
Vol.:(0123456789)

SN Computer Science (2021) 2:165
https://doi.org/10.1007/s42979-021-00523-w

SN Computer Science

ORIGINAL RESEARCH

Anytime and Efficient Multi‑agent Coordination for Disaster Response

Luca Capezzuto1  · Danesh Tarapore1  · Sarvapali D. Ramchurn1 

Received: 22 September 2020 / Accepted: 13 February 2021 / Published online: 23 March 2021
© The Author(s) 2021

Abstract
The Coalition Formation with Spatial and Temporal constraints Problem (CFSTP) is a multi-agent task allocation problem
where the tasks are spatially distributed, with deadlines and workloads, and the number of agents is typically much smaller
than the number of tasks. To maximise the number of completed tasks, the agents may have to schedule coalitions. The
state-of-the-art CFSTP solver, the Coalition Formation with Look-Ahead (CFLA) algorithm, has two main limitations. First,
its time complexity is exponential with the number of agents. Second, as we show, its look-ahead technique is not effective
in real-world scenarios, such as open multi-agent systems, where new tasks can appear at any time. In this work, we study
its design and define a variant, called Coalition Formation with Improved Look-Ahead ( CFLA2 ), which achieves better
performance. Since we cannot eliminate the limitations of CFLA in CFLA2 , we also develop a novel algorithm to solve the
CFSTP, the first to be simultaneously anytime, efficient and with convergence guarantee, called Cluster-based Task Sched-
uling (CTS). In tests where the look-ahead technique is highly effective, CTS completes up to 30% (resp. 10% ) more tasks
than CFLA (resp. CFLA2 ) while being up to 4 orders of magnitude faster. We also propose S-CTS, a simplified but parallel
variant of CTS with even lower time complexity. Using scenarios generated by the RoboCup Rescue Simulation, we show
that S-CTS is at most 10% less performing than high-performance algorithms such as Binary Max-Sum and DSA, but up to
2 orders of magnitude faster. Our results affirm CTS as the new state-of-the-art algorithm to solve the CFSTP.

Keywords  Coalition formation · Spatial and temporal constraints · Anytime · Convergence guarantee · Disaster response ·
RoboCup rescue simulation

Introduction

Disasters, man-made and natural, can cause severe loss
of life, damage to infrastructure and cascading failures
in energy systems [1]. In the aftermath of a disaster, first
responders have to be deployed to meet the needs of the
community. They are responsible for complex tasks such

as first aid and infrastructure restoration, which they must
perform during periods of high stress and in environments
with strict time constraints [5]. During these operations, it
is fundamental to act as fast as possible since any delay can
lead to further tragedy and destruction.

We focus on a class of disaster response problems that
has been characterised by Ramchurn et al. [29] as Coalition
Formation with Spatial and Temporal constraints Problem
(CFSTP). We use the definitions of coalition and coali-
tion formation given in [14, 29, 32]. Hence, a coalition is
a flat and task-oriented organisation of agents, short-lived
and disbanded when no longer needed, while coalition for-
mation is a consequence of the emergent behaviour of the
system [23]. In the CFSTP, the agents (e.g., ambulances or
fire brigades) have to decide which tasks they are going to
execute (e.g., save victims or extinguish fires). The decision
is influenced by how tasks are located in the disaster area,
how much time is needed to reach them, how much work
they require (e.g., how large a fire is) and their deadlines
(e.g., estimated time left before victims perish). Given these

This article is part of the topical collection “Advances in
Multi-Agent Systems Research: EUMAS 2020 Extended
Selected Papers” guest edited by Nick Bassiliades and Georgios
Chalkiadakis.

 *	 Luca Capezzuto
	 luca.capezzuto@soton.ac.uk

	 Danesh Tarapore
	 d.s.tarapore@soton.ac.uk

	 Sarvapali D. Ramchurn
	 sdr1@soton.ac.uk

1	 School of Electronics and Computer Science, University
of Southampton, Southampton, UK

http://orcid.org/0000-0003-4404-0998
http://orcid.org/0000-0002-3226-6861
http://orcid.org/0000-0001-9686-4302
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00523-w&domain=pdf

	 SN Computer Science (2021) 2:165165  Page 2 of 15

SN Computer Science

conditions, and considering that there could be many more
tasks than agents, it is necessary that agents cooperate with
each other by forming, disbanding and reforming coalitions
over time [32]. Coalitions enable agents to complete tasks
more efficiently than working individually. Moreover, some
tasks may have constraints that could not be satisfied by
single agents. For instance, a fire is extinguished faster when
multiple fire brigades work on it together. Hence, the objec-
tive of the CFSTP is to schedule the right coalitions (e.g.,
the fastest ambulances and fire trucks with the largest water
tanks) to the right tasks (e.g., sites with the most victims and
the strongest fires) to ensure that as many tasks as possible
are completed.

