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Abstract
The Coalition Formation with Spatial and Temporal constraints Problem (CFSTP) is a multi-agent task allocation problem 
where the tasks are spatially distributed, with deadlines and workloads, and the number of agents is typically much smaller 
than the number of tasks. To maximise the number of completed tasks, the agents may have to schedule coalitions. The 
state-of-the-art CFSTP solver, the Coalition Formation with Look-Ahead (CFLA) algorithm, has two main limitations. First, 
its time complexity is exponential with the number of agents. Second, as we show, its look-ahead technique is not effective 
in real-world scenarios, such as open multi-agent systems, where new tasks can appear at any time. In this work, we study 
its design and define a variant, called Coalition Formation with Improved Look-Ahead ( CFLA2 ), which achieves better 
performance. Since we cannot eliminate the limitations of CFLA in CFLA2 , we also develop a novel algorithm to solve the 
CFSTP, the first to be simultaneously anytime, efficient and with convergence guarantee, called Cluster-based Task Sched-
uling (CTS). In tests where the look-ahead technique is highly effective, CTS completes up to 30% (resp. 10% ) more tasks 
than CFLA (resp. CFLA2 ) while being up to 4 orders of magnitude faster. We also propose S-CTS, a simplified but parallel 
variant of CTS with even lower time complexity. Using scenarios generated by the RoboCup Rescue Simulation, we show 
that S-CTS is at most 10% less performing than high-performance algorithms such as Binary Max-Sum and DSA, but up to 
2 orders of magnitude faster. Our results affirm CTS as the new state-of-the-art algorithm to solve the CFSTP.

Keywords  Coalition formation · Spatial and temporal constraints · Anytime · Convergence guarantee · Disaster response · 
RoboCup rescue simulation

Introduction

Disasters, man-made and natural, can cause severe loss 
of life, damage to infrastructure and cascading failures 
in energy systems [1]. In the aftermath of a disaster, first 
responders have to be deployed to meet the needs of the 
community. They are responsible for complex tasks such 

as first aid and infrastructure restoration, which they must 
perform during periods of high stress and in environments 
with strict time constraints [5]. During these operations, it 
is fundamental to act as fast as possible since any delay can 
lead to further tragedy and destruction.

We focus on a class of disaster response problems that 
has been characterised by Ramchurn et al. [29] as Coalition 
Formation with Spatial and Temporal constraints Problem 
(CFSTP). We use the definitions of coalition and coali-
tion formation given in [14, 29, 32]. Hence, a coalition is 
a flat and task-oriented organisation of agents, short-lived 
and disbanded when no longer needed, while coalition for-
mation is a consequence of the emergent behaviour of the 
system [23]. In the CFSTP, the agents (e.g., ambulances or 
fire brigades) have to decide which tasks they are going to 
execute (e.g., save victims or extinguish fires). The decision 
is influenced by how tasks are located in the disaster area, 
how much time is needed to reach them, how much work 
they require (e.g., how large a fire is) and their deadlines 
(e.g., estimated time left before victims perish). Given these 
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conditions, and considering that there could be many more 
tasks than agents, it is necessary that agents cooperate with 
each other by forming, disbanding and reforming coalitions 
over time [32]. Coalitions enable agents to complete tasks 
more efficiently than working individually. Moreover, some 
tasks may have constraints that could not be satisfied by 
single agents. For instance, a fire is extinguished faster when 
multiple fire brigades work on it together. Hence, the objec-
tive of the CFSTP is to schedule the right coalitions (e.g., 
the fastest ambulances and fire trucks with the largest water 
tanks) to the right tasks (e.g., sites with the most victims and 
the strongest fires) to ensure that as many tasks as possible 
are completed.

Our interest is in algorithms that are anytime (i.e., which 
can return partial solutions if they are interrupted before 
completion), have theoretical properties and can solve the 
CFSTP efficiently (i.e, approximation algorithms [25]). The 
reason is that anytime and approximate solutions are funda-
mental in real-world domains, where it is necessary to have 
theoretical guarantees, but it may be computationally not 
feasible or economically undesirable to produce an optimal 
solution [42]. In particular, as we said above, the faster the 
disaster response, the lower the losses incurred. We also 
assume that the agents are situated in a open [13] system, 
that is, at any time, agents can join in or leave and new tasks 
can appear.

To date, the most effective way of solving the CFSTP 
is to reduce it to a Distributed Constraint Optimisation 
Problem (DCOP) [10] and solve it with the Max-Sum algo-
rithm [9]. The variants relevant to our scope are Fast Max-
Sum (FMS) [29] and Binary Max-Sum (BinaryMS) [27]. 
FMS has a time complexity which is exponential in the 
number of agents [29, Section 6.1] but it can find optimal 
solutions when the problem is represented by an acyclic fac-
tor graph [10]. On the other hand, BinaryMS can only find 
approximate solutions, but its time complexity is polynomial 
in the number of agents. Nonetheless, since both use binary 
decision variables, they require a pre-processing phase with 
exponential time to solve CFSTP instances with n-ary deci-
sion variables. Multi-agent approaches that solve problems 
similar to the CFSTP make use of social insects [8], auto-
mated negotiation [11, 12, 39] and evolutionary computa-
tion [41], but without considering the anytime property. 
In the iTax taxonomy of Korsah et al. [20], the CFSTP is 
defined as a Cross-schedule Dependent Single-Task Multi-
Robot Time-extended Assignment (XD [ST-MR-TA]) prob-
lem [20]. To date, the approaches proposed to solve XD [ST-
MR-TA] problems utilise linear programming [2, 18, 19], 
automated negotiation [21] and memetic algorithms [22]. 
However, either they do not produce anytime solutions [21, 
22], or they do not have theoretical properties [2], or they are 
based on a simpler model [18, 19].

