
Quantum Machine Intelligence (2024) 6:2 
https://doi.org/10.1007/s42484-023-00137-w

RESEARCH ART ICLE

Deep Q-learning with hybrid quantum neural network on solvingmaze
problems

Hao-Yuan Chen1 · Yen-Jui Chang2 · Shih-Wei Liao3 · Ching-Ray Chang2,4

Received: 24 July 2023 / Accepted: 7 December 2023 / Published online: 8 January 2024
© The Author(s) 2024

Abstract
Quantum computing holds great potential for advancing the limitations of machine learning algorithms to handle higher
dimensions of data and reduce overall training parameters in deep learning (DL)models. This study uses a trainable variational
quantum circuit (VQC) on a gate-based quantum computing model to investigate the potential for quantum benefit in a
model-free reinforcement learning problem. Through a comprehensive investigation and evaluation of the current model and
capabilities of quantum computers, we designed and trained a novel hybrid quantum neural network based on the latest Qiskit
and PyTorch framework. We compared its performance with a full-classical CNN with and without an incorporated VQC.
Our research provides insights into the potential of deep quantum learning to solve a maze problem and, potentially, other
reinforcement learning problems.We conclude that reinforcement learning problems can be practical with reasonable training
epochs. Moreover, a comparative study of full-classical and hybrid quantum neural networks is discussed to understand these
two approaches’ performance, advantages, and disadvantages to deep Q-learning problems, especially on larger-scale maze
problems larger than 4×4.

Keywords Quantum machine learning · Hybrid quantum neural networks · Deep reinforcement learning · Quantum deep
Q-learning

1 Introduction

Quantum machine learning is a novel and highly imma-
ture field of study. Its promising implication for combining
two powerful areas in computer science and physics, quan-
tum machine learning, has made an interesting topic for
researchers to investigate to resolve various challenging
problems [3]. However, considering the limitations of noisy
intermediate-scale quantum (NISQ) devices and machine
learning algorithm designs, some experimental models have

B Hao-Yuan Chen
hc118@student.london.ac.uk

1 Department of Computer Science, University of London,
London WC1E 7HU, UK

2 Department of Physics, National Taiwan University, Taipei
106216, Taiwan

3 Department of Computer Science and Information
Engineering, National Taiwan University, Taipei 106216,
Taiwan

4 Quantum Information Center, Chung Yuan Christian
University, Taoyuan 320314, Taiwan

not demonstrated strong effectiveness and eventually surpass
the present performance of a full-classical model. There-
fore, this research would like to investigate the potential and
effectiveness of incorporating a variational quantum circuit
(VQC) with a deep neural network to solve a reinforcement
learning problem. Ultimately, this research would like to
provide some potential improvements that could be made
within this hybrid deep learning model. Also, the study is
based on the IBM Quantum systems (IBM-Q) ecosystem to
enable rapid testing and evaluation. The quantum computa-
tion experiments were tested and trained on the full-classical
hardwarewith IBMQiskit’s Aer simulator in the ideal, noise-
free environment.

1.1 Quantum reinforcement learning

Based on the current quantum machine learning study, there
are two approaches to the reinforcement learning problem;
the first is to utilize a quantumwalk algorithm and variational
quantum circuit (VQC) to encode classical agents and envi-
ronments into a quantum state of information. The second
approach, however, incorporates the latest VQC to explore

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-023-00137-w&domain=pdf


Quantum Machine Intelligence (2024) 6:2 

potential speed-up or model size reduction for the present
deep learning models with quantum deep learning models.

1.1.1 Full-quantum reinforcement learning

Quantum reinforcement learning using a full-quantum solu-
tion has been discussed before in 2022 [1]. The research uses
a discrete-time quantum walk to map the state and action
space into quantum states, resulting in a quantummaze prob-
lem. However, considering the constraints of NISQ devices,
there is a limited practical application for this type of solution
in the near term. Although the research contains limitations
to the scalability, it has demonstrated substantial implications
for the present full-quantum reinforcement learning algo-
rithm that can provide speed-up for training under a small
problem size, six by six maze size.

