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Abstract Detecting small objects is a challenging
task. We focus on a special case: the detection and
classification of traffic signals in street views. We present
a novel framework that utilizes a visual attention
model to make detection more efficient, without loss of
accuracy, and which generalizes. The attention model
is designed to generate a small set of candidate regions
at a suitable scale so that small targets can be better
located and classified. In order to evaluate our method
in the context of traffic signal detection, we have built
a traffic light benchmark with over 15,000 traffic light
instances, based on Tencent street view panoramas. We
have tested our method both on the dataset we have
built and the Tsinghua-Tencent 100K (TT100K) traffic
sign benchmark. Experiments show that our method
has superior detection performance and is quicker than
the general faster RCNN object detection framework
on both datasets. It is competitive with state-of-the-
art specialist traffic sign detectors on TT100K, but
is an order of magnitude faster. To show generality,
we tested it on the LISA dataset without tuning, and
obtained an average precision in excess of 90%.

Keywords traffic light detection; traffic light benchmark;
small object detection; CNN

1 Introduction

Object detection and classification are important
tasks in computer vision. The task is especially
challenging when target objects are relatively small
and are surrounded by a high degree of background
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clutter, as is the case for traffic signals in street views.
For example, images of a street can be captured
at high resolution (e.g., 2048 x 2048 pixels), but
vital information, such as traffic signs and traffic
lights, are often contained in very small regions (e.g.,
50 x 50). With recent developments in autonomous
driving, advanced driver assistance systems, and
intelligent vehicles, visual content captured by vehicle
mounted equipment plays an increasingly important
role in perception of the environment and navigation
guidance, as you can see in Fig. 1.

Traffic sign and traffic light detection and
classification have attracted much study.
algorithm for road sign detection must be reliable,
fast, and general, and should produce results early. It
must be reliable so that signs are robustly detected,
fast so that other decisions such as sign recognition

Any

can take place, general to account for differences in
signs between countries, and early so that signs are
determined sufficiently distant from the vehicle to
allow a safe response time.

Most previous works utilize color, texture, and
geometric features as input to machine learning
methods such as SVM and tree classifiers to
distinguish either targets from background, or
different classes of targets. As convolutional neural
networks (CNNs) have been found to have superior
performance for object classification and detection,
they are extensively used in this area. CNN-based
methods (e.g., faster RCNN [1] and SSD [2]) with
state-of-the-art performance on PASCAL VOC and
ImageNet ILSVRC datasets focus on large scale
objects in images, whereas traffic signs should be
detected early, i.e., at small scale.

CNNSs have been built specifically for traffic sign
recognition and detection [3]. Jin et al. [4] achieved
a recognition rate of 99.65% on the German Traffic
(@ TRNGHYA € Springer
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(a) Traffic signs in a street view

(b) Traffic lights in a street view

Fig. 1 Examples of traffic signs and traffic lights in street views. Traffic signs and traffic lights are detected separately: (a) shows traffic signs
only while (b) shows traffic lights only. Green rectangles on the left of each subfigure indicate attention regions; rectangles on the right are
corresponding cropped attention regions and bounding boxes of targets within them.

Sign Recognition Benchmark with CNNs. Zhu et
al. [5] published a more practical traffic sign dataset,
the Tsinghua-Tencent 100K (TT100K) dataset, and
proposed a CNN-based method that performs better
than fast RCNN [6]. Although the method proposed
by Zhu et al. achieves high recall and accuracy, it uses
a CNN to scan the whole high resolution image at
different scales, which is time-consuming. We propose
a more efficient system that utilizes a visual attention
model to reduce computation in background areas.
We show results of testing it on traffic sign and traffic
light detection and classification tasks.

Our CNN approach exhibits all four of the
properties needed for traffic signal detection: it is
reliable, fast, able to detect signals at a wide variety of
scales, and generalises to new datasets obtained in a
country different to the training set. Its key technical
contribution is use of a visual attention model.
Studies in neuroscience [7] suggest that instead of
forming a coherent, richly detailed representation
of all the objects in the scene, the human visual
system tends to focus attention on one object at a
time. The perception that all objects are represented
in detail simultaneously is a subjective construction
enabled by coordinating attention in a few areas
deemed to be salient. In this way, perception requires
far less processing and memory resources. Similarly,
when detecting objects in images, we can design
algorithms that focus only on certain regions instead
of processing the whole image at high resolution. We
use a two-stage framework to accomplish the process.
The first stage, based on an attention proposal model,
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is trained on a low resolution version of the scene
to propose attention regions: those regions which
The second stage,
the accurate localization and recognition network,
detects and classifies targets within the attention
regions, at full resolution. Our framework greatly

should be examined in detail.

reduces computational and memory resources since
it avoids computing detailed representations of most
of the background. Moreover, it avoids processing at
multiple scales since the regions proposed by the first
stage implicitly contain scale information.

