards CityGML nähert sich dem Ende. CityGML 3.0 wird mit einer Vielzahl an neuen 
Funktionen und der Überarbeitung bestehender Module aufwarten, die die Benutzerfreundlichkeit von CityGML für 
weitere Benutzergruppen und Anwendungsbereiche verbessern. Dazu gehören ein neues Space-Konzept, ein überarbeitetes 
Level-of-Detail (LOD)-Konzept, die Darstellung von zeitabhängigen Eigenschaften, die Möglichkeit, mehrere Versionen 
von Stadtmodellen gleichzeitig zu verwalten, die Darstellung von Stadtobjekten durch Punktwolken, eine verbesserte 
Modellierung von sonstigen Bauwerken, die Darstellung von Gebäudeeinheiten und Etagen, eine verbesserte Darstellung 
der Verkehrsinfrastruktur sowie eine klare Trennung des konzeptuellen Modells von der Datenhaltung, die es erlaubt, neben 
GML weitere Datenformate bereitzustellen. Dieser Artikel gibt einen Überblick über die neuen und überarbeiteten Konzepte 
und veranschaulicht ihre Anwendung anhand ausgewählter Beispiele.

1 � Overview and Development of CityGML 
3.0

Semantic 3D city models are nowadays commonly used for 
representing the real-world entities of cities and landscapes, 
such as buildings, bridges, tunnels, transportation objects, 

city furniture, water bodies, and vegetation. One well-known 
standard for modelling, storing, and exchanging semantic 3D 
city models is the international standard CityGML issued 
by the Open Geospatial Consortium (OGC) (Gröger et al. 
2012). The current version 2.0 of the standard was adopted 
by OGC in March 2012. To increase the usability of City
GML for more user groups and areas of application, the 
OGC CityGML SWG and the Special Interest Group 3D 
(SIG 3D) of the initiative Geodata Infrastructure Germany 
(GDI-DE) started in 2013 to work on the next major version 
CityGML 3.0.

Since the release of CityGML 2.0, several change 
requests have been submitted to OGC. Further require-
ments and ideas were gathered and discussed at an interna-
tional workshop jointly hosted by OGC and SIG 3D in June 

DGPF

 *	 Tatjana Kutzner 
	 kutzner@tum.de

	 Kanishk Chaturvedi 
	 kanishk.chaturvedi@tum.de

	 Thomas H. Kolbe 
	 thomas.kolbe@tum.de

1	 Chair of Geoinformatics, Technical University of Munich, 
80333 Munich, Germany

http://orcid.org/0000-0001-9085-1842
http://orcid.org/0000-0003-1456-0423
http://crossmark.crossref.org/dialog/?doi=10.1007/s41064-020-00095-z&domain=pdf


44	 PFG (2020) 88:43–61

1 3

2013. Both, the outcomes of this discussion and the change 
requests, were organised into 14 Work Packages (WPs) that 
defined the overall work scope for CityGML 3.0. Persons 
interested in participating could do so as either work pack-
age lead, editor, co-editor, contributor, or reviewer. Some 
WPs consistently progressed and produced useful results, 
whereas other WPs were not active at all. By the end of 
2017, the results of the active WPs were integrated into a 
consolidated version of the CityGML 3.0 Conceptual Model 
(Kutzner and Kolbe 2018). Afterwards, a process of refining 
and resolving open issues took place until the end of 2019. 
Thus, it is a good point in time now to take a closer look at 
the new concepts and improvements CityGML 3.0 will offer. 
The current version of the conceptual UML model as well as 
the GML encoding (XML schemas) can be freely accessed 
in the github repositories OGC (2019a) and OGC (2019b), 
respectively.

The CityGML model has been fully revised to reflect 
the increasing need for better interoperability with other 
relevant standards in the field like Industry Foundation 
Classes (IFC) (ISO 16739 2013), IndoorGML (Lee et al. 
2016), Land Administration Domain Model (LADM) (ISO 
19152 2012), INSPIRE (European Parliament and Council 
2007), as well as with linked data and Semantic Web Tech-
nologies like the Resource Description Framework (RDF) 
(W3C 2014). External object references have been rephrased 
and are now better aligned to an RDF representation. Like 
before, each city object can have an arbitrary number of 
references to other objects in other datasets or databases, 
but these can now be additionally qualified by a relation type 
(that can point to a definition from an external ontology, e.g. 
the sameAs relation from OWL) given by an additional URI 
and allow for mapping to RDF triples.

The CityGML 3.0 standard will consist of two parts: 
the CityGML 3.0 Conceptual Model specification, which 
is planned to be released early 2020, and the CityGML 3.0 
GML Encoding specification, which is to be published a 
couple of months after. Further encoding specifications 
(e.g. relational database schema, JSON-based representa-
tion) may follow in the future. The CityGML 3.0 Conceptual 
Model defines 17 modules as shown in Fig. 1. All mod-
ules from CityGML 2.0 are part of CityGML 3.0. In addi-
tion, the new modules Dynamizer, Versioning, PointCloud, 
and Construction were introduced, and the modules Core, 
Generics, Building, and Transportation have been revised. 
The other modules have been updated to work with the new 
Core module.

CityGML 3.0 applies a model-driven approach in the cre-
ation of the data model and exchange formats. Over the last 
decade, this approach has become the standard procedure for 
defining geospatial application schemas. The model-driven 
approach involves two steps: (1) the definition of data mod-
els at the conceptual level, which is commonly done using 

the modelling language UML (ISO 19505-2 2012), and (2) 
the automatic derivation of transfer formats from these UML 
models by applying predefined transformation rules. This 
approach has been applied, e.g. in the development of the 
European INSPIRE Data Specifications (JRC 2014) and the 
German AFIS–ALKIS–ATKIS (AAA) Reference Model 
(AdV 2009). The following tools are used to implement the 
model-driven approach: Enterprise Architect (Sparx Sys-
tems 2015) for defining the CityGML 3.0 UML model and 
ShapeChange (Interactive Instruments 2019) for deriving the 
GML application schemas. Also, the feature catalogue with 
a detailed overview and explanation of all classes, attributes, 
and relationships is derived automatically.

UML data models developed for the GI domain are usu-
ally based on relevant standards from the ISO 191xx series 
of geographic information standards. The data model of 
CityGML 3.0 is now based on these standards as well. This 
means that the geometry types from ISO 19107 as well as 
the data types from ISO 19103 are used and that the rules for 
defining application schemas in UML from ISO 19109 are 
applied. In addition, the transformation rules for converting 
UML models to GML application schemas from ISO 19136 
are applied in the GML encoding.

The application of the ISO-compliant transformation 
rules inevitably leads to some changes in the XML encod-
ing compared to CityGML 2.0 and 1.0. Even if CityGML 
3.0 would not change anything on the conceptual model with 
regard to CityGML 2.0, the encoding would be slightly dif-
ferent and datasets would have to be converted and software 

Fig. 1   CityGML 3.0 module overview. The vertical boxes show the 
different thematic modules. Horizontal modules specify concepts that 
are applicable to all thematic modules



45PFG (2020) 88:43–61	

1 3

for CityGML 2.0 would have to be adapted for CityGML 
3.0. However, all modifications to the new CityGML 3.0 
model are carried out in a way to ensure backwards com-
patibility with CityGML 1.0 and 2.0, i.e. it is possible to 
transform all CityGML 1.0 and 2.0 datasets into the new 
model by applying syntactical transformations only. Back-
wards compatibility is a major requirement for CityGML 3.0 
to preserve the investments by anybody providing CityGML 
tools, datasets, and extensions.

2 � The New CityGML 3.0 Core Module

2.1 � The CityGML 3.0 Space Concept

In CityGML 3.0, a clear semantic distinction of spatial 
features is introduced by mapping all city objects onto 
the semantic concepts of spaces and space boundaries. A 
Space is an entity of volumetric extent in the real world. 
Buildings, water bodies, trees, rooms, and traffic spaces, 
for instance, have a volumetric extent. Hence, they are 
modelled as spaces or, more precisely, as specific sub-
classes of the abstract class Space. A Space Boundary 
is an entity with areal extent in the real world. Space 
Boundaries delimit and connect Spaces. Examples are the 
wall surfaces and roof surfaces that bound a building; the 
water surface as boundary between the water body and air; 
the road surface as boundary between the ground and the 
traffic space; or the digital terrain model representing the 
space boundary between the over- and underground space.