Against this background, we focus on the state-of-the-art 
algorithm to solve the CFSTP, namely the Coalition Forma-
tion with Look-Ahead (CFLA) algorithm [30]. Our rationale 
is that CFLA is anytime and, although its computational 
time is exponential in the worst case, due to its design [30, 
Section 6] and to the performance of current computers, a 
well-engineered implementation can find a solution to prob-
lems with dozens of agents and hundreds of tasks in minutes, 
when it is not necessary to terminate early. Specifically, we 
advance the state of the art in the following ways:

•	 We define CFLA2 , a novel variant of CFLA that mini-
mises limitations and improves performance.

•	 Since we cannot eliminate the limitations of CFLA in 
CFLA2 , we design CTS, the first CFSTP solver to be 
simultaneously anytime, efficient and with convergence 
guarantee. In tests where the look-ahead technique is 
highly effective, CTS is up to 4 orders of magnitude 
faster than CFLA and CFLA2.

•	 Finally, we propose a simplified, parallel and more effi-
cient variant of CTS, called S-CTS. In problems gener-
ated with the RoboCup Rescue Simulation [16], we show 
that S-CTS can compete with high-performance DCOP 
algorithms, while being up to 2 orders of magnitude 
faster.

The rest of the paper is organised as follows. In “Prob-
lem Formulation”, we give our CFSTP model. “Coalition 
Formation with Improved Look-Ahead” details CFLA2 
and “Cluster-Based Task Scheduling” presents the CTS 
algorithm. Next,  we give comparison tests between 
CFLA, CFLA2 and CTS, then we show the performance 
of S-CTS in the RoboCup Rescue Simulation and finally 
conclude.

Problem Formulation

We present below a refined constraint optimisation model of 
the CFSTP [30]. More precisely, we extend the definition of 
coalition value, define the constraints with fewer and simpler 
equations, and introduce the concept of solution degree.

Basic Definitions

Let V = {v1,… , vm} be a set of m tasks and A = {a1,… , an} 
be a set of n agents.1 Let L be the finite set of all possible 
task and agent locations. Hence, more than one agent or 
task can be at the same location. Time is denoted by t ∈ ℕ , 
starting at t = 0 , and agents travel or execute tasks with a 

1  Although not necessary, it is typically assumed that m ≫ n.
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base time unit of 1. The time units needed by an agent to 
travel from its current location to a new task location are 
given by the function � ∶ A × L × L → ℕ . Unlike [30], we 
put A in the domain of � to characterise agents with differ-
ent speeds.2 Task locations do not change over time, while 
agent locations can. Each task v has a demand Dv = (wv, dv) , 
where wv ∈ ℝ

+ is the workload of v, or the amount of work 
required to complete v, and dv ∈ ℕ is the deadline of v, or 
the time until which agents can work on v. Our notion of 
work will be clear in “Coalition Values”. Hence, workloads 
are positive and some tasks may have a deadline of zero. 
In other words, a problem may have tasks that cannot be 
completed in time, independently of the algorithm chosen 
to solve it. We denote the location of agent a at time t by 
lt
a
∈ L , the times at which a starts and finishes working on 

task v by sv
a
∈ [0, dv] and f v

a
∈ [sv

a
, dv] , respectively, and the 

latest deadline by dmax = maxv∈V dv.

Coalition Allocations

Agents are cooperative [38] and can work together to com-
plete a task. A subset of agents C ⊆ A is called a coalition. 
At time t, the rationale for allocating coalition C to task v is 
that C completes v in the fewest time units. An agent allo-
cation is denoted by �a→v

t
 and represents the fact that agent 

a works on task v at time t. The set of all agent allocations 
is denoted by

and contains all possible agent allocations. A coalition 
allocation is denoted by �C→v

t
 and represents the fact that 

coalition C works on task v at time t. Given a set of agent 
allocations T ′

⊆ T  and a time t′ ≤ dmax , the set of coalition 
allocations corresponding to T ′ over the time period [0, t�] 
is denoted by

Furthermore, the set of all coalition allocations is denoted 
by

Similar to T, �  contains all possible coalition allocations. An 
agent allocation �a→v

t
 is also denoted as a singleton coalition 

allocation �{a}→v
t .

(1)T =
{
�
a→v
t

| a ∈ A, v ∈ V , t ∈ [0, dmax]
}

(2)
� (T �, t�) =

{
�
Cv→v

t | v ∈ V , Cv =
{
a | �a→v

t
∈ T �

}
, t ≤ t�

}
.

(3)� = � (T , dmax).

Coalition Values

Each coalition allocation has a coalition value, given by 
the function3 u ∶ P(A) × V → ℝ≥0 , where P(A) is the power 
set of A and ℝ≥0 is the set of non-negative real numbers. 
Unlike [30], we put V in the domain of u to characterise 
the fact that the same coalition may execute different tasks 
with different performances. Hence, given a coalition alloca-
tion �C→v

t
 , the value u(C, v) expresses the amount of work 

that coalition C does on task v at each time t. The workload 
wv decreases linearly over time, depending only on u(C, v). 
Moreover, u(C, v) is independent of time and the effect of 
C working on v.

Constraints

There are three constraint types: structural, temporal and 
spatial. Structural constraints require that each task can be 
allocated to only one coalition at a time. For each task v, this 
is characterised by defining the set 𝛤v ⊆ 𝛤  , which contains 
only coalition allocations to v, is maximal with respect to 
inclusion and such that

Temporal constraints require that each task v can be com-
pleted only within its deadline dv . This is characterised by 
the function � ∶ V × � → {0, 1} , defined as follows:

Equation 5 utilises �v to consider only coalition allocations 
that satisfy the structural constraints.