1.1.2 Trainable VQCmodel

Another approach to this problem is to build a deep neural
network with a variational quantum circuit (VQC) [2]. The
research, different from this paper, introduces a VQC as a
trainable model without any conventional tensor layers for
the frozen-lake environment, which is logically equivalent
to the maze problem set used in this research. The research
has demonstrated that a well-designed VQC is a trainable
model for a reinforcement learning problem. Moreover, the
model has shown a strong parameter reduction capability
from around O(n3) and O(n2) to O(n).

Considering the limitations of NISQ devices, near-term
engineering applications on the first approach will be
regarded as impractical. However, the performance of a train-
able VQC would massively depend on the circuit design.
Therefore, the research proposed a novel architecture from
the previous study [1] with the latest IBM Qiskit Quantum
Primitive to explore other design variants. Therefore, this
research suggested a novel integration of quantumgate primi-
tivewith theQiskit framework and conventional tensor layers
as the third scheme to solve this problem class as amuch gen-
eralized deep learning algorithm.

2 Reinforcement learning

Reinforcement learning is the third paradigm of machine
learning, which involves an agent learning to make a
sequence of decisions in an environment to maximize a
cumulative reward signal. The agent interacts with the envi-
ronment by taking action and receiving rewards. The goal is
to learn a policy that maps states to actions to maximize the
expected cumulative reward over time.

The fundamental mathematical reinforcement learning
model can be formalized as a Markov decision-making pro-

cess (MDP): At each time step t , the agent observes a state st
of the environment. The agent selects an action at from a set
of possible actions based on the observed state. The action is
executed in the environment, and the agent receives a reward
rt and transitions to a new state st+1.

Using a learning algorithm, the agent updates its pol-
icy based on the observed state, selected action, received
a reward, and new state. A performance metric guides the
reward signal learning algorithm, which assigns a scalar
value to each state-action pair based on its desirability. The
agent aims to learn a policy that maximizes the expected
cumulative reward over time, defined as the sum of the
rewards received over a finite or infinite horizon, discounted
by a factor gamma.

The mathematical model of RL can be represented as a
Markov decision process (MDP), which is a tuple

(S, A, P, R, γ ) (1)

where S is a set of states where the environment can be. A
is a set of actions that the agent can take. Given the current
state and action, p is a probability distribution over the next
state. R is a reward function that assigns a scalar reward to
each state-action pair. Gamma is a discount factor that deter-
mines the importance of future rewards relative to immediate
rewards. The goal of RL is to find a policy pi(s) that maps
each state to a probability distribution over actions, such that
the expected cumulative reward over time is maximized:

J (pi) = E[R0 + γ1 + γ 2R2 + ...|s0, pi], (2)

whereRt is the reward received at time step t , ands0is the
initial state of the computation.

RL algorithms can be categorized into model-based and
model-free approaches. Model-based approaches learn a
model of the environment, including the transition probabil-
ities and reward function, and use this model to compute an
optimal policy. Model-free methods, such as Q-learning and
SARSA, directly estimate the value of the state-action pairs
and use this estimate to update the policy. In this research, the
researcher proposed integrating a novel parameterized quan-
tum circuit and hybrid neural network to better approximate
the relation of state-action based on the model-free approach
framework.

2.1 Q-learning

Q-learning is a model-free reinforcement learning algorithm
that learns an optimal policy for an agent in an environment
with discrete states and actions. It is called “Q-learning”
because it learns an estimate of the Q-value function, which
is the expected cumulative reward for taking a step in a given
state and following the optimal policy afterward.

123

2 Page 2 of 11



Quantum Machine Intelligence (2024) 6:2 

The Q-value function is estimated using a table or func-
tion approximator. The Q-learning algorithm starts with an
initial Q-value function, which is gradually updated as the
agent interacts with the environment. The agent observes the
current state of the environment, selects an action using an
exploration-exploitation strategy (such as epsilon-greedy),
and receives a reward from the environment. Based on this
reward and the resulting state, theQ-value function is updated
using the Bellman equation:

Q(st , at ) ←
Q(st , at ) + α

[
rt+1 + γ max

a
Q(st+1, a) − Q(st , at )

]
(3)

2.2 Deep Q-learning

Deep Q-learning is a reinforcement learning algorithm that
uses deep neural networks to approximate the Q-function,
which measures the expected cumulative reward for taking
action in a particular state. The Q-function is learned through
an iterative process where the agent takes actions in the envi-
ronment and receives rewards.The agent uses the experiences
gathered from these interactions to update its estimates of
the Q-function using a technique called temporal-difference
learning.