To obtain a more precise definition of spaces, they 
are further subdivided into physical spaces and logical 
spaces. Physical spaces are spaces that are fully or par-
tially bounded by physical objects. Buildings and rooms, 
for instance, are physical spaces as they are bounded by 
walls and slabs. Traffic spaces of roads are physical spaces 
as they are bounded by road surfaces against the ground. 
Logical spaces, in contrast, are spaces that are not neces-
sarily bounded by physical objects, but are defined accord-
ing to thematic considerations. Depending on the applica-
tion, logical spaces can also be bounded by non-physical, 
i.e. virtual boundaries and they can represent aggrega-
tions of physical spaces. A building unit, for instance, is 
a logical space as it aggregates specific rooms to flats, 
the rooms being the physical spaces that are bounded by 
wall surfaces, whereas the aggregation as a whole is being 
delimited by a virtual boundary. Other examples are city 
districts which are bounded by virtual vertically extruded 
administrative boundaries; public spaces vs. security 
zones in airports; or city zones with specific regulations 
stemming from urban planning. The definition of physi-
cal and logical spaces and of corresponding physical and 
virtual boundaries is in line with the discussion in Smith 

and Varzi (2000) on the difference between bona fide and 
fiat boundaries to bound objects. Bona fide boundaries 
are physical boundaries; they correspond to the physical 
boundaries of physical spaces in CityGML 3.0. In contrast, 
fiat boundaries are man-made boundaries; they are equiva-
lent to the virtual boundaries of logical spaces.

Physical spaces, in turn, are further classified into occu-
pied spaces and unoccupied spaces. Occupied spaces rep-
resent physical volumetric objects that occupy space in 
the urban environment. Examples for occupied spaces are 
buildings, bridges, trees, city furniture, and water bodies. 
Occupying space means that some space is blocked by 
these volumetric objects; for instance, the space blocked by 
the building in Fig. 2 cannot be used any more for driv-
ing through this space or placing a tree on that space. In 
contrast, unoccupied spaces represent physical volumetric 
entities that do not occupy space in the urban environment, 
i.e. no space is blocked by these volumetric objects. Exam-
ples for unoccupied spaces are building rooms and traffic 
spaces. There is a risk of misunderstanding the term Occu-
piedSpace. However, we decided to use the term anyway, as 
it is established in the field of robotics for over three decades 
(Elfes 1989). The navigation of mobile robots makes use of a 
so-called occupancy map that marks areas that are occupied 
by matter and, thus, are not navigable for robots.

Semantic objects in CityGML are often composed of 
parts, i.e. they form multi-level aggregation hierarchies. This 
also holds for semantic objects representing occupied and 
unoccupied spaces. In general, two types of compositions 
can be distinguished:

(1)	 Spatial partitioning Semantic objects of either the 
space type OccupiedSpace or UnoccupiedSpace are 
subdivided into different parts that are of the same 
space type as the parent object. Examples are Buildings 
that can be subdivided into BuildingParts, or Buildings 
that are partitioned into ConstructiveElements. Build-
ings as well as BuildingParts and ConstructiveElements 

Fig. 2   Occupied and unoccupied spaces



46	 PFG (2020) 88:43–61

1 3

represent OccupiedSpaces. Similarly, Roads can be 
subdivided into TrafficSpaces and AuxiliaryTraffic
Spaces, all objects being UnoccupiedSpaces.

(2)	 Nesting of alternating space types Semantic objects of 
one space type contain objects that are of the opposite 
space type as the parent object. Examples are Buildings 
(OccupiedSpace) that contain BuildingRooms (Unoc-
cupiedSpace), BuildingRooms (UnoccupiedSpace) 
that contain Furniture (OccupiedSpace), and Roads 
(UnoccupiedSpace) that contain CityFurniture (Occu-
piedSpace). The categorization of a semantic object 
into occupied or unoccupied takes place at the level 
of the object in relation to the parent object. A build-
ing is part of a city model; thus, first of all it occupies 
urban space within a city. As long as the interior of 
the building is not modelled in detail, the space cov-
ered by the building needs to be considered as occu-
pied and only viewable from the outside. To make the 
building accessible inside, voids need to be added to 
the building in the form of building rooms. The rooms 
add free space to the building interior, i.e. the Occu-
piedSpace contains now UnoccupiedSpace. The free 
space inside the building can, in turn, contain objects 
that occupy space again, such as furniture or installa-
tions. In contrast, roads also occupy urban space in the 
city; however, this space is initially unoccupied as it 
is accessible by cars, pedestrian, or cyclists. Adding 
traffic signs or other city furniture objects to the free 
space results in specific sections of the road becoming 
occupied by these objects. Thus, one can also say that 
occupied spaces are mostly filled with matter; whereas, 
unoccupied spaces are mostly free of matter and, thus, 
realise free spaces.

The classification of feature types into OccupiedSpace 
and UnoccupiedSpace also defines the semantics of the 
geometries attached to the respective features. For Occu-
piedSpaces, the attached geometries describe volumes that 
are (mostly) physically occupied. For UnoccupiedSpaces, 
the attached geometries describe (or bound) volumes that 
are (mostly) physically unoccupied. This also has an impact 
on the required orientation of surface normals for attached 
thematic surfaces. For OccupiedSpaces, the normal vectors 
of thematic surfaces must point in the same direction as the 
surfaces of the outer shell of the volume. For Unoccupied-
Spaces, the normal vectors of thematic surfaces must point 
in the opposite direction as the surfaces of the outer shell 
of the volume. This means that from the perspective of an 
observer of a city scene, the surface normals must always 
be directed towards the observer. In the case of Occupied-
Spaces (e.g. Buildings, Furniture), the observer must be 
located outside the OccupiedSpace for the surface normals 
being directed towards the observer; whereas in the case 

of UnoccupiedSpaces (e.g. Rooms, Roads), the observer is 
typically inside the UnoccupiedSpace.

The classification into OccupiedSpace and Unoccupied-
Space might not always be apparent at first sight. Carports, 
for instance, represent an OccupiedSpace, although they 
are not closed and most of the space is free of matter, see 
Fig. 3. Since a carport is a roofed, immovable structure with 
the purpose of providing shelter to objects (i.e. cars), car-
ports are frequently represented as buildings in cadastres. 
Thus, also in CityGML, a carport should be modelled as an 
instance of the class Building. Since Building is transitively 
a subclass of OccupiedSpace, a carport is an Occupied-
Space as well. However, only in LOD1, the entire volumet-
ric region covered by the carport would be considered as 
physically occupied. In LOD1, the occupied space is defined 
by the entire carport solid (unless a room would be defined 
in LOD1 that would model the unoccupied part below the 
roof); whereas in LOD2 and LOD3, the solids represent 
more realistically the really physically occupied space of 
the carport. In addition, for all OccupiedSpaces, the normal 
vectors of the thematic surfaces like the RoofSurface need 
to point away from the solids, i.e. consistent with the solid 
geometry.

In contrast, a room is a physically unoccupied space. In 
CityGML, a room is represented by the class BuildingRoom 
that is a subclass of UnoccupiedSpace. In LOD1, the entire 
room solid would be considered as unoccupied space, which 
can contain furniture and installations, though, as is shown 
in Fig. 4. In LOD2 and 3, the solid represents more realisti-
cally the really physically unoccupied space of the room 
(possibly somewhat generalised as indicated in the figure). 
For all UnoccupiedSpaces, the normal vectors of the bound-
ing thematic surfaces like the InteriorWallSurface need to 
point inside the object, i.e. opposite to the solid geometry.

The concepts of Spaces and Space Boundaries are repre-
sented in the UML model of the CityGML 3.0 Core module 
by introducing the two pivotal abstract classes Abstract-
Space and AbstractSpaceBoundary as shown in Fig.  5. 