Spatial constraints require that an agent will not start 
working on a task before reaching it:

Equation 7 also implies that two tasks cannot be allocated 
to the same agent at the same time. In other words, coali-
tions that exist at a different location at the same time are 
disjoint [30, Section 2].

A set of agent allocations T ′
⊆ T  is called legal if there 

exists t ≤ dmax such that, ∀v ∈ V  , �(v,� (T �, t)) = 1 . A set of 
coalition allocations 𝛤 ′

⊆ 𝛤  is called feasible if, ∀v ∈ V  , 
�(v,� �) = 1 , and � ′ satisfies Eqs. 6 and 7. Consequently, at 

(4)�
C1→v

t , �
C2→v

t ∈ �v ⟹ C1 = C2.

(5)�(v,� ) =

�
1,

∑
t≤dv, �

C→v
t ∈�v

u(C, v) ≥ wv

0, otherwise.

(6)∀a ∈ A, ∀v ∈ V ,∀t ≤ dv, sv
a
≥ t + �(a, lt

a
, lv)

(7)∀a ∈ A,∀v1, v2 ∈ V , f v1
a

+ �(a, lv1 , lv2 ) ≤ sv2
a
.

2  In real-world scenarios, this avoids approximating different speeds 
to the same one.

3  In cooperative game theory, this is a characteristic function [3, Sec-
tion 2.1].
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time t, if �C1→v1
t  and �C2→v2

t  are feasible coalition allocations 
and lv1 ≠ lv2 , then C1 ∩ C2 = �.

When a task v is allocated to a coalition C, each agent 
a ∈ C starts working on v as soon as it reaches the loca-
tion of v, without waiting for the remaining agents. In other 
words, there are no synchronisation constraints [24].

Objective Function

The objective function of the CFSTP is to find a feasible 
set of coalition allocations that maximises the number of 
completed tasks:

To solve Eq. 8, an exhaustive search may require to verify all 
the possible agent allocations until dmax . Consequently, the 
time complexity of finding an optimal solution to the CFSTP 
is O(|A| ⋅ |V|! ⋅ (dmax)

|V|) [30].
A feasible set of coalition allocations 𝛤 ′

⊆ 𝛤  is called a 
solution with degree k if 

∑
v∈V �(v,�

�) = k , with 0 < k ≤ |V| . 
Moreover, � ′ is called a partial solution if k ≤ |V| and an 
optimal solution4 if k = |V| . Hence, the argument of the 
maxima in Eq. 8 is a solution with the highest degree.

Ramchurn et  al.  [30] proved that the CFSTP is NP-
hard [25] and a generalisation of the Team Orienteering 
Problem [4], which is a generalisation of the Travelling 
Salesman Problem [37]. As we said in “Introduction”, CFLA 
is the state-of-the-art CFSTP solver. In the next section, we 
show how to improve it.

Coalition Formation with Improved 
Look‑Ahead

We now present the Coalition Formation with improved Look-
Ahead ( CFLA2 ), an extension of the CFLA algorithm [30]. 
More precisely, its look-ahead technique (“Phase 3: Defining the 
Degree of Each Task”) has two modifications that, as we shall 
see in “Comparison Tests”, enhance the overall performance.

The concept of CFLA2 is the same as CFLA, but for com-
pleteness, we briefly report it in “The Concept of CFLA2 ”. 
After that, we detail the procedures that compose CFLA2 , 
explaining how they differ from the ones of CFLA. Finally, 
we list the limitations that CFLA2 continues to keep from 
CFLA, which are the rationale for our new algorithm in 
“Cluster-Based Task Scheduling”.

Both CFLA and CFLA2 use the same four phases, but 
Ramchurn et  al.  [30, Section 6] describe them in three 

(8)
arg max

𝛤
�
⊆ 𝛤 ,

𝛤
�feasible

∑

v∈V

𝛥(v,𝛤 �).

algorithms. To improve the readability, we describe them in 
four algorithms (“Phase 1: Defining the Legal Agent Alloca-
tions” to “Phase 4: Overall Procedure of CFLA2 ”).

The Concept of CFLA2

CFLA2 is a centralised, anytime and greedy algorithm that 
solves Eq. 8 by maximising the working time of the agents 
and minimising the time required by coalitions to complete 
tasks. It is divided into four phases: 

1.	 Defining the legal agent allocations (“Phase 1: Defining 
the Legal Agent Allocations”).

2.	 For each task v, choosing the best coalition C (“Phase 2: 
Selecting the Best Coalition for Each Task”).

3.	 For each task v, doing a 1-step look-ahead (“Phase 3: 
Defining the Degree of Each Task”) to define its degree 
�v , or the number of tasks that can be completed after 
the completion of v.

4.	 At each time t ∈ [0, dmax] , allocating a task not yet com-
pleted and with the highest degree (“Phase 4: Overall 
Procedure of CFLA2”).

Phase 1: Defining the Legal Agent Allocations

At time t, Algorithm 1 determines which free agents5 ( At
free

 ) 
can reach which uncompleted tasks ( Vunc ) before their dead-
lines. The resulting set of legal agent allocations is denoted 
by Lt . This phase is identical in CFLA.

Phase 2: Selecting the Best Coalition for Each Task

4  Optimal solutions may not exist (“Basic Definitions”). 5  That is, agents who neither are travelling to nor working on a task.