Our interest is in algorithms that are anytime (i.e., which
can return partial solutions if they are interrupted before
completion), have theoretical properties and can solve the
CFSTP efficiently (i.e, approximation algorithms [25]). The
reason is that anytime and approximate solutions are funda-
mental in real-world domains, where it is necessary to have
theoretical guarantees, but it may be computationally not
feasible or economically undesirable to produce an optimal
solution [42]. In particular, as we said above, the faster the
disaster response, the lower the losses incurred. We also
assume that the agents are situated in a open [13] system,
that is, at any time, agents can join in or leave and new tasks
can appear.

To date, the most effective way of solving the CFSTP
is to reduce it to a Distributed Constraint Optimisation
Problem (DCOP) [10] and solve it with the Max-Sum algo-
rithm [9]. The variants relevant to our scope are Fast Max-
Sum (FMS) [29] and Binary Max-Sum (BinaryMS) [27].
FMS has a time complexity which is exponential in the
number of agents [29, Section 6.1] but it can find optimal
solutions when the problem is represented by an acyclic fac-
tor graph [10]. On the other hand, BinaryMS can only find
approximate solutions, but its time complexity is polynomial
in the number of agents. Nonetheless, since both use binary
decision variables, they require a pre-processing phase with
exponential time to solve CFSTP instances with n-ary deci-
sion variables. Multi-agent approaches that solve problems
similar to the CFSTP make use of social insects [8], auto-
mated negotiation [11, 12, 39] and evolutionary computa-
tion [41], but without considering the anytime property.
In the iTax taxonomy of Korsah et al. [20], the CFSTP is
defined as a Cross-schedule Dependent Single-Task Multi-
Robot Time-extended Assignment (XD [ST-MR-TA]) prob-
lem [20]. To date, the approaches proposed to solve XD [ST-
MR-TA] problems utilise linear programming [2, 18, 19],
automated negotiation [21] and memetic algorithms [22].
However, either they do not produce anytime solutions [21,
22], or they do not have theoretical properties [2], or they are
based on a simpler model [18, 19].

Against this background, we focus on the state-of-the-art
algorithm to solve the CFSTP, namely the Coalition Forma-
tion with Look-Ahead (CFLA) algorithm [30]. Our rationale
is that CFLA is anytime and, although its computational
time is exponential in the worst case, due to its design [30,
Section 6] and to the performance of current computers, a
well-engineered implementation can find a solution to prob-
lems with dozens of agents and hundreds of tasks in minutes,
when it is not necessary to terminate early. Specifically, we
advance the state of the art in the following ways:

•	 We define CFLA2 , a novel variant of CFLA that mini-
mises limitations and improves performance.

•	 Since we cannot eliminate the limitations of CFLA in
CFLA2 , we design CTS, the first CFSTP solver to be
simultaneously anytime, efficient and with convergence
guarantee. In tests where the look-ahead technique is
highly effective, CTS is up to 4 orders of magnitude
faster than CFLA and CFLA2.

•	 Finally, we propose a simplified, parallel and more effi-
cient variant of CTS, called S-CTS. In problems gener-
ated with the RoboCup Rescue Simulation [16], we show
that S-CTS can compete with high-performance DCOP
algorithms, while being up to 2 orders of magnitude
faster.

The rest of the paper is organised as follows. In “Prob-
lem Formulation”, we give our CFSTP model. “Coalition
Formation with Improved Look-Ahead” details CFLA2
and “Cluster-Based Task Scheduling” presents the CTS
algorithm. Next, we give comparison tests between
CFLA, CFLA2 and CTS, then we show the performance
of S-CTS in the RoboCup Rescue Simulation and finally
conclude.

Problem Formulation

We present below a refined constraint optimisation model of
the CFSTP [30]. More precisely, we extend the definition of
coalition value, define the constraints with fewer and simpler
equations, and introduce the concept of solution degree.