In deep Q-learning, a deep neural network approximates
the Q-function. The neural network takes the state of the
environment as input and outputs a vector of Q-values for
each possible action. The agent then chooses the action with
the highest Q-value and executes it in the environment.

The neural network training minimizes the difference
between the predicted and target Q-values obtained using
the Bellman equation. The Bellman equation expresses the
expected cumulative reward for taking action in a particular
state as the sum of the immediate reward and the discounted
expected cumulative reward from the next state. The loss
function used to train the model adopts the mean square error
function to calculate the loss of the deep neural network’s
current parameter configuration.

L =
(
r + γ max

a′ Q(s′, a′; θtarget ) − Q(s, a; θ)

)2

(4)

The computational complexity of solving a maze problem
using Q-learning and deep Q-learning depends on several
factors, such as the size of the maze, the complexity of the
environment, the number of actions available to the agent, and
the number of episodes or iterations required to converge to
an optimal policy.

In Q-learning, the agent learns the optimal policy by iter-
atively updating a Q-value table, which stores the expected
reward for each state-action pair. The algorithm requires a
significant amount of memory to store the Q-value table,

which grows linearly with the size of the maze and the num-
ber of possible actions. The time complexity of Q-learning is
proportional to the number of iterations required to converge
to an optimal policy, which can be significant for complex
environments.

On the other hand, deep Q-learning uses a deep neural
network to approximate the Q-value function, reducing the
memory requirement and allowing for more efficient learn-
ing. However, the time complexity of deep Q-learning is
proportional to the number of training iterations required
to train the neural network, which can be considerable for
large-scale environments. In addition, the computational
complexity increases with the neural network architecture’s
complexity and the input data’s size.

Solving a maze problem using Q-learning or deep Q-
learning can be computationally expensive, especially for
large-scale environments. However, advances in hardware
and software technology have made it possible to implement
these algorithms efficiently and effectively,making themuse-
ful for various applications in reinforcement learning and
robotics.

As parameterized quantum circuits (PQCs) and deep neu-
ral networks (DNNs) share some similarities in their archi-
tecture and learning processes, which makes them helpful
in solving similar types of problems, the research integrates
both models using Qiskit’s PyTorch Connector interface to
facilitate a hybrid deep neural network. The study would like
to investigate the potential complexity reduction for using
PQC-DNN architecture to reduce the energy and computa-
tional resources needed for the training.

Therefore, this research proposed a novel architecture to
approach a deep Q-learning problem using a hybrid deep
neural network in combination with a deep neural network
and a parameterized quantum circuit. The development pro-
cess includes the following components: environment and
training agent.

2.3 Environment

This is the system or simulation that the agent will interact
with. The environment provides the agent with observations
and receives actions from the agent. The environment can be
anything from a simple game to a complex physical system.

2.4 Agent

Firstly, state preparation is needed to encode the current state
of the environment so that it can be fed into the agent’s neural
network. This can be done using various techniques, such as
raw pixels or more abstract features. Next, the agent uses its
neural network to select an action based on the current state.
The neural network takes the state as input and outputs a set
ofQ-values representing the expected future rewards for each

123

Page 3 of 11 2



Quantum Machine Intelligence (2024) 6:2 

possible action. The agent selects the action with the highest
Q-value (or a random actionwith some probability to encour-
age exploration). After that, the agent chooses an action; the
environment provides a reward signal based on the new state
and the selected action. This reward is used to update the neu-
ral network’s Q-values. In addition, the agent could facilitate
a replay-memory mechanism to store its experiences (state,
action, reward, next state) in a replay buffer. The replay buffer
randomly samples past experiences, which are then used to
update the neural network’s Q-values. This helps to prevent
the agent from over-fitting to recent experiences.