SN Computer Science (2021) 2:165	 Page 5 of 15  165

SN Computer Science

Given a task v and a set of legal agent allocations Lt (com-
puted by Algorithm 1), Algorithm 2 returns the Earliest-
Completion-First (ECF)6 coalition C∗

v
 that can be allocated to 

v [30, Section 6.2]. More precisely, the algorithm minimises 
both the size of C∗

v
 and the time at which it completes v. 

This is achieved by iterating from the smallest to the larg-
est possible coalition size (line 5) and iterating through all 
possible coalitions of each size (line 6). When the procedure 
finds a coalition C that can complete v within its deadline dv 
(line 7), then |C| is the minimum size of the coalitions that 
can complete v. Hence, C∗

v
 is identified among the coalitions 

that have size |C| (lines 8–11). The summation at lines 7–8 is 
the workload done by the coalition allocations defined from 
the asynchronous arrivals (“Constraints”) of the agents of C 
(line 6) to the location of v.

Unlike the original formulation [30, Algorithm 2], Algo-
rithm 2 clarifies that the minimum coalition size has to be 
determined by iterating through the subsets of the combina-
tions7 of At

v
 , which is the set of free agents that at time t can 

reach v within dv.

Phase 3: Defining the Degree of Each Task

Given a task v, Algorithm 3 performs a brute-force search to 
define its degree �v (“The Concept of CFLA2 ”). At line 8, 
with a procedure similar to line 5 in Algorithm 2, it checks 
how many tasks can be completed after the completion of v. 
Hence, Algorithm 3 assigns a score to each coalition alloca-
tion selected by Phase 2 (“Phase 2: Selecting the Best Coali-
tion for Each Task”) for each currently uncompleted task. 
These scores are then used by Phase 4 (“Phase 4: Overall 
Procedure of CFLA2 ”) to choose the next task to execute.

Algorithm 3 differs from the original [30, Algorithm 3] 
in two points. First, it only considers uncompleted tasks that 

have a deadline greater or equal to dv (line 4). This prevents 
from counting tasks that can be completed before the com-
pletion of v. As defined in “The Concept of CFLA2 ”, �v rep-
resents the number of tasks that can be completed only after 
the completion of v. Second, at line 11, �v is not just incre-
mented by 1, but also by 1 − �v2

 , where �v2 is the rescaling8 
of wv2

 to the range [wmin,wmax] , with wmin and wmax being, 
respectively, the minimum and maximum task workloads:

Hence, �v is also a measure of how much total workload 
remains after the completion of v. Maximising �v (line 12 of 
Algorithm 4) leads to the remaining tasks with the smallest 
workloads, which increases the probability of completing 
more.

Phase 4: Overall Procedure of CFLA2

Algorithm 4 shows the overall procedure. The repeat-until 
loop runs until all tasks are completed, or until the latest 
deadline is expired (line 22). At each time t, the set of legal 
agent allocations is updated (line 8) and a task allocation is 
defined (lines 9–18). If it is not possible to allocate other 
tasks, the algorithm stops early (line 19).

Analysis and Discussion

Algorithm 1 iterates through all free agents and uncompleted 
tasks. Assuming that line 4 requires constant time, the time 
complexity is � = O(|A| ⋅ |V|).

Algorithm 2 iterates (line 5) from coalition size 1 to 
|At

v
| , where At

v
 is the set of agents that can reach task v at 

time t. This requires O(|A|) time in case At
v
= A . For each 

�v2
=

wv2
− wmin

wmax − wmin

.

6  This logic is adapted from the Earliest-Deadline-First (EDF) 
scheduling [33].
7  To date, the most efficient technique to enumerate all such combi-
nations is the Gray binary code [7, Section 7.2.1.1]. 8  Also known as min–max scaling or min–max normalisation.
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s ≤ |At
v
| , all possible coalitions of size s could be exam-

ined (line 6), which requires O(2|A|) time. Assuming that 
line 8 requires O(dmax) time, the total time complexity is 
� = O(|A| ⋅ 2|A| ⋅ dmax).

Algorithm  3 iterates through all uncompleted tasks, 
which requires O(|V|) time, while line 8 is computationally 
identical to line 5 in Algorithm 2. Hence, the time complex-
ity is � = O(|V| ⋅ 2|A|) . Since it uses all previous algorithms, 
Algorithm 4 has a time complexity of:

Therefore, despite having a lower complexity than an opti-
mal CFSTP solver (“Objective Function”), CFLA2 has a 
run-time that increases quadratically with the number of 
tasks and exponentially with the number of agents, which 
makes it not suitable for systems with limited computational 
power or real-time applications. Other limitations are as 
follows. 

1.	 It can allocate at most one task per time unit [30, Sec-
tion 7]. More formally, at each time unit, the best-case 
guarantee of CFLA2 is to find a partial solution with 
degree k = 1.

2.	 In general, greedily allocating a task with the highest 
degree now does not ensure to allocate all uncompleted 
tasks in future. This is particularly relevant in an open 
system, where there is no certainty of having further 
uncompleted tasks (“Introduction”).

3.	 The more the tasks can be grouped by degree, the more 
the look-ahead technique becomes a costly random 
choice. In other words, at time t, if some tasks V ′

⊆ V  
have all maximum degree, then Algorithm 4 selects v∗ 
randomly from V ′ . Hence, the larger V ′ is, the less rel-
evant Algorithm 3 becomes.

4.	 In Algorithm 4, all tasks have the same weight. That is, 
tasks with earlier deadlines may not be allocated before 
tasks with later deadlines. This is independent of the 
order in which the uncompleted tasks are elaborated 
(line 9) since the computation of �max (line 12) would 
not be affected.

To overcome the limitations of CFLA2 , in the next section 
we present CTS, a CFSTP solver that is anytime, efficient 
and with convergence guarantee, both in closed and open 
systems.