Fig. 3   Representation of a carport as OccupiedSpace in different 
LODs. The red boxes represent solids, the green area represents a sur-
face. In addition, the normal vectors of the roof solid (in red) and the 
roof surface (in green) are shown



47PFG (2020) 88:43–61	

1 3

From the class AbstractSpace, the following subclasses are 
derived: the classes AbstractPhysicalSpace and Abstract-
LogicalSpace to classify spaces into physical and logical 
spaces as well as the classes AbstractOccupiedSpace and 
AbstractUnoccupiedSpace to categorise physical spaces into 
physically occupied and unoccupied spaces. The concrete 
classes like Building, BuildingRoom, or TrafficSpace are 
then defined as subclasses of these abstract classes. From 
the class AbstractSpaceBoundary, the class AbstractThe-
maticSurface is derived. It is the superclass for all concrete 
surface classes like WallSurface, ClosureSurface, WaterSur-
face or LandUse. The relation between AbstractSpace and 
AbstractSpaceBoundary is represented in the UML model 
through an association between both classes.

The classification of real-world objects into spaces and 
space boundaries is solely based on the semantics of these 
objects and not on their used geometry type, as CityGML 

Fig. 4   Representation of a room as UnoccupiedSpace in different 
LODs. The red boxes represent solids, the green area represents a sur-
face. In addition, the normal vectors of the room solid (in red) and the 
wall surface (in green) are shown

Fig. 5   Excerpt from the CityGML 3.0 Core UML model defining the space concept



48	 PFG (2020) 88:43–61

1 3

3.0 allows various geometrical representations for objects. 
A building, for instance, can be spatially represented by a 
3D solid (e.g. in LOD1), but at the same time, the real-world 
geometry can also be abstracted by a single point (LOD0), 
by a 3D point cloud, or by a 3D mesh (LOD3).

The space concept was strongly motivated from urban 
planning, the work on IndoorGML and indoor navigation as 
well as the Land Administration Domain Model. By intro-
ducing spaces in CityGML, it will become easier to link 
CityGML with IndoorGML and to apply analytical frame-
works from the urban geography domain like Space Syntax 
(Hillier and Hanson 1984) or from the analyses of urban 
activities like living, working, or traffic (which are all taking 
place in or affecting spaces). In addition, the space concept 
was inspired by the work of Billen et al. (2012) on defin-
ing a generic ontology for the urban space. This ontology 
partitions the universe into spaces that are classified into 
physical spaces and fictional spaces. Physical spaces can 
have boundaries and can be divided into sub-spaces. Physi-
cal sub-spaces, in turn, are classified into penetrable and 
non-penetrable physical sub-spaces, depending on whether 
they can be penetrated by an agent such as a human, an 
electromagnetic, or a specific behaviour. Real-world objects 
can then be linked to the physical sub-spaces. Buildings, 
for instance, are considered to have a non-permeable space, 
whereas rooms are permeable spaces. The concepts defined 
in the ontology can be found again in the space concept of 
CityGML 3.0. Physical and fictional spaces are represented 
in CityGML 3.0 by the classes AbstractPhysicalSpace and 
AbstractLogicalSpace. The non-penetrable and penetrable 
physical sub-spaces are modelled in CityGML 3.0 by the 
classes AbstractOccupiedSpace and AbstractUnoccupied-
Space; thus, buildings, which are considered by Billen et al. 
(2012) as non-penetrable, are defined as occupied spaces 
and rooms, which are considered as penetrable, are defined 
as unoccupied spaces. In contrast to the ontology, where 
only physical spaces can have boundaries, all spaces can be 
bounded by thematic surfaces in CityGML 3.0. The space 
concept corresponds also with the observations made in Yan 
et al. (2019) on the categorization of spaces into indoor and 
outdoor spaces to improve indoor/outdoor navigation. The 
classification in CityGML 3.0 does not go as far as differen-
tiating semi-indoor and semi-outdoor spaces as well, how-
ever, CityGML 3.0 can be used to derive this classification. 
The modelling in CityGML 3.0 does not focus on model-
ling the navigable space, but on an exact representation of 
spatial objects such as the carport in LOD2/3 as shown in 
Fig. 3. Nevertheless, CityGML 3.0 also allows for deriving 
the navigable space of the carport. This distinguishes the 
modelling with CityGML 3.0 from the concepts defined in 
Yan et al. (2019).

The new space concept offers several advantages:

•	 In CityGML 3.0 all geometric representations are defined 
in the Core module only. This makes (a) data models of 
the thematic modules simpler as they no longer need to 
be associated directly with the geometry classes, and (b) 
implementation easier as all spatial concepts have only 
to be implemented once in the Core module and all the-
matic modules like Building, Relief, WaterBody, etc. are 
inheriting them.

•	 The space concept supports the expression of explicit 
topological, geometrical, and thematic relations between 
spaces and spaces, spaces and space boundaries, and 
space boundaries and space boundaries. Thus, imple-
menting the checking of geometric-topological consist-
ency will become easier, because most checks can be 
expressed and performed on the CityGML Core module 
and then automatically apply to all thematic modules. 
When a new thematic module [or an Application Domain 
Extension (ADE)] will be added and its spatial represen-
tations will be expressed using space and space boundary 
classes, the validity checks automatically hold also for 
the new thematic module (or ADE).

•	 Some new application areas could be opened up. For 
example, urban planning, urban analytics, autonomous 
driving and driver assistance systems, and navigation 
in general will benefit from the space concept. Also the 
modelling of the underground (hollow spaces, geologi-
cal rock layers and their separating surfaces) could be 
very elegantly done in the future using spaces and space 
boundaries.

•	 For the analysis of navigable spaces (e.g. to generate 
IndoorGML data from CityGML) algorithms can be 
defined on the level of the Core module. These algo-
rithms will then work with all CityGML feature classes 
and also ADEs as they are derived from the Core. The 
same is true for other applications of 3D city models 
listed in Biljecki et al. (2015) such as visibility analyses 
including shadow casting or solar irradiation analyses.

•	 Practitioners and developers do not see much of the 
space concept, because the space and space boundary 
classes are just abstract classes. Only elements represent-
ing objects from concrete subclasses such as Building, 
BuildingRoom, or TrafficSpace will appear in CityGML 
files.

2.2 � The CityGML 3.0 LOD Concept

CityGML 3.0 will include a revised Level of Detail (LOD) 
concept which comprises a central definition of all geom-
etries in the Core module and the representation of the inte-
rior of city objects at any level of detail.

In CityGML 2.0, each module defines the required 
geometries itself, leading to redundancy, for instance, in 



49PFG (2020) 88:43–61	

1 3

the Building, Tunnel, and Bridge modules. To overcome 
these redundancies, nearly all geometry representations are 
moved from the thematic modules to the Core module and 
are associated with the semantic concepts of spaces and 
space boundaries, see Fig. 6. The geometry classes from 
ISO 19107 are used for defining the various geometric rep-
resentations. Since all feature types in the thematic modules 
are defined as subclasses of the space and space boundary 
classes, they automatically inherit the geometry classes and, 
thus, no longer require direct associations with them.

Spaces and all its subclasses like Building, Room, and 
TrafficSpace can now be spatially represented as single 
points in LOD0, multi-surfaces in LOD0/2/3, solids in 
LOD1/2/3, and multi-curves in LOD2/3. Space bounda-
ries and all its subclasses such as WallSurface, LandUse, 
or Relief can now be represented as multi-surfaces in 
LOD0/2/3 and as multi-curves in LOD2/3.

LOD4, which is used for representing the interior of 
objects in CityGML 2.0 (like indoor modelling for buildings 
and tunnels), has been removed; only the LODs 0/1/2/3 will 
remain. Instead, the interior of objects can be expressed now 
integrated with the LODs 0/1/2/3. This allows, for instance, 
the representation of floor plans in LOD0 (Konde et al. 
2018). It will even be possible to model the outside shell of 
a building in LOD1, while representing the interior structure 

in LOD2 or 3. Details on the changes to the CityGML LOD 
concept are provided in Löwner et al. (2016).

In addition, the new PointCloud module adds the possi-
bility to use 3D point clouds to represent the geometries of 
physical spaces and space boundaries.