The most critical part of the agent’s training process is the
neural network that estimates deepQ-value. The agent’s neu-
ral network is a deep neural network that inputs the current
state and outputs a set of Q-values for each possible action.
The network is trained using a combination of supervised
learning (to minimize the difference between the predicted
Q-values and the actual rewards) and reinforcement learning
(to encourage the network to learn from its own experiences).

A complete training loop is needed to allow the agent
to interact with the environment. The training loop is an
iterative process to search for the optimal Q-value in this
research. During the training loop, the agent interacts with
the environment, stores its experiences in the replay buffer,
samples experiences from the replay buffer to update the neu-
ral network, and updates the target network periodically. The

training loop continues until the agent reaches a satisfactory
level of performance.

3 Experiment environment

Next, the experiment is set up via a classic maze problem. A
maze problem refers to finding a path from a starting point to
a goal point in amaze or labyrinth.Amaze can be represented
as a grid of cells, where each cell can be either a wall or a
passage. The goal of the maze problem is to find a path from
the starting cell to the exit cell while avoiding the walls. The
maze problem can be modeled mathematically using a graph
with an adjacent matrix. Each node in the graph represents
a location in the maze, and each edge represents a possible
path between two locations. We can define the graph using
an adjacency matrix A, where Ai j is one if there is a path
from node i to node j , and 0 otherwise. Figure1 shows the
initial state setting for the agent’s policy setting. The hybrid
quantum neural network aims to find the optimal policy map.

4 Methods

Figure2 depicts the system’s overall architecture, which
comprises a classical neural network and a trainable vari-

Fig. 1 The optimal policy
defined by the trained hybrid
quantum neural network
demonstrates the significant
effectiveness of the architecture.
The arrow in the block means
the next direction the agent
should take by trained deep
Q-network (DQN). The blue
point is the exit of the maze

123

2 Page 4 of 11



Quantum Machine Intelligence (2024) 6:2 

Fig. 2 Overall research
architecture, the environment,
and the agent are mostly at
classical states of information
with determinism using binary
encoding. However, the
parameterized quantum circuit
(PQC) is the quantum state of
information to help the deep
neural network estimate the
optimal Q-value of the deep
reinforcement learning problems

ational quantum circuit. This system aims to identify the
optimal state-action pairs based on feedback from the envi-
ronment. The hybrid neural network presented in this study
incorporates two primary components: traditional neural lay-
erswithmultiple tensors and a parameterized quantumcircuit
integrated into the last layer of the neural network. Hence,
designing a hybrid network entails the development of both
a PQC and a deep neural model to establish a generalized
model for deep Q-learning problems.

4.1 Hybrid quantum neural network

Table 1 shows how the hybrid QNN was constructed for the
maze size of 4 by 4. The overall model architecture consists
of three segments: classical convolutional layers that extract
the features of the environment and system feedback into
smaller and more digestible information for quantum neural
networks that approximate the deep Q-function of the rein-
forcement learning problems. The third segment is a simple
dense layer that learns from the probability distribution of the
QNN based on the Sampler primitive to a stable and action-
able action space (Fig. 3).

Table 1 Hybrid quantum neural network architecture (maze size: 4×4)

Layer (type) Output shape Params

Conv2d-1 [−1, 16, 3, 3] 80

ReLU-2 [−1, 16, 3, 3] 0

Conv2d-3 [−1, 32, 2, 2] 2,080

ReLU-4 [−1, 32, 2, 2] 0

Linear-5 [−1, 2] 258

TorchConnector-6 [−1, 4] 4

Linear-7 [−1, 4] 20

4.2 Parameterized quantum circuit

Next, a parameterized quantum circuit is designed with the
IBM Qiskit framework. This code sets up a quantum neural
network (QNN) using IBM’s latest Sampler-QNN module.
The QNN consists of a quantum circuit created using the
feature map and Ansatz modules and is defined over two
qubits, as shown in Fig. 3.

4.2.1 Quantum feature map

ThePauli-Z evolution circuit, as used in the context of aZFea-
tureMap in quantum computing, is a specific type of quantum
circuit that employs the Pauli-Z gate to encode classical data
into a quantum state. This type of feature map is commonly
used in quantummachine learning.A featuremap in quantum
computing is a method to encode classical data into quantum
states. The ZFeatureMap explicitly uses the properties of the
Pauli-Z gate to perform this encoding.