(9)O
(
dmax ⋅ (� + |V| ⋅ (� + �))

)
= O

((
dmax ⋅ |V|

)2
⋅ 2|A|

)
.

Cluster‑Based Task Scheduling

The Cluster-based Task Scheduling (CTS) is an anytime and 
greedy algorithm that operates at the agent level, rather than 
at the coalition level. It is divided into the following two 
phases. 

1.	 For each agent a, defining a task v such that v is the clos-
est to a and dv is minimal.

2.	 For each task v, defining the coalition of agents to which 
v has to be allocated.

Algorithm 5 is used in Phase 1, while Algorithm 6 enacts 
the two phases. We describe them, respectively, in “Select-
ing the Best Task for Each Agent” and “Overall Procedure 
of CTS”.

Selecting the Best Task for Each Agent

Given a time t and an agent a, Algorithm 5 returns the 
uncompleted task v that is allocable, the most urgent and 
closest to a. By allocable we mean that a can reach v before 
deadline dv , while most urgent means that v has the earliest 
deadline. The algorithm prioritises unallocated tasks, that is, 
it first tries to find a task to which no agents are travelling, 
and on which no agents are working ( vt

a
[0] ). Otherwise, it 

returns an already allocated but still uncompleted task such 
that a can reach it and contribute to its completion ( vt

a
[1] ). 

This ensures that an agent becomes free only when no other 
tasks are allocable and uncompleted.
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The overall procedure is described in Algorithm 6. The 
repeat-until loop is the same as CFLA2 , to preserve the 
anytime property. Phases 1 and 2 are represented, respec-
tively, by the loops at lines 5 and 16.

Phase 1 loops through all agents. Here, an agent a may 
either be free or reaching a task location. In the first case 
(line 6), if an uncompleted task v can be allocated to a 
(lines 7 and 8), then v is flagged as allocable (line 9) and a 
is added to the set of agents At

v
 to which v could be allocated 

at time t (line 11). In the second case (line 12), a is travelling 
to a task v, hence its location is updated (line 13) and, if it 
reached v, it is set to working on v (line 14).

Phase 2 visits each uncompleted task v. If v is alloca-
ble (line 18) then it is allocated to the smallest coalition 
of agents in At

v
 (defined in Phase 1) that can complete it 

(lines 19–32). In particular, at lines 24–27, �v is the amount 
of workload wv done by all the coalitions formed after the 
arrival to v of the first i − 1 agents in � t

v
 (defined at line 19). 

After that, if agents are working on v (line 33), its workload 
wv is decreased accordingly (line 34). If wv drops to zero 
or below, then v is completed (lines 35–37). The algorithm 
stops (line 39) when all the tasks have been completed, or 
the latest deadline is expired, or no other tasks are alloca-
ble and uncompleted (“Selecting the Best Task for Each 
Agent”).

The spatial constraints (Eqs. 6 and 7) are satisfied by 
executing Algorithm 5 only on free agents (line 6), while 
the temporal constraints (Eq. 5) are satisfied by allocating 
a task v to a coalition C only when C has the minimum size 
and can complete v within the deadline dv.

Analysis and Discussion

The approach of CTS transforms the CFSTP from a 1 − k 
task allocation to a series of 1–1 task allocations. In other 
words, instead of allocating each task to a coalition of k 
agents, we have that coalitions are formed by clustering (i.e., 
grouping) agents based on the closest and most urgent tasks. 
This is an eligibility criterion: unlike CFLA2 , CTS exploits 
the distances between agents and tasks and the speeds of 
agents to reduce the time needed to define coalition alloca-
tions. Algorithm 5 runs in � = O(|V|) time, assuming that 
the operation at line 8 has constant time. In Algorithm 6, 
the time complexity of Phase 1 is O(|A| ⋅ �) = O(|A| ⋅ |V|) , 
while Phase 2 runs in O(|V| ⋅ |A| log |A|) because: in the 
worst case, At

v
= A and line 19 sorts A in �(|A| ⋅ log |A|) 

time using any comparison sort algorithm [6]; the loop at 
line 21 runs in O(|A|) time. Since the repeat-until loop is 
executed at most dmax times, the time complexity of Algo-
rithm 6 is

(10)O
(
dmax ⋅ |V| ⋅ |A| log |A|

)
.

If both phases are executed in parallel, the time complexity 
is reduced to:

CTS does not have the limitations of CFLA2 (“Analysis and 
Discussion”) because: 

1.	 It can allocate at least one task per time unit. More for-
mally, at each time unit, if one or more tasks are alloca-
ble, CTS finds a partial solution with degree 1 ≤ k ≤ |A|.

2.	 It runs in polynomial time and does not use a look-ahead 
technique. Thus, it is efficient and can be used in open 
systems.

The following theorem is based on the definitions given in 
“Constraints”.

Theorem 1  CTS is guaranteed to find feasible coalition 
allocations.

Proof  We prove by induction on time t.
At t = 0 , Phase 1 of Algorithm 6 selects a task v for each 

agent a such that v is allocable, the most urgent and closest 
to a (“Selecting the Best Task for Each Agent”). This implies 
that the agent allocation �a→v

0
 is legal (“Constraints”). Then, 

Phase 2 (“Overall Procedure of CTS”) allocates v to a only 
if it exists a coalition C such that |C| is minimum, �C→v

0
 is 

feasible (“Constraints”) and a ∈ C.
At t > 0 , for each agent a, there are two possible cases: 

a task v has been allocated to a at time t′ < t , or a is free 
(i.e., idle). In the first case, a is either reaching or working 
on v (lines 12–15 in Algorithm 6), hence �a→v

t
 is legal and 

�
C→v
t

 is feasible, where a ∈ C . In the second case, a is either 
at its initial location or at the location of a task on which it 
finished working at time t′ < t . Thus, as in the base case, if 
it exists a coalition C and a task v such that |C| is minimum, 
�
C→v
t

 is feasible and a ∈ C , then v is allocated to a. 	�  ◻

As shown in the two previous sections, Algorithm 5 iter-
ates exactly once over a finite set of uncompleted tasks, 
while the repeat-until loop of Algorithm 6 is executed at 
most dmax times. Hence, a corollary to Theorem 1 is that 
CTS converges to a partial solution if it exists.