3 � Refinement of Constructions 
and Buildings

CityGML 3.0 will contain a new Construction module that 
defines concepts common to all kinds of man-made con-
structions like buildings, bridges, and tunnels. This means 
that the module integrates all classes that are similar over 
different types of constructions and that are defined sepa-
rately in the Building, Bridge, and Tunnel modules in City
GML 2.0. These are, in particular, the various thematic 
surfaces like RoofSurface, GroundSurface, or WallSurface, 
and the openings Door and Window. Figure 7 shows the 
Construction module. The module defines a class Abstract-
Construction as subclass of AbstractOccupiedSpace which 
is associated with the different thematic surfaces. Buildings, 
bridges, and tunnels, in turn, are defined as subclasses of 
the class AbstractConstruction, inheriting in this way auto-
matically the associations with all thematic surfaces. This 

Fig. 6   Excerpt from the CityGML 3.0 Core UML model defining the LOD concept. The geometries in CityGML 3.0 are now associated with the 
classes in the Core model and no longer need to be specified in each thematic module separately



50	 PFG (2020) 88:43–61

1 3

leads to a substantial simplification of the UML models of 
the Building, Bridge, and Tunnel modules. In addition, for 
representing man-made structures that are neither buildings, 
nor tunnels, nor bridges (e.g. large chimneys or city walls), 
the new class OtherConstruction has been introduced as sub-
class of AbstractOccupiedSpace.

To facilitate a more direct mapping of IFC onto City
GML, a new feature type AbstractConstructiveElement is 
introduced and corresponding subclasses BuildingConstruc-
tiveElement, BridgeConstructiveElement, and TunnelCon-
structiveElement are defined in the modules Building (see 
Fig. 8), Bridge, and Tunnel. These feature types allow for 
mapping constructive elements from BIM data sets given 
in the IFC standard (e.g. the IFC classes IfcWall, IfcRoof, 
IfcBeam, IfcSlab, etc.) onto CityGML. These volumetric 

components are bounded by the various thematic surfaces 
RoofSurface, WallSurface, etc. as well. Thus, space and 
space boundary establish the explicit connection between 
(volumetric) constructive elements and their thematic 
boundary surfaces.

The interoperability of CityGML with INSPIRE is 
improved by adopting attributes from the INSPIRE Building 
data theme (JRC 2013) which allow for specifying multiple 
elevation levels and measured heights. In addition, various 
events and their dates can be specified, such as the date a build-
ing permit was issued, the start of renovation, or the end of 
renovation (see corresponding attributes in the class Abstract-
Construction in Fig. 7).

Doors and windows have a clearer semantics now. The 
classes Window and Door represent now filling elements; in 

Fig. 7   CityGML 3.0 Construction module



51PFG (2020) 88:43–61	

1 3

addition, the classes WindowSurface and DoorSurface are 
introduced to represent filling surfaces.

The Building module introduces a new class AbstractBuild-
ingSubdivision, which is modelled as a subclass of Abstract-
LogicalSpace, and the two specialisations BuildingUnit and 
Storey to allow for representing building units (like apart-
ments) and storeys.

4 � Dynamics of Changing Cities

In general, a city object can have properties related to its 
geometry, topology, semantics, and appearance and all of 
these properties may change w.r.t. time. For example, a 
construction event leads to the change in geometry of a 
building (i.e. addition of a new building floor or demoli-
tion of an existing door). The geometry of an object can 
be further classified according to its shape, location, and 
extent, which can also be changed over time. A moving 
car object involves changing only the location of the car 

object; however, a flood incident involves variations in the 
location and shape of water. There might be other prop-
erties which change w.r.t. thematic data of city objects, 
e.g. hourly variations in energy or gas consumption of a 
building or changing the building usage from residential to 
commercial. Some properties involve changes in appear-
ances over the period of time, such as building textures 
changing over years or traffic cameras recording videos of 
moving traffic over definite intervals. 3D city models com-
prise relevant real-world entities and also represent inter-
relationships between objects. Such interrelationships may 
also change over time. Hence, it is important to consider 
that the representation of time-varying data is required to 
be associated with these different properties.

Temporal variations involve time points mapped onto the 
specific attributes (i.e. spatial, thematic, topology, or appear-
ance). Such mappings are often realised by discrete record-
ings or by interpolation functions and involve quantitative 
changes which can be defined as a function of time. For 
example, varying energy consumption values of a building 

Fig. 8   CityGML 3.0 Building module



52	 PFG (2020) 88:43–61

1 3

can be determined for specific points of time (1) in the past 
by querying a database for historic data, (2) in the present 
by querying a real-time sensor or IoT device, and (3) in the 
future by a simulation software. However, there are other 
scenarios where features begin or cease to exist over differ-
ent time intervals, for example, addition of a new building 
or demolition of an old building. Such scenarios involve 
qualitative changes and are fundamentally different from 
the quantitative changes. Such changes can not be defined 
as a function of time on a feature’s property as the state of 
features changes. Hence, it is also essential to consider that 
semantic 3D city models handle both quantitative and quali-
tative changes within cities/city objects. Since both quanti-
tative and qualitative changes involve variations w.r.t. time, 
it is also important to determine if they can be handled by 
the same mechanisms. A detailed discussion on the require-
ments of applications regarding the support of dynamic data 
is given in Chaturvedi and Kolbe (2019).

In the current version of CityGML (version 2.0), such 
time variations are not supported. Hence, two new concepts 
(Versioning module and Dynamizer module) are proposed 
for CityGML 3.0 to manage time-dependent properties. 
The Versioning module manages qualitative changes that 
are slower in nature, e.g. (1) the history or evolution of cit-
ies such as construction or demolition of buildings, and (2) 
managing multiple versions of the city models. The Dynam-
izer module manages quantitative changes representing high 
frequent or dynamic variations of object properties, e.g. vari-
ations of (1) thematic attributes such as changes of physical 
quantities (energy demands, temperature, solar irradiation 
levels), (2) spatial properties such as change of a feature’s 
geometry, with respect to shape and location (moving 

objects), and (3) real-time sensor observations. In this case, 
only some of the properties of otherwise static objects need 
to represent such time-varying values.

4.1 � Versioning of Cities

Within the new Versioning module, CityGML 3.0 introduces 
bitemporal timestamps for all objects in alignment with the 
INSPIRE data specifications. Besides the attributes creation-
Date and terminationDate from CityGML 2.0, which refer 
to the time period in which a specific version of an object 
is an integral part of the 3D city model, all objects now 
can additionally have the attributes validFrom and validTo, 
which represent the lifespan a specific version of an object 
has in the real world. Furthermore, each geographic feature 
is being provided with two identifiers: the identifier property 
which is stable along the lifetime of the real-world object, 
and the gml:id attribute which is to mark the respective ver-
sion of the object. In this way, not only the current version of 
a 3D city model, but also its entire history can be represented 
in CityGML and exchanged even within a single file. The 
module defines two new feature types: Version, which can be 
used to explicitly define named states of the 3D city model 
and denote all the specific versions of objects belonging to 
such states, and VersionTransition, which allows to explicitly 
link different versions of the 3D city model by describing the 
reason of change and the modifications applied. Details on 
the versioning concept are given in Chaturvedi et al. (2017). 
The versioning concept has already been used and further 
extended by a proposed proof-of-concept called UrbanCo-
2Fab (Samuel et al. 2016) to represent multiple viewpoints 
of urban evolution.

Fig. 9   An instance example of 
versions representing modifica-
tions of a building



53PFG (2020) 88:43–61	

1 3

The following example illustrates one such possibility of 
modification scenarios. As shown in Fig. 9, a building with 
the major ID B1020 has a function property Office and one 
of its building parts with major ID BP12 has a roofType 
property Flat. Over a period of time, the building function 
property is changed to Living which has been captured in 
version 2. Furthermore, at a point in time, the roofType prop-
erty of the same building has been changed to Saddle. Using 
the Versioning module, version management can easily be 
supported in a single CityGML data set as shown in Fig. 10. 
The building object in version 1 can be denoted as B1020_t1 
at a specific point in time t1. XPath can be used with XLink 
to retrieve all the instances of the same building object. The 
instance data can also include version elements for manag-
ing different versions of an object. However, due to limited 
space in this paper, the example illustrates a simple version 
management where it is sufficient to just use the bi-temporal 
time attributes and the major/minor IDs.