4.2.2 Ansatz

The study first encodes classical data into quantum states
using a quantum feature map, such as a Z-feature map. Then,
aReal-Amplitudes circuit is employed as the quantumAnsatz
to approximate the deep Q-function’s target distribution.
This circuit, commonly used in quantum machine learn-
ing, alternates between rotation (Ry gates) and entanglement
layers (typically X gates), allowing customizable quantum
state preparation. The research configures the circuit without
entanglement, resulting in speed-up and efficiency improve-
ment for the quantum simulation.

123

Page 5 of 11 2



Quantum Machine Intelligence (2024) 6:2 

Fig. 3 A conceptual
representation of the variational
quantum circuit for this research

4.2.3 Quantum states measurement

TheAnsatzmodule, Real-Amplitudes, is a circuit that applies
layers of parameterized rotations and entangling gates to the
input state. It has two qubits and one repetition of the circuit
layer. The Quantum-Circuit (Fig. 3) function defines an open
quantum circuit of two qubits. Finally, the Sampler-QNN
module defines a quantum neural network (QNN) that uses
the quantumcircuit as themodel. The featuremap andAnsatz
parameters specify the circuit’s input and weight parame-
ters. The input gradient parameter is set to true, enabling the
hybrid gradient backpropagation algorithm for training the
QNN. This allows gradients to be backpropagated from the
output of the QNN to the input parameters of the feature map
module.

4.3 Training algorithm

The training algorithm for this hybrid deep neural network is
a variant of the Q-learning algorithm, a widely used model-
free reinforcement learning algorithm. The algorithm uses
a deep neural network as a function approximator to esti-
mate the optimal Q-value function, which maps state-action
pairs to their expected future reward.Optimizationminimizes
the mean squared error between the predicted and target Q-
values, computed using a Bellman equation.

The algorithm also employs experience replay, where past
transitions are stored in a buffer and sampled randomly
during training. This reduces the correlation between consec-
utive samples and stabilizes the training process. The agent
updates the neural network weights using the AdamW opti-
mizer, which adapts the learning rate based on the gradient
data with a stabilized approach using weight decay tech-
niques.

The algorithm takes as input the size of the batch, the
discount factor gamma, and the device for running the com-
putations. The loss function is the Q-loss, which calculates
the mean squared error between the predicted and target
Q-values. The optimizer .zerograd()method clears the gra-
dients of the optimizer, and the backward() method computes
the gradients of the loss function to the neural network param-
eters. Finally, the optimizer.step() method updates the neural
network weights using the calculated gradients.

Algorithm 1 Hybrid QNN model training method
Initialize the deep learning model instance
Pick a random state in the environment
for i = 0 to Numberof Epoch do

Zero out the gradients from the previous batch
Set the gradients of all the parameters in the optimizer to zero using

the method
Sample a batch of data from the agent’s replay buffer using the

method
Calculate the Q-learning loss for the batch of data using the neural

network. The discount factor
Compute the gradients of the loss to the network parameters using

backpropagation. The gradients are then stored in the parameters’
Update the network parameters using the gradients computed in

the previous step and the optimizer’s update rule using the method
end for

5 Results

The research was trained and evaluated on the local machine
with NVIDIA’s CUDA acceleration framework on the RTX
3080 Ti GPU. In addition to the training hardware, the study
applies PyTorch and IBMQiskit to develop the Hybrid QNN
and CNN. This section presents the training profiles of clas-
sical and hybrid neural networks for the maze size ranging
from 4×4 to 5×5. Later, the reward history of the classical
and quantum neural networks with different problem sizes,
ranging from 4×4 to 5×5, are delivered aswell to understand
the training process of these models.

Moreover, two tables of benchmarking results were pre-
sented to evaluate the performance of the classical and
quantumdeep learningmodels proposed in this research. The
benchmark results were evaluated based on the threemetrics:
model size, win rates, and training duration required to reach
optimal policy states within the 4×4 and 5×5 maze prob-
lems.