We have evaluated our system for traffic sign
and traffic light detection and classification tasks
using three datasets: the Tsinghua—Tencent 100K
(TT100K) dataset, our own purpose-built dataset,
the Tsinghua—Tencent traffic light (TTTL) dataset,
which is based on Tencent street views, and the
LISA dataset [8] to test generalization. The TTTL
dataset contains over 16,000 high resolution images
covering various driving scenes. Our system achieved
86.6% mAP (mean average precision) on the dataset,
performing better and more reliably than faster
RCNN. For the TT100K dataset, an mAP of 87.0% is
achieved, which is close to the state-of-the-art method
proposed by Zhu et al. [5], but our algorithm is an
order of magnitude faster than theirs. It generalizes
well, without tuning, to the LISA dataset that was
constructed in USA.

Our main contributions are as follows:

e A novel attention-model based two-stage detection
framework. The framework is designed to detect
small targets in large high resolution images. The
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attention model makes our method efficient as it
processes images at low resolution and generates
a small set of candidate regions. It also makes
detection more accurate since the small targets
occupy a large portion of the area of attention
regions.

e A new street view traffic light benchmark TTTL.

To the best of our knowledge, there are no readily
available benchmarks for traffic light detection

other than the LISA traffic light dataset [8].

We annotated around 10K Tencent street view
panorama images and built a dataset with more
than 15K traffic light instances. They cover a wide
range of street scenes and lighting conditions, and
exhibit traffic lights in forms not present in LISA.
The
contribution in greater detail.

remainder of the paper explains our

2 Related work

2.1 Traffic light and traffic sign detection and
classification

Traffic signals such as traffic lights and traffic
signs provide important information for driving, and
many algorithms have been developed to detect and
recognize them. Diaz et al. [9] presented an exhaustive
survey of current techniques for such purposes.
Traffic signal detection and recognition methods
since about 2007 have been based on color
segmentation, shape,
conjunction with SVM classifiers [10]. Illumination
conditions have been studied by Jang et al. [11] and
De Charette and Nashashibi [12], whose detector was
shape based. Slightly later, shape was also used by

and texture features in

Cai et al. [13] to recognize arrow traffic lights. More
recently color segmentation has been used, e.g., by
Sooksatra and Kondo [14]. Ji et al. [15] proposed
a visual selective attention model based on color
to construct salience maps; traffic lights are then

detected using an SVM classier with HOG features.

This is similar in spirit but different in practice to
our work.

Some prior art utilizes digital maps and GPS
information to improve the efficiency and accuracy
of detection [16, 17]. However, prior information is
not always accessible and is not in principle necessary
(humans make no use of such data).

The widespread adoption of convolutional neural

networks (CNNs) has seen their application to traffic
signal detection. John et al. [17, 18] showed that
CNNs are effective as classifiers of traffic lights,
but they used traditional methods for saliency map
generation. In 2016, Zhu et al. [5] published
the Tsinghua—Tencent 100K dataset for traffic sign
benchmark, and developed an end-to-end CNN for
both detection and classification. Their approach
provides excellent reliability and operates at a range
of scales, but has to scan high resolution images at
different scales, which impedes its efficiency.

2.2 CNN-based detection

In the past few years, a wide variety of CNN-based
approaches have been developed for object detection.
Sermanet et al. [19] proposed the Overfeat framework
by sliding a fully convolutional network over an
input image to produce classification and bounding
box regression results. Zhu et al. [5] adopted this
framework for traffic sign detection and classification.