Basic Definitions

Let V = {v1,… , vm} be a set of m tasks and A = {a1,… , an}
be a set of n agents.1 Let L be the finite set of all possible
task and agent locations. Hence, more than one agent or
task can be at the same location. Time is denoted by t ∈ ℕ ,
starting at t = 0 , and agents travel or execute tasks with a

1  Although not necessary, it is typically assumed that m ≫ n.

SN Computer Science (2021) 2:165	 Page 3 of 15  165

SN Computer Science

base time unit of 1. The time units needed by an agent to
travel from its current location to a new task location are
given by the function � ∶ A × L × L → ℕ . Unlike [30], we
put A in the domain of � to characterise agents with differ-
ent speeds.2 Task locations do not change over time, while
agent locations can. Each task v has a demand Dv = (wv, dv) ,
where wv ∈ ℝ

+ is the workload of v, or the amount of work
required to complete v, and dv ∈ ℕ is the deadline of v, or
the time until which agents can work on v. Our notion of
work will be clear in “Coalition Values”. Hence, workloads
are positive and some tasks may have a deadline of zero.
In other words, a problem may have tasks that cannot be
completed in time, independently of the algorithm chosen
to solve it. We denote the location of agent a at time t by
lt
a
∈ L , the times at which a starts and finishes working on

task v by sv
a
∈ [0, dv] and f v

a
∈ [sv

a
, dv] , respectively, and the

latest deadline by dmax = maxv∈V dv.

Coalition Allocations

Agents are cooperative [38] and can work together to com-
plete a task. A subset of agents C ⊆ A is called a coalition.
At time t, the rationale for allocating coalition C to task v is
that C completes v in the fewest time units. An agent allo-
cation is denoted by �a→v

t
 and represents the fact that agent

a works on task v at time t. The set of all agent allocations
is denoted by

and contains all possible agent allocations. A coalition
allocation is denoted by �C→v

t
 and represents the fact that

coalition C works on task v at time t. Given a set of agent
allocations T ′

⊆ T and a time t′ ≤ dmax , the set of coalition
allocations corresponding to T ′ over the time period [0, t�]
is denoted by

Furthermore, the set of all coalition allocations is denoted
by

Similar to T, � contains all possible coalition allocations. An
agent allocation �a→v

t
 is also denoted as a singleton coalition

allocation �{a}→v
t .

(1)T =
{
�
a→v
t

| a ∈ A, v ∈ V , t ∈ [0, dmax]
}

(2)
� (T �, t�) =

{
�
Cv→v

t | v ∈ V , Cv =
{
a | �a→v

t
∈ T �

}
, t ≤ t�

}
.

(3)� = � (T , dmax).

Coalition Values

Each coalition allocation has a coalition value, given by
the function3 u ∶ P(A) × V → ℝ≥0 , where P(A) is the power
set of A and ℝ≥0 is the set of non-negative real numbers.
Unlike [30], we put V in the domain of u to characterise
the fact that the same coalition may execute different tasks
with different performances. Hence, given a coalition alloca-
tion �C→v

t
 , the value u(C, v) expresses the amount of work

that coalition C does on task v at each time t. The workload
wv decreases linearly over time, depending only on u(C, v).
Moreover, u(C, v) is independent of time and the effect of
C working on v.

Constraints

There are three constraint types: structural, temporal and
spatial. Structural constraints require that each task can be
allocated to only one coalition at a time. For each task v, this
is characterised by defining the set 𝛤v ⊆ 𝛤  , which contains
only coalition allocations to v, is maximal with respect to
inclusion and such that

Temporal constraints require that each task v can be com-
pleted only within its deadline dv . This is characterised by
the function � ∶ V × � → {0, 1} , defined as follows:

Equation 5 utilises �v to consider only coalition allocations
that satisfy the structural constraints.

Spatial constraints require that an agent will not start
working on a task before reaching it:

Equation 7 also implies that two tasks cannot be allocated
to the same agent at the same time. In other words, coali-
tions that exist at a different location at the same time are
disjoint [30, Section 2].

A set of agent allocations T ′
⊆ T is called legal if there

exists t ≤ dmax such that, ∀v ∈ V  , �(v,� (T �, t)) = 1 . A set of
coalition allocations 𝛤 ′

⊆ 𝛤 is called feasible if, ∀v ∈ V  ,
�(v,� �) = 1 , and � ′ satisfies Eqs. 6 and 7. Consequently, at

(4)�
C1→v

t , �
C2→v

t ∈ �v ⟹ C1 = C2.

(5)�(v,�) =

�
1,

∑
t≤dv, �

C→v
t ∈�v

u(C, v) ≥ wv

0, otherwise.

(6)∀a ∈ A, ∀v ∈ V ,∀t ≤ dv, sv
a
≥ t + �(a, lt

a
, lv)

(7)∀a ∈ A,∀v1, v2 ∈ V , f v1
a

+ �(a, lv1 , lv2) ≤ sv2
a
.

2  In real-world scenarios, this avoids approximating different speeds
to the same one.

3  In cooperative game theory, this is a characteristic function [3, Sec-
tion 2.1].

	 SN Computer Science (2021) 2:165165  Page 4 of 15

SN Computer Science

time t, if �C1→v1
t and �C2→v2

t are feasible coalition allocations
and lv1 ≠ lv2 , then C1 ∩ C2 = �.