The counterexample given by Limitation 2 in “Analysis 
and Discussion” does not allow to prove the convergence 
of CFLA and CFLA2 in general settings. Since no current 
algorithm that solves the CFSTP is simultaneously anytime, 
efficient and with convergence guarantee (“Introduction”), 
CTS is the first of its kind.

(11)�

(
dmax ⋅ (|V| + |A| log |A|)

)
.
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Comparison Tests

We implemented CFLA, CFLA2 and CTS in Java,9 and rep-
licated the experimental setup of [30] because we wanted 
to evaluate how well CFLA2 and CTS perform in settings 
where the look-ahead technique is highly effective. For each 
test configuration, we solved 100 random CFSTP instances 
and plotted the average and standard deviation of: percent-
age of completed tasks; agent travel time (“Basic Defini-
tions”); task completion time, or the time at which a task 
has no workload left; problem completion time, or the time 
at which no other tasks can be allocated.

Setup

Let U(l, u) and UI(l, u) be, respectively, a uniform real distri-
bution and a uniform integer distribution with lower bound 
l and upper bond u. Our parameters are defined as follows.

•	 All agents have the same speed.
•	 The initial agent locations are randomly chosen on a 50 

by 50 grid, where the travel time of agent a between two 
points is given by the Manhattan distance (i.e., the taxi-
cab metric or �1 norm) divided by the speed of a.

•	 Tasks are fixed to 300, while agents range from 2 to 40, 
in intervals of 2 between 2 and 20 agents, and in intervals 
of 5 between 20 and 40 agents.

•	 The coalition values are defined as u(C, v) = |C| ⋅ k , 
where k ∼ U(1, 2) . Hence, coalition values depend only 
on the number of agents involved, and all tasks have the 
same difficulty.

•	 Deadlines dv ∼ UI(5, 600) and workloads wv ∼ UI(10, 50).

Unlike [30], we set the number of maximum agents to 40 
instead of 20, because it allows in this setup to complete all 
tasks in some instances. We did not perform a comparison 
on larger instances because of the run-time of CFLA and 
CFLA2 : on commodity hardware, CTS takes seconds to 
solve instances with thousands of agents and tasks, while 
CFLA and CFLA2 take days. Consequently, the purpose of 
this section is to highlight the performance of CTS using 
CFLA and CFLA2 as a baseline. We aim to verify the scal-
ability of CTS in a future investigation.

Results

In terms of completed tasks (Fig. 1a), the best performing 
algorithm for instances with up to 18 agents is CFLA2 , 
while the best performing algorithm for instances with at 
least 20 agents is CTS. CFLA is outperformed by CFLA2 

in all instances except those with 2 agents, and by CTS in 
instances with at least 10 agents. The reason why the perfor-
mance of CFLA and CFLA2 does not improve significantly 
starting from instances with 20 agents is that the more agents 
(with random initial locations) there are, the more the tasks 
are likely to be grouped by degree.10 CFLA2 has a trend 
similar to that of CFLA because it has the same limitations, 
but it performs better due to its improved look-ahead tech-
nique. CTS is not the best in all instances because its average 
task completion time is the highest (see the discussion on 
Fig. 1c below). This implies that the fewer the agents, the 
more the tasks may expire before they can be allocated. In 
our setup, 10 (resp. 20) is the number of agents starting from 
which this behaviour is contained enough to allow CTS to 
outperform CFLA (resp. CFLA2).

Regarding agent travel times (Fig. 1b), it can be seen that 
CTS is up to three times more efficient than CFLA and 
CFLA2 . This is due to Algorithm 5, which allocates tasks to 
agents also based on their proximity. CFLA2 has lower agent 
travel times than CFLA for the following reason. The degree 
computation in CFLA2 also considers how much total work-
load would be left (“Phase 3: Defining the Degree of Each 
Task”). Higher degrees correspond to lower workloads, and 
tasks with lower workloads are completed first. Thus, fewer 
tasks are grouped by degree and more are likely to be com-
pleted. This means that the average distance between task 
locations in a CFLA2 solution may be lower than that of a 
CFLA solution. The agent travel times increase with all 
algorithms. This behaviour is also reported, but not 
explained, by Ramchurn et al. [30]. To explain it, let us con-
sider a toy problem with one agent a1 and one task v. If we 
introduce a new agent a2 such that 𝜌(a2, l0a2 , lv) > 𝜌(a1, l

0
a1
, lv) , 

then the average travel time increases. In our setup, this hap-
pens because the initial agent locations are random.

In general, task completion times (Fig.  1c) decrease 
because the more agents there are, the faster the tasks are 
completed. The completion of task v is related to the size of 
the coalition C to which v is allocated: the highest the com-
pletion time, the smallest the size of C, hence the highest 
the working time of the agents in C. Task completion times 
are inversely related to agent travel times. Since CTS has the 
smallest agent travel times and allocates tasks to the smallest 
coalitions, it consequently has the highest task completion 
times. Therefore, in CTS, agents work the highest amount 
of times, and the number of tasks attempted at any one time 
is the largest.