5.1 Training profile

The model training configuration is an epsilon profile, as
shown in Figs. 4 and 5. In reinforcement learning, an agent
interacts with an environment and learns to take actions that
maximize a cumulative reward signal. One common strat-
egy for balancing the exploration of new actions with the
exploitation of known good actions is the epsilon-greedy
strategy. This strategy involves choosing a random action

123

2 Page 6 of 11



Quantum Machine Intelligence (2024) 6:2 

Fig. 4 Model’s epsilon
profile—maze size, 4×4

with probability epsilon and choosing the action with the
highest expected reward with probability (1-epsilon).

The value of epsilon is typically set to decrease over time,
resulting in an “epsilon profile” that describes how the agent’s
exploration behavior changes as it gains more experience.
Initially, the agent may explore more (i.e., set epsilon to a
higher value) to discover new actions that may lead to high
rewards. As the agent learns which actions are most likely to
lead to high rewards, it may reduce its exploration (i.e., set
epsilon to a lower value) to focus more on exploiting known
good actions.

5.2 Training results

Table 2 demonstrates the effectiveness of the hybrid quantum
neural network introduced in the research from the perspec-
tives of model size, win rates, and total training duration
required to train both classical and hybrid QNN agents. The
total number of parameters available evaluated the model
size. The win rate was calculated by the total epochs and the
number of win epochs to evaluate the effectiveness of the
training (Table 3).

Win Rate (%) = Win counts

Total epochs
× 100 (5)

Ultimately, our hybrid deep neural network demonstrates
the promising capability and potential of near-term quan-
tum deep learning solutions using a generalizedVQCdesign.

The findings suggest that the proposed hybrid network can
perform highly in various applications. Using a combina-
tion of classical and quantum machine learning techniques,
the researchers demonstrated the potential for achieving
improved performance in challenging problems (Figs. 6, 7,
8, 9).

These results suggest hybrid deep learning approaches
using generalized VQC designs could be vital in developing
future quantum machine learning applications. Moreover, as
this quantum-classical scheme, the solution can be trained on
the GPU-accelerated hardware with IBMAer and NVIDIA’s
cuQuantum library to explore future applications based on
this model architecture.

6 Discussion

The research provides the third architecture for approach-
ing quantum reinforcement learning problems using a hybrid
neural network. This section compares two other architec-
tures, full-quantum and trainable VQC models.

6.1 Differences from full-quantummodel

The fundamental difference between this research and the
full-quantum model is the state of action and environment.
The full-quantum model encodes all the state and action
space into a quantum state using a discrete-time quantum

123

Page 7 of 11 2



Quantum Machine Intelligence (2024) 6:2 

Fig. 5 Model’s epsilon
profile—maze size, 5×5

walk with a hopping mechanism. The research demonstrates
a strong performance and high level of parallelism possible
for a full-quantum solution. The degree of complexity reduc-
tion is O(

√
n). However, this solution is most sensitive to the

noise within the quantum devices with the lowest scalability
potential.

6.2 Differences from trainable VQCmodel

Therefore, a trainable quantum circuit model is proposed to
estimate the Q-value for the Bellman equation. Unlike our
research, the VQC’s approach does not include any classical
tensor layers within the model, which increases the difficulty
for the model to generalize into larger problem sizes. How-
ever, this research has provided a theoretical and empirical
foundation for the logical similarity betweenVQCandDNN.

6.3 Hybrid neural network

As a result, a hybrid deep neural network incorporating the
VQCmodel is introduced to mitigate the challenges from the
previous two related research. With multiple classical neural

Table 2 Comparison of model performances on 4×4 maze size

Model Model size Win rate Training runtime

Classical CNN 6588 89.94% 88.29 s

Hybrid QNN 2442 85.19% 700.28 s

layers, the model could resolve many generalized problems
with various input dimensions. Also, as this neural network is
full-trainable and functional on the classical device, a strong
implication andpotential for near-termapplications emerged.
However, some technical constraints are still involved within
this solution architecture, like quantum-classical gradient
descent and accelerated computing devices for this model
class.