When a task v is allocated to a coalition C, each agent
a ∈ C starts working on v as soon as it reaches the loca-
tion of v, without waiting for the remaining agents. In other
words, there are no synchronisation constraints [24].

Objective Function

The objective function of the CFSTP is to find a feasible
set of coalition allocations that maximises the number of
completed tasks:

To solve Eq. 8, an exhaustive search may require to verify all
the possible agent allocations until dmax . Consequently, the
time complexity of finding an optimal solution to the CFSTP
is O(|A| ⋅ |V|! ⋅ (dmax)

|V|) [30].
A feasible set of coalition allocations 𝛤 ′

⊆ 𝛤 is called a
solution with degree k if

∑
v∈V �(v,�

�) = k , with 0 < k ≤ |V| .
Moreover, � ′ is called a partial solution if k ≤ |V| and an
optimal solution4 if k = |V| . Hence, the argument of the
maxima in Eq. 8 is a solution with the highest degree.

Ramchurn et al. [30] proved that the CFSTP is NP-
hard [25] and a generalisation of the Team Orienteering
Problem [4], which is a generalisation of the Travelling
Salesman Problem [37]. As we said in “Introduction”, CFLA
is the state-of-the-art CFSTP solver. In the next section, we
show how to improve it.

Coalition Formation with Improved
Look‑Ahead

We now present the Coalition Formation with improved Look-
Ahead ( CFLA2 ), an extension of the CFLA algorithm [30].
More precisely, its look-ahead technique (“Phase 3: Defining the
Degree of Each Task”) has two modifications that, as we shall
see in “Comparison Tests”, enhance the overall performance.

The concept of CFLA2 is the same as CFLA, but for com-
pleteness, we briefly report it in “The Concept of CFLA2 ”.
After that, we detail the procedures that compose CFLA2 ,
explaining how they differ from the ones of CFLA. Finally,
we list the limitations that CFLA2 continues to keep from
CFLA, which are the rationale for our new algorithm in
“Cluster-Based Task Scheduling”.

Both CFLA and CFLA2 use the same four phases, but
Ramchurn et al. [30, Section 6] describe them in three

(8)
arg max

𝛤
�
⊆ 𝛤 ,

𝛤
�feasible

∑

v∈V

𝛥(v,𝛤 �).

algorithms. To improve the readability, we describe them in
four algorithms (“Phase 1: Defining the Legal Agent Alloca-
tions” to “Phase 4: Overall Procedure of CFLA2 ”).

The Concept of CFLA2

CFLA2 is a centralised, anytime and greedy algorithm that
solves Eq. 8 by maximising the working time of the agents
and minimising the time required by coalitions to complete
tasks. It is divided into four phases:

1.	 Defining the legal agent allocations (“Phase 1: Defining
the Legal Agent Allocations”).

2.	 For each task v, choosing the best coalition C (“Phase 2:
Selecting the Best Coalition for Each Task”).

3.	 For each task v, doing a 1-step look-ahead (“Phase 3:
Defining the Degree of Each Task”) to define its degree
�v , or the number of tasks that can be completed after
the completion of v.

4.	 At each time t ∈ [0, dmax] , allocating a task not yet com-
pleted and with the highest degree (“Phase 4: Overall
Procedure of CFLA2”).

Phase 1: Defining the Legal Agent Allocations

At time t, Algorithm 1 determines which free agents5 ( At
free

 )
can reach which uncompleted tasks ( Vunc ) before their dead-
lines. The resulting set of legal agent allocations is denoted
by Lt . This phase is identical in CFLA.

Phase 2: Selecting the Best Coalition for Each Task

4  Optimal solutions may not exist (“Basic Definitions”). 5  That is, agents who neither are travelling to nor working on a task.

SN Computer Science (2021) 2:165	 Page 5 of 15  165

SN Computer Science

Given a task v and a set of legal agent allocations Lt (com-
puted by Algorithm 1), Algorithm 2 returns the Earliest-
Completion-First (ECF)6 coalition C∗

v
 that can be allocated to

v [30, Section 6.2]. More precisely, the algorithm minimises
both the size of C∗

v
 and the time at which it completes v.

This is achieved by iterating from the smallest to the larg-
est possible coalition size (line 5) and iterating through all
possible coalitions of each size (line 6). When the procedure
finds a coalition C that can complete v within its deadline dv
(line 7), then |C| is the minimum size of the coalitions that
can complete v. Hence, C∗

v
 is identified among the coalitions

that have size |C| (lines 8–11). The summation at lines 7–8 is
the workload done by the coalition allocations defined from
the asynchronous arrivals (“Constraints”) of the agents of C
(line 6) to the location of v.