The advantage of this approach is that it not only facili-
tates the data model for supporting different versions, but 

also allows the different versions to be used in an interoper-
able exchange format and the exchange of all versions of 
a repository within a single dataset. Such a dataset can be 
used by different software systems to visualise and work 
with all the versions. The approach not only addresses the 
implementation of versionable CityGML models but also 
considers new aspects to previous work such as managing 
multiple histories or multiple interpretations of the past of a 
city. Also, collaborative work is supported since the Version-
ing module provides all functionalities to represent a tree of 
workspaces as version control systems like git or svn. The 
proposed UML model handles versions and version transi-
tions as feature types, which allows the version management 
to be completely handled using the OGC Web Feature Ser-
vice (Vretanos 2010). No extension of other OGC standards 
is required.

Fig. 10   Representation of dif-
ferent versions of city objects 
within one CityGML dataset 
encoded in GML



54	 PFG (2020) 88:43–61

1 3

4.2 � Representation of Time‑Dependent Properties

The new Dynamizer module has been developed to improve 
the usability of CityGML for different kinds of simulations 
as well as to facilitate the integration of sensors with 3D 
city models. Both, simulations and sensors provide dynamic 
variations of some measured or simulated properties like, 
for example, the electricity consumption of a building or the 
traffic density within a road. The variations of the value are 
typically represented using time series data. The data source 
of the time series data is either sensor observations (e.g. 
from a smart meter), pre-recorded load profiles (e.g. from 
an energy company), or the results of some simulation run.

As shown in Fig.  11, Dynamizers serve three main 
purposes:

1.	 Dynamizer is a data structure to represent dynamic val-
ues in different and generic ways. Such dynamic values 
may be given by (1) tabulation of time/value pairs using 
its AtomicTimeseries class, (2) patterns of time/value 
pairs based on statistical rules using its CompositeTime-
series class, and (3) retrieving observations directly 
from external sensor/IoT services using its SensorCon-
nection class. The values can be obtained from sensors, 
simulation specific databases, and also external files 
such as CSV or Excel sheets.

2.	 Dynamizer delivers a method to enhance static city mod-
els by dynamic property values. It references a specific 
property (e.g. spatial, thematic or appearance properties) 
of a specific object within a 3D city model providing 
dynamic values overriding the static value of the refer-
enced object attribute.

3.	 Dynamizer objects establish explicit links between sen-
sor/observation data and the respective properties of 
city model objects that are measured by them. By mak-
ing such explicit links with city object properties, the 
semantics of sensor data become implicitly defined by 
the city model.

In this way, dynamizers can be used to inject dynamic 
variations of city object properties into an otherwise static 
representation. The advantage in using such approach is 
that it allows only selected properties of city models to be 
made dynamic. If an application does not support dynamic 
data, it simply does not allow/include these special types 
of features.

Dynamizers have already been implemented as an 
Application Domain Extension (ADE) for CityGML 2.0 
and were employed in the OGC Future City Pilot Phase 1. 
More details about the UML diagram and instance docu-
ments are given in Chaturvedi and Kolbe (2017).

Fig. 11   Conceptual representa-
tion of Dynamizers allowing (1) 
enhancing the properties of city 
objects by overriding their static 
values, and (2) the representa-
tion of time-variant values from 
sensors, simulation specific 
databases, and external files. 
Image taken from Chaturvedi 
and Kolbe (2016)



55PFG (2020) 88:43–61	

1 3

5 � Further New Concepts

In addition to the new and revised modules and concepts 
presented above, two further modules provide interesting 
new additions to CityGML 3.0: the Transportation module 
and the PointCloud module.

5.1 � Transportation Module

The Transportation module defines classes for the repre-
sentation of central elements of the traffic infrastructure. To 
improve the usability of CityGML transportation objects 
with traffic and driving simulations, driving assistance sys-
tems, autonomous driving, as well as with road and railway 
facility management systems, the data model has been sub-
stantially revised.

Figure 12 illustrates the new Transportation module. 
Transportation objects like roads, tracks, or railways are 
defined now as concrete subclasses of the abstract class 

TransportationSpace. In addition, they can be subdivided 
into sections, which can be regular road, track or railway 
legs, intersection areas, or roundabouts (class Section and 
Intersection). Intersection areas as well as roundabouts can 
belong to multiple road or track objects avoiding the redun-
dant representation of shared spaces. As in CityGML 2.0, 
transportation objects can be subdivided into TrafficArea 
(e.g. driving lanes, pedestrian zones, and cycle lanes) and 
AuxiliaryTrafficArea (e.g. kerbstones, middle lanes, and 
green areas). To adapt the semantics of the Transportation 
module to the CityGML 3.0 space concept, the classes Traf-
ficSpace and AuxiliaryTrafficSpace were introduced in addi-
tion to TrafficArea and AuxiliaryTrafficArea, the two areas 
representing now the bottom boundaries of the two spaces. 
Each traffic space can have an optional ClearanceSpace. 
This is exemplified in Fig. 13. A road consisting of a driv-
ing lane and two sidewalks is represented. The traffic spaces 
(in blue) define the free spaces above the driving lane and 
the sidewalks; whereas, the traffic areas (in green) represent 

Fig. 12   CityGML 3.0 Transportation module



56	 PFG (2020) 88:43–61

1 3

the ground surfaces of the traffic spaces. In Germany, for 
example, roads typically have a free space height of 4.5 m 
and sidewalks of 2.5 m. In addition, clearance spaces (in 
red) are represented.

Transportation objects can now have an areal as well as a 
center line representation for each LOD. In the highest LOD 
(LOD3), each lane is represented by an individual traffic 
space object. Each traffic space can be linked to predeces-
sor and successor traffic spaces. This information is typi-
cally used (and required) in navigation systems and traffic 
simulations (cf. Ruhdorfer et al. 2018; Labetski et al. 2018). 
According to Labetski et al. (2018) also Waterway was intro-
duced as new subclass of TransportationSpace. In addition, 
the new class Marking allows for adding road markings to 
the road surface and the classes Hole and HoleSurface can 
be used to represent, for instance, roadway damages or man-
holes including their surfaces. For further information and 
examples on the new Transportation module please refer to 
Beil and Kolbe (2017).

5.2 � PointCloud Module

In addition to the geometries defined in the Core module, 
the geometry of physical spaces and of thematic surfaces can 
now also be provided by 3D point clouds using MultiPoint 
geometry. This allows, for example, to spatially represent the 
building hull, a room within a building or a single wall sur-
face just by a point cloud. All thematic feature types includ-
ing transportation objects, vegetation, city furniture, etc. can 
be spatially represented by point clouds, too. In this way, 
the ClearanceSpace of a road or railway could, for instance, 
be modelled directly from the result of a mobile laser scan-
ning campaign. Point clouds can either be represented inline 
within a CityGML file or just reference an external file of 
some common types such as LAS or LAZ. Figure 14 shows 
the new PointCloud module.

6 � New Applications for CityGML 3.0

6.1 � Sensors and IoT in Cities

A large number of cities such as Singapore,1 Munich,2 Hel-
sinki,3 and Melbourne4 are developing Digital Twins to 
improve the operational efficiency of cities. A Digital Twin 
(Batty 2018; Datta 2017) is a digital counterpart of a physi-
cal asset, which collects information via sensors and IoT 
devices, and applies advanced analytics and artificial intel-
ligence to gain real-time insights about the physical asset’s 
performance, operation or profitability. These sensors can 
be stationary such as Smart Meters and weather stations. 
Some of the sensors can also be non-stationary such as air-
quality sensors mounted on a car measuring air pollution 
over different parts of a city at different time intervals or 
pedestrian flow analysis involving pedestrians moving into 
or out of a stadium (e.g. before or after a scheduled football 
match). Bridging the virtual and physical worlds together in 
this way can also help Smart City applications to improve 
decision-making and reduce risks by predicting issues before 
occurrence.