Girshick et al. [20] combined region proposal
algorithms and CNN as a feature extractor to perform
the detection task, in an approach known as RCNN.
To avoid redundant computations on overlapping
region proposals in RCNN, spatial pyramid pooling
(SPPNet) [21] and ROI pooling (fast RCNN) [6]
have since been developed. The input image is fed
forward into convolutional layers only once and ROI
pooling extracts fixed length feature vectors from the
feature maps. This greatly accelerates training and
testing. Faster RCNN, proposed by Ren et al. [1],
further improves the framework by replacing the
selective search [22] by a region proposal network
(RPN), which shares its convolutional layers with
the classification and regression network. The RPN
generates fewer proposals yet achieves state-of-the-
art results on PASCAL VOC 2007, 2012, and MS
COCO datasets. Single-shot approaches have also
been proposed, such as YOLO [23] and SSD [2]. They
leave out region proposal production and ROI pooling,
and directly conduct box regression on feature maps.
While this makes them even faster, YOLO’s accuracy
falls below that of fast RCNN and faster RCNN.

All of these CNN-based detection frameworks were
designed for large scale objects. Directly applying
them to detect extremely small objects in high
resolution images gives results that are inefficient,
inaccurate, or both.

/ .
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2.3 Visual attention model

Visual attention models are inspired by studies of
attention mechanisms of human visual system [7],
and have found their way into CNNs.

Mnih et al. [24] developed a recurrent neural
network (RNN) that selectively processes a sequence
of regions of an input image at high resolution. The
network takes a region of the image (called a glimpse)
and its location as input and determines the location
of the next region to be processed. The computational
expense is independent of image size, since only
a few glimpses are taken and they contain many
fewer pixels than the original image. The system
outperforms CNN on image classification on the
MNIST dataset.

Working to recognise house numbers in the SVHN
dataset, Ba et al. [25] extended the idea to multiple
object recognition by fixing the number of glimpses
for each target in the object label sequence, and
They added a
contextual network that takes a low resolution version

adding an end-of-sequence label.

of the original image as input and provides initial
state for the RNN. Their problem is formulated as
classification rather than detection, but nonetheless
their model is close in design to our attention
Their deep
recurrent attention model (DRAM) is trained using

proposal model for target detection.

reinforcement learning to find attention regions
implicitly without the localization loss that we use
(see Section 3.2).

Huang et al. [26] utilized the recurrent attention
model to detect arbitrary oriented text in the wild
and achieved state-of-the-art accuracy on ICDAR
2013 and MSRA-TD500. However, their detection
pipeline depends on extremal regions to generate
initial attention proposals and on CNN classifiers to
filter non-text proposals. In contrast, we directly
utilize an attention model to propose target regions.

Gidaris et al. [27] proposed the AttractioNet
approach, which generates box proposals by iterative
attention and refinement processes. Their approach
surpasses all other box proposal methods. It differs
from our method in that our attention model proposes
(wide) context regions rather than (tight) object
bounding boxes. In the case of multi-region detection,
Gidaris et al. [28] improved results by making use of
context information integrated from the immediate

/ .
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area surrounding each box; this points to the
importance of context, a lesson echoed in our results.

3 Method

3.1 Concepts

In this section, the framework of our system for
small target detection and classification is presented.
The system is composed of two parts: the attention
proposal modeller (APM) and the accurate locator
and recognizer (ALR). The two parts are designed
to accomplish different tasks: the APM proposes
attention regions that are likely to contain targets,
telling ALR where to look; the ALR then localizes
and classifies targets in these attention regions. Both
tasks can be formulated as taking raw image pixels as
input and performing regression on the coordinates
Since faster RCNN performs
impressively at such a task, we adopt its structure as
the basis for both parts. The difference is that the
APM performs regression on the bounding box of an

of certain boxes.

attention region while the ALR performs regression on
the bounding box of a real object. Figure 2 provides
an overview of the framework. We next discuss the
design of the two parts.

3.2 Attention proposal modeller

The aim of the APM is not to precisely locate the
targets, but to provide candidate regions with high
confidence at low computational cost. This task
depends more on global information about the whole
image and less on details of the targets. Thus, the
original high resolution image may be down-sampled
to lower resolution for this purpose. We formulate
the task as follows: given a high resolution image
Iy, the APM takes the corresponding down-sampled
image I, as input, and outputs a set of at most K
attention regions A = Ay, As,- -, Ag, as well as
their corresponding confidences 0 = 61,605, -+ 0.
These attention regions are cropped from Iy for use
as input to the ALR which accurately locates and
classifies targets within them.

Our approach to producing attention regions is
based on faster RCNN, which solves the following
problem: given an input image, output a set of region
proposals with their locations (z,y) and size (w, h).
Each region proposed has an associated value that
measures the confidence that the region contains an
object of interest.
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Fig. 2 System overview. Our attention proposal model has a similar architecture to faster RCNN but outputs bounding boxes of attention
regions. The accurate locator and recognizer also uses a faster-RCNN-like model. It takes as input cropped and resized attention regions
generated by the attention proposal model, and predicts bounding boxes and classes of the targets in attention regions.