Unlike the original formulation [30, Algorithm 2], Algo-
rithm 2 clarifies that the minimum coalition size has to be
determined by iterating through the subsets of the combina-
tions7 of At

v
 , which is the set of free agents that at time t can

reach v within dv.

Phase 3: Defining the Degree of Each Task

Given a task v, Algorithm 3 performs a brute-force search to
define its degree �v (“The Concept of CFLA2 ”). At line 8,
with a procedure similar to line 5 in Algorithm 2, it checks
how many tasks can be completed after the completion of v.
Hence, Algorithm 3 assigns a score to each coalition alloca-
tion selected by Phase 2 (“Phase 2: Selecting the Best Coali-
tion for Each Task”) for each currently uncompleted task.
These scores are then used by Phase 4 (“Phase 4: Overall
Procedure of CFLA2 ”) to choose the next task to execute.

Algorithm 3 differs from the original [30, Algorithm 3]
in two points. First, it only considers uncompleted tasks that

have a deadline greater or equal to dv (line 4). This prevents
from counting tasks that can be completed before the com-
pletion of v. As defined in “The Concept of CFLA2 ”, �v rep-
resents the number of tasks that can be completed only after
the completion of v. Second, at line 11, �v is not just incre-
mented by 1, but also by 1 − �v2

 , where �v2 is the rescaling8
of wv2

 to the range [wmin,wmax] , with wmin and wmax being,
respectively, the minimum and maximum task workloads:

Hence, �v is also a measure of how much total workload
remains after the completion of v. Maximising �v (line 12 of
Algorithm 4) leads to the remaining tasks with the smallest
workloads, which increases the probability of completing
more.

Phase 4: Overall Procedure of CFLA2

Algorithm 4 shows the overall procedure. The repeat-until
loop runs until all tasks are completed, or until the latest
deadline is expired (line 22). At each time t, the set of legal
agent allocations is updated (line 8) and a task allocation is
defined (lines 9–18). If it is not possible to allocate other
tasks, the algorithm stops early (line 19).

Analysis and Discussion

Algorithm 1 iterates through all free agents and uncompleted
tasks. Assuming that line 4 requires constant time, the time
complexity is � = O(|A| ⋅ |V|).

Algorithm 2 iterates (line 5) from coalition size 1 to
|At

v
| , where At

v
 is the set of agents that can reach task v at

time t. This requires O(|A|) time in case At
v
= A . For each

�v2
=

wv2
− wmin

wmax − wmin

.

6  This logic is adapted from the Earliest-Deadline-First (EDF)
scheduling [33].
7  To date, the most efficient technique to enumerate all such combi-
nations is the Gray binary code [7, Section 7.2.1.1]. 8  Also known as min–max scaling or min–max normalisation.

	 SN Computer Science (2021) 2:165165  Page 6 of 15

SN Computer Science

s ≤ |At
v
| , all possible coalitions of size s could be exam-

ined (line 6), which requires O(2|A|) time. Assuming that
line 8 requires O(dmax) time, the total time complexity is
� = O(|A| ⋅ 2|A| ⋅ dmax).

Algorithm 3 iterates through all uncompleted tasks,
which requires O(|V|) time, while line 8 is computationally
identical to line 5 in Algorithm 2. Hence, the time complex-
ity is � = O(|V| ⋅ 2|A|) . Since it uses all previous algorithms,
Algorithm 4 has a time complexity of:

Therefore, despite having a lower complexity than an opti-
mal CFSTP solver (“Objective Function”), CFLA2 has a
run-time that increases quadratically with the number of
tasks and exponentially with the number of agents, which
makes it not suitable for systems with limited computational
power or real-time applications. Other limitations are as
follows.

1.	 It can allocate at most one task per time unit [30, Sec-
tion 7]. More formally, at each time unit, the best-case
guarantee of CFLA2 is to find a partial solution with
degree k = 1.

2.	 In general, greedily allocating a task with the highest
degree now does not ensure to allocate all uncompleted
tasks in future. This is particularly relevant in an open
system, where there is no certainty of having further
uncompleted tasks (“Introduction”).

3.	 The more the tasks can be grouped by degree, the more
the look-ahead technique becomes a costly random
choice. In other words, at time t, if some tasks V ′

⊆ V
have all maximum degree, then Algorithm 4 selects v∗
randomly from V ′ . Hence, the larger V ′ is, the less rel-
evant Algorithm 3 becomes.