The problem completion times (Fig. 1d) are in line with 
the task completion times (Fig. 1c) since the faster the tasks 
are completed, the less time is needed to solve the prob-
lem. The reason why the times of CFLA and CFLA2 do not 

9  https​://doi.org/10.5281/zenod​o.43206​71. 10  See Limitation 3 described in “Analysis and Discussion”.

https://doi.org/10.5281/zenodo.4320671


	 SN Computer Science (2021) 2:165165  Page 10 of 15

SN Computer Science

decrease significantly from 20 agents up is linked to their 
performance (see the discussion on Fig. 1a above). On the 
other hand, the fact that the times of CTS decrease more 
consistently than those of CFLA and CFLA2 indicates that 
CTS is the most efficient asymptotically. In other words, 
CTS is likely to solve large problems in fewer time units 
than CFLA and CFLA2.

In terms of computational times, CTS is significantly 
faster than CFLA and CFLA2 . For example, in instances 
with 40 agents and 300 tasks, on average11 CTS is 
45106% ± [2625, 32019] (resp. 27160% ± [1615, 20980] ) 
faster than CFLA (resp. CFLA2 ). The run-time improvement 

of CFLA2 is due to line 4 of Algorithm 3, due to which the 
look-ahead technique elaborates fewer tasks.

Tests with the RoboCup Rescue Simulation

In this section, we benchmark a variant of CTS (“Cluster-
Based Task Scheduling”) against high-performance DCOP 
solvers with the RoboCup Rescue Simulation (RCRS), one of 
the most important projects promoting multi-agent research 
on disaster response [16]. By reproducing the aftermath of 
an earthquake in a city, the RCRS allows verifying coordina-
tion approaches that could be enacted by first responders in 
such situations [15, 31].
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Fig. 1   Comparison of CFLA, CFLA2 and CTS on CFSTP instances 
with linear coalition values. In each figure, each point is the 
avg ± std∕2 , where avg is the average over 100 problems of the value 

indicated on the Y-axis and std is the standard deviation of avg . The 
tasks are fixed to 300, while the number of agents is denoted by the 
X-axis

11  On a machine with an Intel Core i5-4690 processor (quad-core 
3.5 GHz, no Hyper-Threading) and 8 GB DDR3-1600 RAM.
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We conducted the tests with our fork of RMAS-
Bench12 [17], a benchmark platform based on the RCRS. 
We chose it because it allows comparisons against ready-to-
use implementations of BinaryMS (“Introduction”) and the 
Distributed Stochastic Algorithm (DSA) [40]. We use them 
as a baseline because:

•	 Max-Sum and its variants are widely used and can obtain 
partial solutions with very high degrees (“Introduction”). 
In particular, BinaryMS can produce a solution within 
the time limit enforced by the RCRS13 and with the same 
quality as FMS [27].

•	 Since numerous empirical evaluations have proven its 
efficacy in many different domains, DSA is a touchstone 
for testing DCOP and RCRS algorithms [10].

“Simplified CTS” describes how CTS can be adapted for 
use in the latest RCRS version.14 The following two sections 
report our setup and results, respectively.

Simplified CTS

In the current RCRS version, deadlines and workloads are 
not accessible to agents. Thus, we cannot implement CTS 
since we can neither verify the spatial constraints in Phase 
1 nor can we implement Phase 2 (“Overall Procedure of 
CTS”). However, the RMASBench allows to obtain the 
utility of a task, which is a quantitative measure that indi-
cates the current importance of a task. Consequently, we 
implemented a modified Phase 1 in which each agent can 
independently choose to work on the closest task with the 
highest utility. We call this variant Simplified CTS (S-CTS).

The time complexity of S-CTS is O(dmax ⋅ |V|) since the 
agents do not coordinate with each other and their choice 
is carried out in parallel. Although S-CTS may seem like a 
major handicap, we show below that it offers a reasonable 
trade-off between performance and complexity.

Setup

All tests are based on the Paris map, one of the most used 
in the RoboCup competition. We kept the default setup [27, 
Section 6.1] because, according to the authors, it maximises 
the performance of both BinaryMS and DSA.

In RMASBench, there are police patrols and fire brigades. 
A police patrol can unblock roads, while a fire brigade can 
extinguish fires. Having 2 agent types allows studying 

inter-team coordination aspects. Since this is not in our 
scope, we did not consider road blockades. As a result, our 
problems are easier and our baseline is more competitive. 
Figure 2 gives an example.

The RCRS is based on scenarios [31]. A scenario is a 
class of problems, whose main parameter is the number of 
agents. In RMASBench, there are 5 scenarios, respectively, 
with 15, 21, 27, 33 and 40 fire brigades. Other settings are 
as follows.

•	 The agents are homogeneous, that is, they all have the 
same speed and water tank size.

•	 There are 3 ignition points and each scenario is replicated 
30 times. At each execution, a pseudo-random number 
generator influences the way the fires spread from igni-
tion points to nearby buildings.

•	 To get a non-trivial number of fires, the agents are added 
25 seconds after the start.

•	 Each simulation runs for a maximum of 5 minutes, end-
ing earlier if all fires have been extinguished.

•	 The coalitions are super-additive [3, Section 2.1.2.2]. 
That is, u(C, v) = |C|.

•	 Deadlines and workloads are randomly generated by the 
RCRS.