Following faster RCNN, the APM comprises a

region proposal network (RPN) and a fast RCNN.

They share a convolutional sub-network that outputs
a feature map of spatial size W x H. The RPN
generates region proposals based on anchor boxes at
each position of the feature map. High confidence
proposals are then processed by fast RCNN through
ROI pooling and fully connected layers. Both RPN
and fast RCNN output box regression results and
confidence scores; they are trained with ground
truth boxes. In our case, we only have ground
truth bounding boxes for traffic signals, but we can
define the bounding boxes for attention regions. The
attention region should enclose the traffic signal and
its size should be proportional to the object size
(for the reason stated below): see Fig. 3. Thus, the
attention box (z*,y*, w*, h*) is defined as follows:

* * * *
=z, Y =y, w"=h"=amax(wo,ho)

where (9, o, wo, ho) is the bounding box of a traffic

light or sign. The scale « is set so that traffic lights
or signs are contained within the proposal, but not
so large as to slow a detailed search for the object at
the next stage; we find « =5 to be a suitable choice.

Now that we have the ground truth boxes of
attention regions, we parametrize the coordinates of
boxes as in Ref. [1]. For the RPN, the parametrized
coordinates are calculated using:

ty = (2" — 24) /W, t: =" = Ya)/ha
ty, = log(h"/hy)
ty = (Y = Ya)/ha

ty, = log(h/hg)

ty = log(w*/w,),
ty = (x — x,4)/wg,
tw = log(w/w,),

where (t3,1;,t5,,t;) are coordinates of the ground

truth and (t;,ty,ty,tn) are the RPN prediction,
(Za, Ya, Wa, he) is the anchor box and (x,y,w,h) is
the predicted box. Smooth L; loss [6] is used for
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Attention box

Fig. 3 The attention box is a square region enclosing the target
bounding box, with side length « times that of the longer side of the
bounding box.

regression in the RPN, which seeks to minimise the
function:

LIP;EN = Yica,y,w,pdmoothyr, (t; —t)

where

|| — 0.5, |z|>1 1)
0.5z, x| <1

is the regression loss of RPN. The
classification loss is a cross-entropy loss of softmax
output: LEEN = (1/N)XN, (log(pn,,)). N is the
number of samples and p,, ;, is the predicted softmax

SmoothL;(x) = {

RPN
Here, L.

probability of the nth sample belonging to the ground
truth class [,,. There are two classes in the APM, one
for the attention region and one for the background.
The ground truth is based on the anchor box matching
strategy proposed in Ref. [1]. For the fast RCNN sub-
network, the ground truth is also parametrized, but
with respect to proposals from the RPN rather than
anchor boxes:

uy = (v° — xp)/wpa

U; =y - yp)/hp
uy, = log(h™/hy)
uy = (Y5 — yp)/hyp
up, = log(hy /hy)

where u} and w; (i € x,y,w, h) are the parametrized
coordinates of the ground truth and the fast RCNN

@ ’ENSIVIEQSI(';,Yl-gRlégAS @ Springer

uy, = log(w* /wy),
Uy = (Tf — Tp) /W,

Uy = log(wy /wp),

prediction respectively. (zp,yp, wp, hy) is the box
proposed by RPN and (x ¢, yf, ws, hy) is the predicted
box from fast RCNN. Smooth L; loss is also used for
regression in fast RCNN:

Lloc = Eiex,y,w,hsmOOthL1 (uZ - u;,k)

The classification loss L. is also a 2-class softmax
loss, and is defined as Les = —(1/N)SY , (log(pn.1,,))-
To sum up, the overall loss function of the APM is