6.4 Outlook

This research’s challenges are exploring an efficient training
method on classical simulators and real quantum hardware.
However, in light of current constraints to hardware acces-
sibility and software architecture, training a hybrid model
on a real quantum computer is challenging. However, a
well-architected training scheme can be designed on the
GPU cluster with NVIDIA cuQuantum, IBM Qiskit, and
PyTorch framework to reduce the amount of intercommu-
nication between cores and processors, which results in the
slow training for this model based on the various iterations
of this experiments.

Table 3 Comparison of model performances on 5×5 maze size

Model Model size Win rate Training runtime

Classical CNN 7114 94.87% 297.86 s

Hybrid QNN 4890 93.13% 1577.37 s

123

2 Page 8 of 11



Quantum Machine Intelligence (2024) 6:2 

Fig. 6 Hybrid QNN’s reward
history: maze size (4×4)

Fig. 7 Classical CNN’s reward
history: maze size (4×4)

123

Page 9 of 11 2



Quantum Machine Intelligence (2024) 6:2 

Fig. 8 Hybrid QNN’s reward
history: maze size (5×5)

Fig. 9 Classical CNN’s reward
history: maze size (5×5)

123

2 Page 10 of 11



Quantum Machine Intelligence (2024) 6:2 

7 Summary

This research presents an introduction and technological
demonstration of the quantum reinforcement learning algo-
rithm with a hybrid neural network. The neural network
comprises the latest circuit architecture with novel IBM
Quantum computing primitive built-in. The results imply
the future trajectory and application of variational quantum
circuits (VQC) to accomplish an even more complex envi-
ronment for deep reinforcement learning agent training. In
addition, the research demonstrates how near-term quantum
devices could provide potential speed-up or parameter reduc-
tion to the current deep learning model. In the end, the study
would like to integrate a split-steps quantum walk circuit
model with a deep neural network and VQC to load the
classical state-space into a quantum state of information in
which the current algorithm might provide a further advance
in terms of speed and model size reduction for such applica-
tions.

Acknowledgements The authors thank Ph.D. candidate Yen-Jui Chang
at National Taiwan University for supporting and advising this project.
Also, a big thanks to Prof. Shih-Wei Liao and Prof. Ching-Ray Chang
for providing professional guidance on research trajectories.

Author contribution Mr. H-YC oversaw the entire research project,
taking charge of various critical aspects. He skillfully designed the neu-
ral network architecture and conducted rigorous validation experiments.
Furthermore, he contributed significantly to crafting most of the paper’s
contents. Alongside Mr. H-YC, Prof. C-RC, Prof. Liao and the Ph.D.
candidate, YJC, were valuable collaborators. They actively engaged in
stimulating and thought-provoking discussions, enriching the research
process. Additionally, their efforts were focused on improving the quan-
tum circuit design, which proved pivotal to the study’s success.

Funding Weacknowledge support from theNational Science andTech-
nology Council, Taiwan, under grants NSTC 112-2119-M-033-001, for
the research project Applications of Quantum Computing in Optimiza-
tion and Finances.

Data availibility All data used for this experiment is available on
GitHub: https://github.com/MarkCodering/Deep-Reinforcement-Lear
ning-using-quDNN.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Dalla Pozza N, Buffoni L, Martina S et al (2022) Quantum rein-
forcement learning: the maze problem. QuantumMach Intell 4:11.
https://doi.org/10.1007/s42484-022-00068-y

2. Chen SY-C, Yang C-HH, Qi J, Chen P-Y, Ma X, Goan H-S (2020)
Variational quantum circuits for deep reinforcement learning. In
IEEE access 8:141007–141024. https://doi.org/10.1109/ACCESS.
2020.3010470

3. Biamonte J, Wittek P, Pancotti N et al (2017) Quantum
machine learning. Nature 549:195–202. https://doi.org/10.1038/
nature23474

4. Zhao C, Gao XS (2019) QDNN: DNN with quantum neural net-
work layers. arXiv:1912.12660

5. Arthur D (2022) A hybrid quantum-classical neural network archi-
tecture for binary classification. arXiv:2201.01820

6. Schuld M (2021) Quantum machine learning models are kernel
methods. arXiv:2101.11020

7. Beer K, Bondarenko D, Farrelly T, Osborne TJ, Salzmann R,
Scheiermann D, Wolf R (2020) Training deep quantum neural net-
works. Nat Commun 11(1):808. https://doi.org/10.1038/s41467-
020-14454-2