4.	 In Algorithm 4, all tasks have the same weight. That is,
tasks with earlier deadlines may not be allocated before
tasks with later deadlines. This is independent of the
order in which the uncompleted tasks are elaborated
(line 9) since the computation of �max (line 12) would
not be affected.

To overcome the limitations of CFLA2 , in the next section
we present CTS, a CFSTP solver that is anytime, efficient
and with convergence guarantee, both in closed and open
systems.

(9)O
(
dmax ⋅ (� + |V| ⋅ (� + �))

)
= O

((
dmax ⋅ |V|

)2
⋅ 2|A|

)
.

Cluster‑Based Task Scheduling

The Cluster-based Task Scheduling (CTS) is an anytime and
greedy algorithm that operates at the agent level, rather than
at the coalition level. It is divided into the following two
phases.

1.	 For each agent a, defining a task v such that v is the clos-
est to a and dv is minimal.

2.	 For each task v, defining the coalition of agents to which
v has to be allocated.

Algorithm 5 is used in Phase 1, while Algorithm 6 enacts
the two phases. We describe them, respectively, in “Select-
ing the Best Task for Each Agent” and “Overall Procedure
of CTS”.

Selecting the Best Task for Each Agent

Given a time t and an agent a, Algorithm 5 returns the
uncompleted task v that is allocable, the most urgent and
closest to a. By allocable we mean that a can reach v before
deadline dv , while most urgent means that v has the earliest
deadline. The algorithm prioritises unallocated tasks, that is,
it first tries to find a task to which no agents are travelling,
and on which no agents are working ( vt

a
[0] ). Otherwise, it

returns an already allocated but still uncompleted task such
that a can reach it and contribute to its completion ( vt

a
[1] ).

This ensures that an agent becomes free only when no other
tasks are allocable and uncompleted.

SN Computer Science (2021) 2:165	 Page 7 of 15  165

SN Computer Science

Overall Procedure of CTS

	 SN Computer Science (2021) 2:165165  Page 8 of 15

SN Computer Science

The overall procedure is described in Algorithm 6. The
repeat-until loop is the same as CFLA2 , to preserve the
anytime property. Phases 1 and 2 are represented, respec-
tively, by the loops at lines 5 and 16.

Phase 1 loops through all agents. Here, an agent a may
either be free or reaching a task location. In the first case
(line 6), if an uncompleted task v can be allocated to a
(lines 7 and 8), then v is flagged as allocable (line 9) and a
is added to the set of agents At

v
 to which v could be allocated

at time t (line 11). In the second case (line 12), a is travelling
to a task v, hence its location is updated (line 13) and, if it
reached v, it is set to working on v (line 14).

Phase 2 visits each uncompleted task v. If v is alloca-
ble (line 18) then it is allocated to the smallest coalition
of agents in At

v
 (defined in Phase 1) that can complete it

(lines 19–32). In particular, at lines 24–27, �v is the amount
of workload wv done by all the coalitions formed after the
arrival to v of the first i − 1 agents in � t

v
 (defined at line 19).

After that, if agents are working on v (line 33), its workload
wv is decreased accordingly (line 34). If wv drops to zero
or below, then v is completed (lines 35–37). The algorithm
stops (line 39) when all the tasks have been completed, or
the latest deadline is expired, or no other tasks are alloca-
ble and uncompleted (“Selecting the Best Task for Each
Agent”).

The spatial constraints (Eqs. 6 and 7) are satisfied by
executing Algorithm 5 only on free agents (line 6), while
the temporal constraints (Eq. 5) are satisfied by allocating
a task v to a coalition C only when C has the minimum size
and can complete v within the deadline dv.

Analysis and Discussion

The approach of CTS transforms the CFSTP from a 1 − k
task allocation to a series of 1–1 task allocations. In other
words, instead of allocating each task to a coalition of k
agents, we have that coalitions are formed by clustering (i.e.,
grouping) agents based on the closest and most urgent tasks.
This is an eligibility criterion: unlike CFLA2 , CTS exploits
the distances between agents and tasks and the speeds of
agents to reduce the time needed to define coalition alloca-
tions. Algorithm 5 runs in � = O(|V|) time, assuming that
the operation at line 8 has constant time. In Algorithm 6,
the time complexity of Phase 1 is O(|A| ⋅ �) = O(|A| ⋅ |V|) ,
while Phase 2 runs in O(|V| ⋅ |A| log |A|) because: in the
worst case, At

v
= A and line 19 sorts A in �(|A| ⋅ log |A|)

time using any comparison sort algorithm [6]; the loop at
line 21 runs in O(|A|) time. Since the repeat-until loop is
executed at most dmax times, the time complexity of Algo-
rithm 6 is

(10)O
(
dmax ⋅ |V| ⋅ |A| log |A|

)
.