Fig. 2   Detail of an example problem on the Paris map. The red dots 
are fire brigades and the blue lines are their water jets. The colour of 
the buildings reflects their status: grey means no damage; yellow to 
red means on fire; blue to purple means that the fire has been extin-
guished, and black means that the building is burnt. The darker the 
colour, the greater the damage. On the centre-right is a fire station, to 
which the fire brigades return to refill

12  https​://doi.org/10.5281/zenod​o.43206​58.
13  That is, 1 s per problem time unit.
14  https​://githu​b.com/robor​escue​/rcrs-serve​r/relea​ses/tag/2020-onlin​
e-compe​titio​n.

https://doi.org/10.5281/zenodo.4320658
https://github.com/roborescue/rcrs-server/releases/tag/2020-online-competition
https://github.com/roborescue/rcrs-server/releases/tag/2020-online-competition


	 SN Computer Science (2021) 2:165165  Page 12 of 15

SN Computer Science

For each scenario and algorithm, we plot the average and 
standard deviation of: 

1.	 Problem completion time (“Comparison Tests”).
2.	 The number of buildings that burned at least once, 

denoted by bonce.
3.	 Score, or the percentage of damage suffered by the city, 

where 100% means completely burnt. This is the main 
RCRS metric, defined on the total area of the city build-
ings and scenario-based parameters.

4.	 Average CPU time15 per problem time unit.

We do not consider message-related metrics because S-CTS 
agents do not communicate (“Simplified CTS”).

Results

The more the agents communicate with each other, the bet-
ter they coordinate. In turn, this leads to lower completion 
times and numbers of burned buildings. Because there is 
no exchange of messages in S-CTS and BinaryMS has the 
highest communication overhead, they are, respectively, the 
least and the most performing in Fig. 2a, b.

Nevertheless, this does not result in a drastic drop in per-
formance. In Fig. 2c, in the worst-case scenario (i.e., 21 
agents), on average S-CTS scores about 10% (resp. 5% ) less 
than BinaryMS (resp. DSA). This is not trivial, given that 
S-CTS is a simplification and that the scenarios used are 
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Fig. 3   Performance of S-CTS in RMASBench using DSA and Binary 
Max-Sum as baselines. In each figure, the X-axis defines the number 
of agents in the scenario, while each point is the avg ± std∕2 , where 

avg is the average over 30 simulations of the value indicated by the 
Y-axis, and std is the standard deviation of avg

15  Based on an Intel Xeon E5-2670 processor (octa-core 2.6  GHz 
with Hyper-Threading).
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fine-tuned to maximise the performance of BinaryMS and 
DSA.

Regarding the average CPU time (Fig. 2d), S-CTS is up 
to 2 orders of magnitude (resp. 1) faster than BinaryMS 
(resp. DSA). This is because BinaryMS has a pre-processing 
phase that requires exponential time (“Introduction”) while 
DSA, despite having a time complexity similar to that of 
S-CTS [10, Table 4], has a message-passing phase as well.

In Fig. 2a–c, the trends converge to zero because the 
more agents there are, the less relevant the solver becomes. 
In other words, the greater the number of agents, the higher 
the quality of solutions. We can deduce that the degree 
of agent communication is directly proportional to the 
score and inversely proportional to the CPU time. How-
ever, as we have seen, the performance difference between 
communication and no communication is not necessarily 
significant.

Conclusions

In this paper, we proposed two novel algorithms to solve the 
CFSTP. The first is CFLA2 , an improved version of CFLA, 
and the second is CTS, which is the first to be simultane-
ously anytime, efficient and with convergence guarantee. 
CFLA2 can replace CFLA in offline settings or for small 
problems, while CTS provides a baseline for benchmarks 
with dynamic and large problems. Moreover, we showed 
how a simplified but parallel variant of CTS is enough to 
compete with high-performance solvers (i.e., BinaryMS and 
DSA) in the RCRS. Because it significantly outperforms 
CFLA and is more applicable than CFLA2 , we can con-
sider CTS to be the new state-of-the-art CFSTP solver. Due 
to its features (“Analysis and Discussion”), CTS can also be 
used in contexts that are not necessarily real-time, but can be 
still captured by the CFSTP model, such as multi-robot area 
coverage or exploration of environments that are dangerous 
for humans [30, Section 8].

The limitation of CTS is that it cannot define the quality 
of its approximation (“Analysis and Discussion”). Moreover, 
the fact that it maximises the agent working times (“Com-
parison Tests”) implies that some agents may take longer to 
complete some tasks and therefore may not work on others. 
Thus, if an optimal solution exists, in general CTS cannot 
guarantee to obtain it. The CFSTP model also has some limi-
tations, including

•	 The tasks have all the same weight and have no order. 
This does not capture scenarios such as search and rescue 
missions, where some tasks may have higher priority or 
must be completed before others [20, 24, 28].

•	 The task workloads are assumed static, when in reality 
they might be dynamic (e.g., fires that grow in intensity).

•	 Agent communication is perfect and without costs (i.e., 
free comm environment [26]). Instead, real-world com-
munication channels may fail or have operational con-
straints, such as low bandwidth or limited network topol-
ogy (e.g., sparse robot swarms [34]).

•	 Each agent knows its subproblem a priori (i.e., total 
knowledge or deterministic environment behaviour [10, 
Section 3]). In real-world domains, task states are par-
tially or not known a priori, thus the agents must balance 
the exploration of the environment and the exploitation 
of the acquired information [35, 36].

Consequently, future work aims at 

1.	 Extending CTS to give quality guarantees on the solu-
tions found, and testing its scalability in dynamic bench-
marks.

2.	 Extending the CFSTP model to eliminate the aforemen-
tioned limitations and capture more disaster response 
scenarios.

3.	 Designing an anytime, optimal and distributed algorithm 
to solve both the CFSTP and our extension.

4.	 Investigating efficient inter-team coordination in the 
RCRS [27]. Specifically, focusing on problems with 
fires, road blockades and victims trapped under the rub-
ble.
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