8. Lokes S, Mahenthar CSJ, Kumaran SP, Sathyaprakash P, Jayaku-
mar V (2022) Implementation of quantum deep reinforcement
learning using variational quantumcircuits, 2022 International con-
ference on trends in quantum computing and emerging business
technologies (TQCEBT). Pune, India 2022:1–4. https://doi.org/10.
1109/TQCEBT54229.2022.10041479

9. Heimann D, Hohenfeld H, Wiebe F, Kirchner F (2022) Quan-
tum deep reinforcement learning for robot navigation tasks.
arXiv:2202.12180

10. Sannia A, Giordano A, Gullo NL et al (2023) A hybrid classical-
quantum approach to speed-up Q-learning. Sci Rep 13:3913.
https://doi.org/10.1038/s41598-023-30990-5

11. Kunczik L (2022) Quantum reinforcement learning-connecting
reinforcement learning andquantumcomputing. In:Reinforcement
learning with hybrid quantum approximation in the NISQ context.
Springer Vieweg, Wiesbaden

12. Kunczik L (2022) Evaluating quantum REINFORCE on IBM’s
quantum hardware. In: Reinforcement learning with hybrid quan-
tum approximation in the NISQ context. Springer Vieweg, Wies-
baden

13. Kunczik L (2022) Future steps in quantum reinforcement learn-
ing for complex scenarios. In: Reinforcement learning with hybrid
quantum approximation in the NISQ context. Springer Vieweg,
Wiesbaden

14. Lockwood O, Si M (2021) Playing atari with hybrid quantum-
classical reinforcement learning. NeurIPS 2020 Workshop on
Pre-registration in Machine Learning, in Proceedings of Machine
Learning Research vol 148, pp 285–301

15. Arthur D, Date P (2022) Hybrid quantum-classical neural net-
works, 2022 IEEE International Conference on Quantum Com-
puting and Engineering (QCE), Broomfield, CO, USA, pp 49–55.
https://doi.org/10.1109/QCE53715.2022.00023

16. Schetakis N, Aghamalyan D, Griffin P et al (2022) Review
of some existing QML frameworks and novel hybrid classical-
quantum neural networks realising binary classification for the
noisy datasets. Sci Rep 12:11927

17. Park S, Park DK, Rhee JKK (2023) Variational quantum approx-
imate support vector machine with inference transfer. Sci Rep
13:3288

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

Page 11 of 11 2

https://github.com/MarkCodering/Deep-Reinforcement-Learning-using-quDNN
https://github.com/MarkCodering/Deep-Reinforcement-Learning-using-quDNN
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s42484-022-00068-y
https://doi.org/10.1109/ACCESS.2020.3010470
https://doi.org/10.1109/ACCESS.2020.3010470
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
http://arxiv.org/abs/1912.12660
http://arxiv.org/abs/2201.01820
http://arxiv.org/abs/2101.11020
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1109/TQCEBT54229.2022.10041479
https://doi.org/10.1109/TQCEBT54229.2022.10041479
http://arxiv.org/abs/2202.12180
https://doi.org/10.1038/s41598-023-30990-5
https://doi.org/10.1109/QCE53715.2022.00023

	Deep Q-learning with hybrid quantum neural network on solving maze problems
	Abstract
	1 Introduction
	1.1 Quantum reinforcement learning
	1.1.1 Full-quantum reinforcement learning
	1.1.2 Trainable VQC model


	2 Reinforcement learning
	2.1 Q-learning
	2.2 Deep Q-learning
	2.3 Environment
	2.4 Agent

	3 Experiment environment
	4 Methods
	4.1 Hybrid quantum neural network
	4.2 Parameterized quantum circuit
	4.2.1 Quantum feature map
	4.2.2 Ansatz
	4.2.3 Quantum states measurement

	4.3 Training algorithm

	5 Results
	5.1 Training profile
	5.2 Training results

	6 Discussion
	6.1 Differences from full-quantum model
	6.2 Differences from trainable VQC model
	6.3 Hybrid neural network
	6.4 Outlook

	7 Summary
	Acknowledgements
	References