Lapy = LEEN £ N LEPN £ \oLioe + A3 Lais

cls

We set A1, A2, Az to 1, as Ren et al. [1] found training
is insensitive to their values over a wide range.
The number of proposals generated by the APM
determines the computational cost of the second
stage, so this number should not be too large while
guaranteeing high recall. We apply non-maximum
suppression (NMS) and filter the proposals with a
confidence threshold 7' to reduce proposal number.
The maximum number of proposals is set to K.
If more than K proposals are generated, only the
K highest scored proposals are considered by the
second stage. We empirically choose K = 8. The
architecture of the network is shown in Fig. 2 and
Table 1. The shareable convolutional layers are
similar to the Zeiler and Fergus model [29] and
there are 3 fully connected layers after ROI pooling.
The RPN parameters such as anchor numbers, NMS
threshold, and proposal numbers are set to the
same values as in Ref. [1]. It is worth noting that
other detection algorithms could also be used as the
attention proposal modeller, as long as they can
generate attention regions of a similar kind and can
produce a reasonably small set of results. With the
definition of the attention box, we are able to train
a faster RCNN to propose a small set of regions for
further examination. This reduces the computational
cost in two ways: the APM only needs a low resolution
image input for attention proposals, and only a few
regions need to be processed at high resolution in the
second detection stage.

3.3 Accurate localization and recognition

The APM output is a set of regions, and only those
regions need be examined for targets during the
second stage. This brings two advantages. Firstly,
it saves considerable computation, since only a small
part of the original high resolution image, rather
than the whole, is taken as input. Secondly, the
proportion of object area to the attention region
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Table 1 Network structure of the attention proposal model

RPN output Predictions
Layer Convl Conv2 Conv3  Conv4 Convb RPN conv. ——— ——  Fc6 Fc7

cores  Boxes Scores  Boxes
Channels 64 128 256 256 256 256 18 36 4096 4096 2 8
Kernel size 7 5 3 3 3 3 3 3 — — — —
Stride 2 2 1 1 1 1 1 1 — — — —
Pooling Max(3,2) Max(3,2) — — ROI pooling — — — — — — —

area is much larger than to the original image area,
making the localization and recognition task easier.
Detection algorithms such as fast RCNN and faster
RCNN are usually poor at detecting small objects,
but if attention regions are resized to reasonable scale,
such algorithms would be suitable for detecting the
originally small objects. The ALR takes attention
regions proposed by the APM as input and scales them
all to the same size, chosen based on performance on
the validation set. Since the APM is supposed to
predict regions whose sizes are « times as large as
the target size, the target sizes in the scaled inputs
lie within a small range, further simplifying the task.
As we will see in the next section, the target sizes in
the rescaled attention regions are concentrated in a
narrow range, which helps achieve better performance
for originally small targets.

Many detection algorithms can be used as the
second stage localizer and recognizer (ALR). We use
the faster RCNN framework as it provides state-
of-the-art results for many detection tasks. The
architecture is the same as for the APM shown in
Table 1 except that the number of class score outputs
is adjusted to match the number of label classes.
For the traffic sign dataset, the model is trained
to recognize 45 classes of signs and to predict their
bounding boxes, while for the traffic light dataset,
lights need to be classified into 6 categories, and the
light housing bounding boxes need to be regressed.
For all other settings of the framework, we just follow
faster RCNN [1].

At testing time, all proposed regions are fed forward
in a batch and the output bounding boxes are
transformed to their original position in Iyy. Then
NMS is applied to yield the final localization results.

4 Experiment

We performed experiments on detection and classifi-
cation of two kinds of small targets in street views:
traffic signs (see Section 4.1) and traffic lights (see

Section 4.2). The experiments on traffic signs used the
Tsinghua—Tencent 100K dataset [5], and we compare
our method to the method in that paper. The traffic
light detection and classification experiments used
our TTTL dataset, as well as the LISA traffic light
dataset to test generality.

4.1 Traffic sign detection and classification

To make a fair comparison with the method in Ref. [5],
we used their training and testing data. There are 45
classes of traffic signs; each class has more than 100
instances. We did not follow their data augmentation
protocol, in which they blend traffic sign templates
with background street views to generate more data.
To diminish the imbalance in number of samples
between classes, we oversampled classes with fewer
than 1000 instances to ensure that each class had
over 1000 samples in each epoch. No other data
augmentation was conducted. For attention model
training, we set the enlargment ratio a of target
bounding boxes to 5. The attention region boxes were
not class specific, i.e., there were only two classes,
attention region and background, in the attention
model.

J.1.1

When training the APM, we resized the original
2048 x 2048 high resolution images to 480 x 480 lower
resolution images, and trained the network with a
single image per batch for 100,000 iterations, with
approximately 15 epochs over the training data.

For the ALR, we trained the network on the
attention regions generated by the attention model.