Several Smart City initiatives also highlight the impor-
tance of integrating real-time sensors and IoT devices with 
city objects. The Smart District Data Infrastructure (SDDI) 
proposed by Moshrefzadeh et al. (2017) allows integrat-
ing diverse components such as stakeholders, sensors, IoT 
devices and simulation tools with a virtual district model 
representing the physical reality of the district. To access 
distributed resources, the framework uses a well-defined set 
of OGC-based service interfaces such as Web Feature Ser-
vice (Vretanos 2010), Sensor Observation Service (Bröring 
et al. 2012) and SensorThings API (Liang et al. 2015) as 
well as a Catalogue Service. The framework also facilitates 
privacy, security and controlled access to all stakeholders 

Fig. 13   Representation of a road in CityGML 3.0

Fig. 14   CityGML 3.0 PointCloud module

1  https​://www.nrf.gov.sg/progr​ammes​/virtu​al-singa​pore.
2  https​://muenc​hen.digit​al/blog/digit​aler-zwill​ing-in-muenc​hen-ein-
leuch​tturm​proje​kt-auf-dem-weg-zur-digit​alen-metro​pole/.
3  https​://aec-busin​ess.com/helsi​nki-is-build​ing-a-digit​al-twin-of-the-
city/.
4  https​://www.itnew​s.com.au/news/vic-govt-to-build​-state​s-first​-digit​
al-twin-52818​7.

https://www.nrf.gov.sg/programmes/virtual-singapore
https://muenchen.digital/blog/digitaler-zwilling-in-muenchen-ein-leuchtturmprojekt-auf-dem-weg-zur-digitalen-metropole/
https://muenchen.digital/blog/digitaler-zwilling-in-muenchen-ein-leuchtturmprojekt-auf-dem-weg-zur-digitalen-metropole/
https://aec-business.com/helsinki-is-building-a-digital-twin-of-the-city/
https://aec-business.com/helsinki-is-building-a-digital-twin-of-the-city/
https://www.itnews.com.au/news/vic-govt-to-build-states-first-digital-twin-528187
https://www.itnews.com.au/news/vic-govt-to-build-states-first-digital-twin-528187


57PFG (2020) 88:43–61	

1 3

and the respective components by establishing proper 
authorization and authentication mechanisms (Chaturvedi 
et al. 2019a).

Since all of the above-mentioned city initiatives consider 
semantic 3D city models as an integral component of their 
infrastructures, it is highly important that the 3D city objects 
support seamless integration with sensors and IoT devices. 
CityGML Dynamizers allow defining explicit links to these 
real-time sensor observations directly within city objects. 
In this way, the attribute of the respective city object can 
also be associated with time-dynamic sensor observations. 
For example, if a building has an indoor sensor installed for 
measuring real-time temperature or humidity and the indoor 
sensor’s readings are accessible via standardised web ser-
vices such as OGC Sensor Web Enablement (Bröring et al. 
2011), FIWARE (FIWARE 2018), or any other proprietary 
API, Dynamizers can be defined for the specific building or 
room having explicit links to those sensor-based services, 
and the respective temperature/humidity attribute of the 
building can be overridden by the real-time sensor observa-
tions (see Fig. 15).

6.2 � Improved Simulation Support

CityGML Dynamizers also enable 3D city models for an 
improved simulation support. The Dynamizer ADE for 
CityGML 2.0 (Chaturvedi and Kolbe 2017) has already 
been tested successfully for a solar potential simulation to 
assess and estimate solar energy production for the roofs and 
façades of 3D building objects. The simulation tool operates 
on 3D models structured according to the CityGML standard 
and generates the monthly and yearly estimates of direct, dif-
fuse, and global irradiation values for the building surfaces. 
The dynamic simulation results can be represented using the 
international OGC TimeseriesML standard (Tomkins and 
Lowe 2016) within Dynamizer AtomicTimeseries class. The 
advantage of such representation of simulation results is that 
it allows modelling precise description of timeseries and 
enables cross-domain exchanging of simulation results along 
with city objects (Fig. 16). It is also helpful to create a snap-
shot of the state(s) of a city model including time-varying 
data for documentation and archiving. Similarly, Dynamiz-
ers are also helpful in representing moving objects in traffic 
simulations (Ruhdorfer 2017; Santhanavanich et al. 2018).

Furthermore, Chaturvedi et  al. (2019b) proposed an 
implementation that allows managing and visualising static 
and dynamic properties of semantic 3D city models in an 
integrated fashion. The 3D City Database (also known as 
3DCityDB5) (Yao et al. 2018) is an Open Source software 
suite, which allows storing, representing, and managing 

large CityGML datasets on top of spatial relational database 
management systems (SRDBMS) such as Oracle Spatial and 
PostgreSQL. It includes a Java front-end application named 
3DCityDB Importer/Exporter for importing and exporting 
CityGML datasets with arbitrary file sizes. It also allows 
exporting CityGML objects in the form of 3D visualiza-
tion formats (such as KML, COLLADA, and glTF) enabling 
them to be viewed and interactively explored in web appli-
cations such as the 3DCityDB Web Map Client or Google 
Earth. The implementation developed by Chaturvedi et al. 
(2019b) allows storing Dynamizer timeseries data (such as 
solar potential simulation results of a building’s roof sur-
face) along with other static properties of the same building 
in the 3DCityDB. It also enables CityGML Viewers such as 
the 3DCityDB Web Map Client to access static data using 
the OGC Web Feature Service (Vretanos 2010) interface 
and dynamic data using the OGC SWE interfaces such as 
the OGC Sensor Observation Service (Bröring et al. 2012) 
and the OGC SensorThings API (Liang et al. 2015) in an 
integrated fashion with the help of the newly developed 
InterSensor Service6 (Chaturvedi and Kolbe 2019).

6.3 � Usage of the Space Concept

The new space concept introduced in CityGML 3.0 can be 
useful in various applications such as enhancing the conver-
sion of IFC into CityGML. In particular the new volumetric 
feature types BuildingConstructiveElement, BridgeCon-
structiveElement, and TunnelConstructiveElement that are 
defined as subclasses of AbstractOccupiedSpace facilitate 
the mapping of constructive elements from IFC data sets 
to CityGML. Walls, for instance, are represented in IFC as 
volumetric objects; whereas in CityGML 2.0, only the exte-
rior and interior surfaces of walls are represented as separate 
features. This means that these surfaces need to be extracted 
when mapping IFC to CityGML 2.0. With the newly intro-
duced constructive element classes this extraction could be 
avoided, because a direct mapping from IFC onto CityGML 
can now be achieved simply by mapping the volumetric IFC 
objects to volumetric CityGML objects. Figure 17 shows 
a building of the Technical University of Munich that was 
converted from IFC to CityGML 3.0. Visible are only the 
BuildingConstructiveElement objects that have been created 
from the IFC classes IfcWall, IfcRoof, IfcBeam, and IfcSlab. 
The conversion was executed using the FME-based ifc-to-
citygml3 conversion tool available from TUM-GIS (2019a).

Similarly, the semantics of the IFC class IFCSpace is 
a physically unoccupied space to represent rooms. The 
class BuildingRoom represents the equivalent concept in 
CityGML as it is a subclass of AbstractUnoccupiedSpace. 

5  http://www.3dcit​ydb.org. 6  http://www.inter​senso​rserv​ice.org/.

http://www.3dcitydb.org
http://www.intersensorservice.org/


58	 PFG (2020) 88:43–61

1 3

Thus, IFCSpace objects can be mapped onto Building-
Room objects without change of semantics. This is shown 
in Fig. 18, where IFCSpace objects of the well-known FZK 

House have been converted into BuildingRoom objects in 
CityGML 3.0.