If both phases are executed in parallel, the time complexity
is reduced to:

CTS does not have the limitations of CFLA2 (“Analysis and
Discussion”) because:

1.	 It can allocate at least one task per time unit. More for-
mally, at each time unit, if one or more tasks are alloca-
ble, CTS finds a partial solution with degree 1 ≤ k ≤ |A|.

2.	 It runs in polynomial time and does not use a look-ahead
technique. Thus, it is efficient and can be used in open
systems.

The following theorem is based on the definitions given in
“Constraints”.

Theorem 1  CTS is guaranteed to find feasible coalition
allocations.

Proof  We prove by induction on time t.
At t = 0 , Phase 1 of Algorithm 6 selects a task v for each

agent a such that v is allocable, the most urgent and closest
to a (“Selecting the Best Task for Each Agent”). This implies
that the agent allocation �a→v

0
 is legal (“Constraints”). Then,

Phase 2 (“Overall Procedure of CTS”) allocates v to a only
if it exists a coalition C such that |C| is minimum, �C→v

0
 is

feasible (“Constraints”) and a ∈ C.
At t > 0 , for each agent a, there are two possible cases:

a task v has been allocated to a at time t′ < t , or a is free
(i.e., idle). In the first case, a is either reaching or working
on v (lines 12–15 in Algorithm 6), hence �a→v

t
 is legal and

�
C→v
t

 is feasible, where a ∈ C . In the second case, a is either
at its initial location or at the location of a task on which it
finished working at time t′ < t . Thus, as in the base case, if
it exists a coalition C and a task v such that |C| is minimum,
�
C→v
t

 is feasible and a ∈ C , then v is allocated to a. 	� ◻

As shown in the two previous sections, Algorithm 5 iter-
ates exactly once over a finite set of uncompleted tasks,
while the repeat-until loop of Algorithm 6 is executed at
most dmax times. Hence, a corollary to Theorem 1 is that
CTS converges to a partial solution if it exists.

The counterexample given by Limitation 2 in “Analysis
and Discussion” does not allow to prove the convergence
of CFLA and CFLA2 in general settings. Since no current
algorithm that solves the CFSTP is simultaneously anytime,
efficient and with convergence guarantee (“Introduction”),
CTS is the first of its kind.

(11)�

(
dmax ⋅ (|V| + |A| log |A|)

)
.

SN Computer Science (2021) 2:165	 Page 9 of 15  165

SN Computer Science

Comparison Tests

We implemented CFLA, CFLA2 and CTS in Java,9 and rep-
licated the experimental setup of [30] because we wanted
to evaluate how well CFLA2 and CTS perform in settings
where the look-ahead technique is highly effective. For each
test configuration, we solved 100 random CFSTP instances
and plotted the average and standard deviation of: percent-
age of completed tasks; agent travel time (“Basic Defini-
tions”); task completion time, or the time at which a task
has no workload left; problem completion time, or the time
at which no other tasks can be allocated.

Setup

Let U(l, u) and UI(l, u) be, respectively, a uniform real distri-
bution and a uniform integer distribution with lower bound
l and upper bond u. Our parameters are defined as follows.

•	 All agents have the same speed.
•	 The initial agent locations are randomly chosen on a 50

by 50 grid, where the travel time of agent a between two
points is given by the Manhattan distance (i.e., the taxi-
cab metric or �1 norm) divided by the speed of a.

•	 Tasks are fixed to 300, while agents range from 2 to 40,
in intervals of 2 between 2 and 20 agents, and in intervals
of 5 between 20 and 40 agents.

•	 The coalition values are defined as u(C, v) = |C| ⋅ k ,
where k ∼ U(1, 2) . Hence, coalition values depend only
on the number of agents involved, and all tasks have the
same difficulty.

•	 Deadlines dv ∼ UI(5, 600) and workloads wv ∼ UI(10, 50).

Unlike [30], we set the number of maximum agents to 40
instead of 20, because it allows in this setup to complete all
tasks in some instances. We did not perform a comparison
on larger instances because of the run-time of CFLA and
CFLA2 : on commodity hardware, CTS takes seconds to
solve instances with thousands of agents and tasks, while
CFLA and CFLA2 take days. Consequently, the purpose of
this section is to highlight the performance of CTS using
CFLA and CFLA2 as a baseline. We aim to verify the scal-
ability of CTS in a future investigation.