Training

There were about 47,000 images per epoch and the
network was trained for 500,000 iterations with batch
size 1. The input images were resized to 360 x 360.
For both APM and ALR, we used SGD with initial
learning rate 1073 and momentum 0.9. The learning
rate was set to 5 x 10~% after 300,000 iterations for
ALR. We set the dropout ratio to 0.5 for the fc6
and fc7 layers. Both networks were trained from
scratch, after initialization using the method of He
{@ TSINGHUA
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et al. [30]. When testing the system, the input size
of both networks was the same as for training, and
the maximum number of attention proposals K was
set to 8.

4.1.2  Evaluation

We evaluated our method on the Tsinghua—Tencent
100K test dataset. It achieved 87.0% mAP at a
Jaccard similarity coefficient of 0.5 and the average
recall and precision at highest F1 score were 83.4%
and 91.7% respectively. The performance is close to
the state-of-the-art method due to Zhu et al. [5], which
has an mAP of 87.5%, an average recall of 86.0%,
and an accuracy of 88.3%. However, our method is
an order faster than their Overfeat-based method, as
we avoid scanning the whole high resolution image
and detecting at multiple scales; they process input
images at scales 0.5, 1, 2, and 4. The original images
are of size 2048 x 2048 so that Zhu et al’s largest
input image has size 8192 x 8192, which incurs a
tremendous computational cost. Our approach takes
only 0.3 s to process the same image.

We also evaluated faster RCNN [1] on the dataset
as a baseline method. We used ALR alone to detect
and classify targets on the original high resolution
image. Both its performance and efficiency are lower
than those of our method. Table 2 gives a detailed
comparison of the three methods. All methods were
benchmarked on an nVidia GTX980 GPU.

To demonstrate that the attention model can
propose regions at a suitable scale, we examined
the statistics of the target sizes in attention regions
resized to 360 x 360, and in the original images. All

targets in the TT100K testing set were considered.

We used the square root of the area of the target
bounding boxes as a measure of target sizes. As
shown in Fig. 4(a), in attention regions, more than
80% of the targets were in the size range [32, 96] pixels,
while the original size of over 40% of the targets was

Table 2 Performance of three methods on the TT100K dataset

Method Faster RCNN Zhu et al. Ours
AP mean 0.684 0.875 0.870
std 0.137 0.087 0.085
mean 0.650 0.860 0.834
Recall

std 0.108 0.083 0.075
. mean 0.757 0.883 0.917

Precision
std 0.132 0.122 0.092
. mean 0.33 s 5.83 s 0.26 s

Run time
std 0.02 s 0.07 s 0.03 s

/ .
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smaller than 32 pixels. In other words, the targets
originally had widely differeing sizes, but in attention
regions they were concentrated at medium sizes. This
was to be expected since the APM was trained to
propose attention region boxes that are o times as
large as the target bounding box.

Our APM inherently solves the problem of
adjusting scale, making it easier for the ALR to
accurately locate and classify targets. Therefore, our
method performs just as well on small (area < 322),
medium (322 < area < 962), and large (area > 962)
targets, as shown in Figs. 4(b)-4(d).
with faster RCNN, which has poor performance
on small targets, our method and the Overfeat
method proposed by Ref. [5] both have high recall
and precision on small targets.

In contrast

Our method can
furthermore detect small targets that Overfeat fails
to detect, as shown in Fig. 6.

Our method may miss targets in unusual contexts
since the APM is unlikely to propose such regions for
further detection. Such failures are shown in Fig. 6.

4.2 Traffic light detection and classification

We also tested our method on traffic light detection
and classification. Although many methods have
been proposed for these tasks, there is no readily
available specific dataset with high resolution street
view images. We thus built a dataset specifically for
traffic light detection and classification, in order to
evaluate our method and to provide a benchmark for
other studies. We also used the LISA traffic light
database [8] to test the generalization capability of
our model: the training set, TTTL, and the LISA
test set originate in different countries and therefore
exhibit differences in traffic lights.