6.4 � Conversion of CityGML 2.0 into CityGML 3.0

Section 1 mentions that it is possible to convert every City
GML 1.0 and 2.0 dataset into CityGML 3.0 by applying 

Fig. 15   Defining direct links to sensors within Dynamizer feature type. The file shows an excerpt of a CityGML dataset encoded in GML

Fig. 16   The standardised timeseries representation of monthly irradi-
ation values of a building. This demo is accessible from http://manch​
ester​.virtu​alcit​ymap.de/

Fig. 17   BuildingConstructiveElement objects created from the IFC 
classes IfcWall, IfcRoof, IfcBeam, and IfcSlab

http://manchester.virtualcitymap.de/
http://manchester.virtualcitymap.de/


59PFG (2020) 88:43–61	

1 3

syntactical transformations only. This transformation can, 
for instance, be carried out using an XSLT-based conver-
sion tool, such as the citygml2-to-citygml3 conversion tool 
provided from TUM-GIS (2019b). This tool gives data 
providers and software implementers the possibility to (a) 
see how their existing datasets would look like in City
GML 3.0, and (b) adapt their software implementations 
and work with CityGML 3.0 data, and (c) reassure them 
on the backwards compatibility of the conceptual model of 
CityGML 3.0 with CityGML 2.0 by demonstrating lossless 
data conversion. The tool currently supports the conversion 
of Buildings, CityFurniture, and Appearances and is gradu-
ally being extended to support the other modules as well. 
Figure 19 visualises the city model of Berlin Moabit that 
was converted from CityGML 2.0 into CityGML 3.0 using 
the citygml2-to-citygml3 conversion tool.

7 � Conclusions and Outlook

This paper introduces the new and revised concepts that 
are to become part of the next major CityGML version 3.0. 
Of particular importance are the new space concept and 
the revised LOD concept that both are defined in the Core 

module, the new modules Construction, Versioning, and 
Dynamizer, as well as the revised Building and Transporta-
tion modules. In addition, CityGML 3.0 is modelled ISO-
compliant and, thus, allows for automatically deriving the 
GML application schemas from the UML model by applying 
a model-driven approach.

Several implementations already exist or are currently 
being created for CityGML 3.0. All software systems that 
can deal with generic GML3 can also read CityGML 3.0 
data sets, amongst others FME, deegree, GDAL, GMLAS, 
and SupportGIS. The citygml2-to-citygml3 conversion tool 
can create CityGML 3.0 data sets from CityGML 2.0 data 
sets. The CityGML-3-to-Java-objects library citygml4j is 
currently being implemented by Claus Nagel for CityGML 
3.0. An adaption of the 3DCityDB to support CityGML 3.0 
will be carried out in the future. Successful application of 
CityGML 3.0 was also demonstrated at the OGC CityGML 
Hackathon in June 2019 in London as well as at the OGC 
CityGML Challenge in October 2019 in Manchester.

Like with CityGML 2.0, the modular specification allows 
that applications do not have to implement all CityGML 
modules. For example, not only the modules Dynamizer, 
Versioning, or PointCloud, but also some thematic modules 
can be left out when not required.

The entire CityGML 3.0 development is subject to final 
votings of the CityGML SWG as well as of the OGC OAB 
(Open Architecture Board) and the Technical Committee. 
The UML models provided in this paper may still undergo 
slight changes until the finalisation of the specification. 
However, we do not expect major changes anymore.

Acknowledgements  Open Access funding provided by Projekt DEAL. 
We would like to thank the other members of the OGC CityGML SWG 
Modelling Subgroup Claus Nagel, Steve Smyth, Gilles Gesquière, 
Emmanuel Devys, Heidi Valparys, Friso Penninga, Volker Coors, Sisi 
Zlatanova, Helga Tauscher and Carsten Roensdorf for their valuable 
contributions and discussions in the development of CityGML 3.0. 
We also thank the modelling working group of SIG 3D of GDI-DE, in 
particular Gerhard Gröger, Joachim Benner, Karl-Heinz Häfele, Marc-
Oliver Löwner, Jürgen Ebbinghaus, and Heinrich Geerling as well as 
the further contributors to the CityGML 3.0 work packages includ-
ing Filip Biljecki and Linda van den Brink. Special thanks go to Son 
Nguyen for his work on the citygml2-to-citygml3 conversion tool and 
Daniel Härpfer for his work on the ifc-to-citygml3 converter.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Fig. 18   BuildingRoom objects created from the IFC class IfcSpace

Fig. 19   The city model of Berlin Moabit represented in CityGML 3.0



60	 PFG (2020) 88:43–61

1 3

References

AdV (2009) Documentation on the modelling of geoinformation of 
official surveying and mapping (GeoInfoDoc), version 6.0.1

Batty M (2018) Digital twins. Environ Plan B Urban Anal City Sci 
45(5):817–820

Beil C, Kolbe TH (2017) CityGML and the streets of New York—a 
proposal for detailed street space modelling. ISPRS Ann Photo-
gram Remote Sens Spat Inf Sci IV-4/W5:9–16

Biljecki F, Stoter J, Ledoux H, Zlatanova S, Çöltekin A (2015) Appli-
cations of 3d city models: state of the art review. ISPRS Int J 
Geo-Inf 4(4):2842–2889

Billen R, Zaki CE, Servières M, Moreau G, Hallot P (2012) Developing 
an ontology of space: Application to 3D city modeling. In: Leduc 
T, Moreau G, Billen R (eds) Usage, usability, and utility of 3D 
city models—European COST Action TU0801. EDP Sciences, 
Nantes, vol 02007. https​://hal.archi​ves-ouver​tes.fr/hal-01521​445

Bröring A, Echterhoff J, Jirka S, Simonis I, Everding T, Stasch C, 
Liang S, Lemmens R (2011) New generation sensor web enable-
ment. Sensors 11(3):2652–2699

Bröring A, Stasch C, Echterhoff J (2012) Sensor Observation Service 
Interface Standard, OGC Doc. No. 12-006. http://www.openg​
eospa​tial.org/stand​ards/sos. Accessed 04 May 2019

Chaturvedi K, Kolbe TH (2016) Integrating dynamic data and sen-
sors with semantic 3D city models in the context of smart cities. 
In: Proceedings of the 11th international 3D geoinfo conference, 
Athens, ISPRS Annals of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, vol IV-2/W1. https​://doi.
org/10.5194/isprs​-annal​s-IV-2-W1-31-2016

Chaturvedi K, Kolbe TH (2017) Future City Pilot 1 Engineering 
Report, OGC Doc. No. 19-098. http://docs.openg​eospa​tial.org/
per/16-098.html. Accessed 22 Dec 2018

Chaturvedi K, Kolbe TH (2019) Towards establishing cross-platform 
interoperability for sensors in smart cities. Sensors 19(3)

Chaturvedi K, Smyth CS, Gesquière G, Kutzner T, Kolbe TH (2017) 
Managing versions and history within semantic 3D city models for 
the next generation of CityGML. In: Advances in 3D geoinforma-
tion. Springer, pp 191–206

Chaturvedi K, Matheus A, Nguyen SH, Kolbe TH (2019a) Securing 
spatial data infrastructures for distributed smart city applications 
and services. Future Gen Comput Syst 101:723–736

Chaturvedi K, Yao Z, Kolbe TH (2019b) Integrated management and 
visualization of static and dynamic properties of semantic 3D 
city models. In: Proceedings of the 4th international conference 
on smart data and smart cities, ISPRS, Kuala Lumpur, ISPRS 
Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences

Datta SPA (2017) Emergence of digital twins—is this the march of 
reason? J Innov Manag 5(3):14–33

Elfes A (1989) Using occupancy grids for mobile robot perception and 
navigation. Computer 22(6):46–57

European Parliament and Council (2007) Directive 2007/2/EC of the 
European Parliament and of the council of 14 March 2007 estab-
lishing an infrastructure for spatial information in the European 
Community (inspire). Off J Eur Union 50(L 108):1–14

FIWARE (2018) Open source platform for the smart digital future. 
https​://www.fiwar​e.org/. Accessed 16 May 2018

Gröger et al (2012) OGC City Geography Markup Language (Cit-
yGML) Encoding Standard, Version 2.0.0

Hillier B, Hanson J (1984) The social logic of space. Cambridge Uni-
versity Press, Cambridge. https​://doi.org/10.1017/CBO97​80511​
59723​7

Interactive Instruments (2019) Shapechange. https​://shape​chang​e.net/. 
Accessed 05 Sep 2019