We chose to build this dataset using Tencent street
view data, as street views are closer to driving
scenarios than photos taken by pedestrians with
Furthermore, there is
sufficient Tencent street view data to cover diverse

cameras or cell phones.

scenes and lighting conditions, providing a good test
of the method robustness. While the LISA dataset
contains continuous frames from video sequences, we
picked street views from different places to ensure
diversity. The dataset consists of more than 16,000
images; about 8300 of them contain traffic lights. We
call it the Tsinghua—Tencent traffic light (TTTL)
dataset. We trained our networks on a training
set of over 6700 images and evaluated them on the
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Target size distribution in TT100K testing set
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Fig. 4 The attention model improves small target detection performance for different sizes in the Tsinghua—Tencent 100K testing set. (a) The
attention proposal model tends to propose attention regions at reasonable scales so that target sizes in the resized regions are concentrated in
the range [32, 96] while in the original images they are more widely distributed. (b)—(e) Recall-precision curves for three methods on targets of
different sizes. Our method outperforms faster RCNN and is competitive with that of Zhu et al.

testing set of about 1600 images. We also tested the images. Table 3 gives the number of instances and
trained model on 6 clips from the LISA dataset. All  example images for each of the 6 classes.
experiments used an nVidia GTX 980 GPU. 4.2.2  Training

4.2.1  Tsinghua—Tencent traffic light dataset As for the traffic sign task, we resized the original
The Tencent street view images were captured by 2048 x 1536 images to 480 x 360 lower resolution
vehicle or shoulder mounted cameras, and post- images as inputs to the APM. The network was
processed to form 8192 x 4096 pixel high resolution  trained for 75,000 iterations, and about 11 epochs,
panoramas. Since the upper and bottom parts of the  with batch size 1. The trained APM was used to
panoramas are mainly sky and ground, the images are  generate about 13,000 attention region images over
cropped to between 25% and 62.5% of their height, the training data. The ALR was then trained with
and then split into 4 pieces horizontally. This yielded those images for 500,000 iterations with a single image
16,313 images of size 2048 x 1536 pixels. Those images  per batch. The attention region images were also
were annotated with bounding boxes of the traffic  resized to 360 x 360 as input. As in the traffic sign
light surrounds, bounding boxes of the lit bulbs, and  task, SGD was used and the learning rate scheduler
the kinds of lights. We have 15 classes of lights, was the same; the dropout ratio of fc6 and fc7 was
including an other class and an unrecognisable class.

Some classes have very few instanceS, S0 we juSt Table 3 Number of instances for each major class in Tsinghua—
considered 6 major classes: green, red, red left turn,  Tencent traffic light dataset

green .forward,.red pedestma@, and other. Ignorln.g Class  Red Green Redleft  Green  Red Pede- Other
those images without traffic lights, we randomly split turn _ forward  strian
the dataset into training and testing set in the ratio Instance oo sers omug 908 1549 9539

number

of 4:1, yielding 6709 training images and 1656 testing
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0.5. Both networks were initialized with the method
proposed by He et al. [30]. When testing the system,
the input size of both networks was the same as
for training, and the maximum number of attention
proposals K was set to 8.

4.2.8  Fvaluation

We tested our method on the TTTL testing set,
achieving an mAP of 86.2%, an average recall of
83.6%, and an average precision of 84.7%, without
considering the other class. As shown in Table 4,
our method performs better and runs faster than the
baseline faster RCNN. The performance on targets
of different sizes are shown in Fig. 5. Similarly to
the results found for traffic signs, although over
33% of targets original sizes are smaller than 32
pixels, in the resized attention regions proposed by
APM, nearly 90% of them are concentrated in the
size range [32, 96].
small, medium, and large targets are close to each
other. In comparison to the baseline faster RCNN,
the performance for medium and large targets is
similar, but our method has much higher recall and

The recall and precision for

Target size distribution in traffic light testing set

B In original images §
[ n attention regions g

size: 0-32

Table 4 Performance of our method and faster RCNN on the
Tsinghua—Tencent traffic light dataset

Method Faster RCNN Our method
AP mean 0.760 0.866
std 0.056 0.025
mean 0.712 0.836
Recall

std 0.049 0.011
. mean 0.744 0.847

Precision
std 0.052 0.061
. mean 0.28 s 0.20 s

Run time
std 0.01s 0.04 s

precision for small targets, due to the relatively larger
proportion of those small targets to the attention
regions. Figure 7 shows some examples of our
Our method
is robust to variations in lighting conditions such

results in various challenging cases.

as overexposure and underexposure, and different
environmental contexts such as underneath bridges
and the entrances of tunnels.