ISO 16739 (2013) ISO 16739:2013 industry foundation classes (IFC) 
for data sharing in the construction and facility management 
industries

ISO 19152 (2012) ISO/TS 19152:2012 geographic information—land 
administration domain model

ISO 19505-2 (2012) ISO/IEC 19505-2:2012 information technology—
object management group unified modeling language (OMG 
UML)—part 2: superstructure

JRC (2013) D2.8.III.2 Data specification on buildings—technical 
guidelines

JRC (2014) INSPIRE D2.5: generic conceptual model, version 3.4
Konde A, Tauscher H, Biljecki F, Crawford J (2018) Floor plans in 

CityGML. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 
IV-4/W6:25–32

Kutzner T, Kolbe TH (2018) CityGML 3.0: Sneak preview. In: Ker-
sten TP, Gülch E, Schiewe J, Kolbe TH, Stilla U (eds) PFGK18-
Photogrammetrie-Fernerkundung-Geoinformatik-Kartographie, 
37. Jahrestagung in München 2018, Deutsche Gesellschaft für 
Photogrammetrie, Fernerkundung und Geoinformation e.V., Pub-
likationen der Deutschen Gesellschaft für Photogrammetrie, Fern-
erkundung und Geoinformation (DGPF) e.V., vol 27, pp 835–839

Labetski A, van Gerwen S, Tamminga G, Ledoux H, Stoter J (2018) 
A proposal for an improved transportation model in CityGML. 
ISPRS—Int Arch Photogramm Remote Sens Spat Inf Sci XLII-4/
W10:89–96

Lee et al (2016) OGC IndoorGML, version 1.0.2
Liang S, Huang CY, Khalafbeigi T (2015) SensorThings API Part 1: 

Sensing, OGC Doc. No. 15-078r6. https​://www.openg​eospa​tial.
org/stand​ards/senso​rthin​gs. Accessed 04 May 2019

Löwner MO, Gröger G, Benner J, Biljecki F, Nagel C (2016) Proposal 
for a new LOD and multi-representation concept for CityGML. 
ISPRS Ann Photogramm Remote Sens Spat Inf Sci IV-2/W1:3–12

Moshrefzadeh M, Chaturvedi K, Hijazi I, Donaubauer A, Kolbe TH 
(2017) Integrating and managing the information for smart sus-
tainable districts—the smart district data infrastructure (SDDI). 
In: Kolbe TH, Bill R, Donaubauer A (eds) Geoinformations-
systeme 2017-Beiträge zur 4. Münchner GI-Runde, Wichmann 
Verlag

OGC (2019a) CityGML 3.0 conceptional model. https​://githu​b.com/
openg​eospa​tial/CityG​ML-3.0CM. Accessed 14 Sep 2019

OGC (2019b) CityGML 3.0 encodings. https​://githu​b.com/openg​eospa​
tial/CityG​ML-3.0Enco​dings​/. Accessed 14 Sep 2019

Ruhdorfer R (2017) Kopplung von Verkehrssimulation und seman-
tischen 3D-Stadtmodellen in CityGML. Master’s thesis, Technis-
che Universität München, Chair of Geoinformatics

Ruhdorfer R, Willenborg B, Sindram M (2018) Coupling of traffic 
simulations and semantic 3d city models. gisScience 3:101–109

Samuel J, Périnaud C, Gay G, Servigne S, Gesquière G (2016) Repre-
sentation and visualization of urban fabric through historical doc-
uments. In: Catalano CE, Luca LD (eds) Eurographics workshop 
on graphics and cultural heritage. The Eurographics Association. 
https​://doi.org/10.2312/gch.20161​399

Santhanavanich T, Schneider S, Rodrigues P, Coors V (2018) Integra-
tion and visualization of heterogeneous sensor data and geospatial 
information. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 
IV-4/W7:115–122

Smith B, Varzi AC (2000) Fiat and bona fide boundaries. Philos Phe-
nomenol Res 60(2):401–420. https​://doi.org/10.2307/26534​92

Sparx Systems (2015) Enterprise architect. http://www.sparx​syste​
ms.com/produ​cts/ea/index​.html. Accessed 04 Oct 2015

Tomkins J, Lowe D (2016) Timeseries profile of observations and 
measurements, OGC Document No. 15-043r3. http://www.openg​
eospa​tial.org/stand​ards/tsml. Accessed 09 Sep 2018

TUM-GIS (2019a) citygml2-to-citygml3. https​://githu​b.com/tum-gis/
cityg​ml2-to-cityg​ml3. Accessed 05 Sep 2019

https://hal.archives-ouvertes.fr/hal-01521445
http://www.opengeospatial.org/standards/sos
http://www.opengeospatial.org/standards/sos
https://doi.org/10.5194/isprs-annals-IV-2-W1-31-2016
https://doi.org/10.5194/isprs-annals-IV-2-W1-31-2016
http://docs.opengeospatial.org/per/16-098.html
http://docs.opengeospatial.org/per/16-098.html
https://www.fiware.org/
https://doi.org/10.1017/CBO9780511597237
https://doi.org/10.1017/CBO9780511597237
https://shapechange.net/
https://www.opengeospatial.org/standards/sensorthings
https://www.opengeospatial.org/standards/sensorthings
https://github.com/opengeospatial/CityGML-3.0CM
https://github.com/opengeospatial/CityGML-3.0CM
https://github.com/opengeospatial/CityGML-3.0Encodings/
https://github.com/opengeospatial/CityGML-3.0Encodings/
https://doi.org/10.2312/gch.20161399
https://doi.org/10.2307/2653492
http://www.sparxsystems.com/products/ea/index.html
http://www.sparxsystems.com/products/ea/index.html
http://www.opengeospatial.org/standards/tsml
http://www.opengeospatial.org/standards/tsml
https://github.com/tum-gis/citygml2-to-citygml3
https://github.com/tum-gis/citygml2-to-citygml3


61PFG (2020) 88:43–61	

1 3

TUM-GIS (2019b) ifc-to-citygml3. https​://githu​b.com/tum-gis/ifc-to-
cityg​ml3. Accessed 05 Sep 2019

Vretanos PA (2010) Opengis web feature service 2.0 interface stand-
ard OGC document no. 09-025r1. http://www.openg​eospa​tial.org/
stand​ards/wfs. Accessed 02 Nov 2018

W3C (2014) Rdf 1.1 specifications. https​://www.w3.org/stand​ards/
techs​/rdf#w3c_all. Accessed 04 Oct 2015

Yan J, Diakité AA, Zlatanova S (2019) A generic space definition 
framework to support seamless indoor/outdoor navigation sys-
tems. Trans GIS 23(6):1273–1295

Yao Z, Nagel C, Kunde F, Hudra G, Willkomm P, Donaubauer A, 
Adolphi T, Kolbe TH (2018) 3DCityDB—a 3D geodatabase solu-
tion for the management, analysis, and visualization of semantic 
3D city models based on CityGML. Open Geospat Data Softw 
Stand 3(5):1–26

https://github.com/tum-gis/ifc-to-citygml3
https://github.com/tum-gis/ifc-to-citygml3
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
https://www.w3.org/standards/techs/rdf#w3c_all
https://www.w3.org/standards/techs/rdf#w3c_all

	CityGML 3.0: New Functions Open Up New Applications
	Abstract
	Zusammenfassung
	1 Overview and Development of CityGML 3.0
	2 The New CityGML 3.0 Core Module
	2.1 The CityGML 3.0 Space Concept
	2.2 The CityGML 3.0 LOD Concept

	3 Refinement of Constructions and Buildings
	4 Dynamics of Changing Cities
	4.1 Versioning of Cities
	4.2 Representation of Time-Dependent Properties

	5 Further New Concepts
	5.1 Transportation Module
	5.2 PointCloud Module

	6 New Applications for CityGML 3.0
	6.1 Sensors and IoT in Cities
	6.2 Improved Simulation Support
	6.3 Usage of the Space Concept
	6.4 Conversion of CityGML 2.0 into CityGML 3.0

	7 Conclusions and Outlook
	Acknowledgements 
	References