4.2.4  Generalization

To evaluate the generalization capability of our
method trained on the TTTL dataset, we tested
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Fig. 5 The attention model improves small target detection performance on the Tsinghua—Tencent traffic light testing set. (a) As for traffic
sign results, target sizes in the resized attention regions are more concentrated around medium sizes than those in the original images. (b)—(e)
show the recall-precision curves of our method and faster RCNN for different target sizes; our method performs much better than faster RCNN

on small targets.
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Our results

Overfeat results

Fig. 6 Example results for challenging cases in the Tsinghua—Tencent 100K dataset. Above: our results. Below: Overfeat results. The bottom
right of each image shows a close-up of the region of interest. In the first two cases, our method detected small targets that Overfeat missed. In
the last two cases, our method missed some targets, as the APM failed to propose the those regions.

Fig. 7 Results for some challenging cases in the Tsinghua—Tencent traffic light dataset. Above: images. Below: close-ups. Our method is
robust to different lighting conditions, e.g., extremely dark regions under a bridge and bright regions under strong sun light.

it directly on the LISA dataset. As annotations of
the LISA test set are unavailable, we tested it on the
training set. There are 13 clips of video taken during
daytime; we took 6 of them for evaluation. There are 6
traffic light classes: go, go left, stop, stop left, warning,
warning left. These classes are not entirely the same
as those in the TTTL dataset, so our model may
not properly classify some classes such as warning
left. Thus, we only evaluated the performance on the
classes go and stop, which correspond to our green

and red classes in TTTL. The original image size in
LISA is 1280 x 960. We resized them to 480 x 360
images for APM input. The attention proposals were
cropped and resized to 360 x 360 for ALR input.
All other settings were the same as when testing on
TTTL.

Recall, precision, and AP are shown in Table 5.
Our model has high overall recall and precision on
the go and stop classes in the LISA dataset, even
though it was not trained on any data in LISA. It
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Table 5 Performance of our TTTL-trained model on the LISA traffic
light dataset

Clip Class Recall Precision AP
0.959 0.994 0.981
DayClipl 8o
stop 0.874 0.890 0.945
0.908 0.898 0.925
DayClip2 89
stop 0.883 0.931 0.953
0.908 0.897 0.915
DayClip5 8o
stop 0.909 0.398 0.410
0.972 0.897 0.945
DayClip7 8o
stop 0.810 0.798 0.78
. go 0.857 0.605 0.706
DayClip8
stop 0.738 0.734 0.735
. go 0.998 0.995 0.996
DayClip9
stop 0.910 0.918 0.907
go 0.934 0.881 0.911
Average
stop 0.854 0.778 0.788

demonstrates that our model has good generalization
capability. While the data from TTTL are all street
views in China, the videos in LISA are all captured
from US roads and have different lighting and weather
conditions. These results show the robustness of our
model with respect to varying scenes and natural
conditions. We note that for DayClip5, the precision
of stop is low. This may be because our model
classifies stop left lights as stop lights. In video
sequences, there are many very similar frames, so
any mistakes made by the method are repeated
many times in DayClip5. Similarly, in DayClip8
the mistake that the model confuses go with go left is
repeated. Also, there are very small traffic lights that
are not annotated, but are detected by our model,
explaining the relatively low precision. Hopefully, the
classification performance could be improved by fine
tuning our model on the LISA dataset.

5 Conclusions

In this paper, we have presented an attention model
based detection framework to tackle the problem
of detecting small objects in large high resolution
images. We applied our method to traffic signal
detection in street view images. As a complement to
the TT100K benchmark, we have built the Tsinghua—
Tencent traffic light dataset for training and testing.
Our framework outperforms the baseline faster RCNN
on both datasets, especially when detecting small
targets with area less than 322 pixels. Furthermore,

our system runs an order of magnitude faster than

/ .
@ ’ENSIVIEIISSI(';,Yl-glggAS @ Sprlnger

the state-of-the-art on TT100K, while having similar
recall and precision. Experiments show that the
attention proposal model can generate a small set of
candidate regions whose area as a proportion of target
size lies in a narrow range, making the second stage
Our
model trained on the TTTL dataset also shows good
generalization capability, achieving high recall and

precision on the LISA dataset without any training

localization and classification more accurate.

on it.

In future, we hope to improve the recall of our
framework by exploring better attention proposal
methods. As our framework is intended for detection
in still images, we would like to develop a method
for video sequences that utilizes previous detection
results to further reduce computational cost. We
are also planning to apply our method to other
problems such as detecting small targets in remote
sensing images. There, the ratio between target
size and image size can be even smaller, so it is
more challenging to accurately locate targets with
relatively low computational cost. Generalization is
also interesting: all of the datasets we used are from
countries that drive on the right, and there is no
database we know of from countries that drive on the
left.
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