Results

In terms of completed tasks (Fig. 1a), the best performing
algorithm for instances with up to 18 agents is CFLA2 ,
while the best performing algorithm for instances with at
least 20 agents is CTS. CFLA is outperformed by CFLA2

in all instances except those with 2 agents, and by CTS in
instances with at least 10 agents. The reason why the perfor-
mance of CFLA and CFLA2 does not improve significantly
starting from instances with 20 agents is that the more agents
(with random initial locations) there are, the more the tasks
are likely to be grouped by degree.10 CFLA2 has a trend
similar to that of CFLA because it has the same limitations,
but it performs better due to its improved look-ahead tech-
nique. CTS is not the best in all instances because its average
task completion time is the highest (see the discussion on
Fig. 1c below). This implies that the fewer the agents, the
more the tasks may expire before they can be allocated. In
our setup, 10 (resp. 20) is the number of agents starting from
which this behaviour is contained enough to allow CTS to
outperform CFLA (resp. CFLA2).

Regarding agent travel times (Fig. 1b), it can be seen that
CTS is up to three times more efficient than CFLA and
CFLA2 . This is due to Algorithm 5, which allocates tasks to
agents also based on their proximity. CFLA2 has lower agent
travel times than CFLA for the following reason. The degree
computation in CFLA2 also considers how much total work-
load would be left (“Phase 3: Defining the Degree of Each
Task”). Higher degrees correspond to lower workloads, and
tasks with lower workloads are completed first. Thus, fewer
tasks are grouped by degree and more are likely to be com-
pleted. This means that the average distance between task
locations in a CFLA2 solution may be lower than that of a
CFLA solution. The agent travel times increase with all
algorithms. This behaviour is also reported, but not
explained, by Ramchurn et al. [30]. To explain it, let us con-
sider a toy problem with one agent a1 and one task v. If we
introduce a new agent a2 such that 𝜌(a2, l0a2 , lv) > 𝜌(a1, l

0
a1
, lv) ,

then the average travel time increases. In our setup, this hap-
pens because the initial agent locations are random.

In general, task completion times (Fig. 1c) decrease
because the more agents there are, the faster the tasks are
completed. The completion of task v is related to the size of
the coalition C to which v is allocated: the highest the com-
pletion time, the smallest the size of C, hence the highest
the working time of the agents in C. Task completion times
are inversely related to agent travel times. Since CTS has the
smallest agent travel times and allocates tasks to the smallest
coalitions, it consequently has the highest task completion
times. Therefore, in CTS, agents work the highest amount
of times, and the number of tasks attempted at any one time
is the largest.

The problem completion times (Fig. 1d) are in line with
the task completion times (Fig. 1c) since the faster the tasks
are completed, the less time is needed to solve the prob-
lem. The reason why the times of CFLA and CFLA2 do not

9  https​://doi.org/10.5281/zenod​o.43206​71. 10  See Limitation 3 described in “Analysis and Discussion”.

https://doi.org/10.5281/zenodo.4320671

	 SN Computer Science (2021) 2:165165  Page 10 of 15

SN Computer Science

decrease significantly from 20 agents up is linked to their
performance (see the discussion on Fig. 1a above). On the
other hand, the fact that the times of CTS decrease more
consistently than those of CFLA and CFLA2 indicates that
CTS is the most efficient asymptotically. In other words,
CTS is likely to solve large problems in fewer time units
than CFLA and CFLA2.

In terms of computational times, CTS is significantly
faster than CFLA and CFLA2 . For example, in instances
with 40 agents and 300 tasks, on average11 CTS is
45106% ± [2625, 32019] (resp. 27160% ± [1615, 20980] )
faster than CFLA (resp. CFLA2 ). The run-time improvement

of CFLA2 is due to line 4 of Algorithm 3, due to which the
look-ahead technique elaborates fewer tasks.

Tests with the RoboCup Rescue Simulation

In this section, we benchmark a variant of CTS (“Cluster-
Based Task Scheduling”) against high-performance DCOP
solvers with the RoboCup Rescue Simulation (RCRS), one of
the most important projects promoting multi-agent research
on disaster response [16]. By reproducing the aftermath of
an earthquake in a city, the RCRS allows verifying coordina-
tion approaches that could be enacted by first responders in
such situations [15, 31].

0 10 20 30 40
0

20

40

60

80

100

Number of agents

C
om

pl
et
ed

ta
sk
s
(

%
)

(a)

0 10 20 30 40
0

10

20

30

40

Number of agents

A
ge
nt

tra
ve
lt
im

e

(b)

0 10 20 30 40
10

15

20

25

Number of agents

Ta
sk

co
m
pl
et
io
n
tim

e

(c)

0 10 20 30 40
200

300

400

500

600

Number of agents

Pr
ob
le
m

co
m
pl
et
io
n
tim

e

(d)

cfla cfla 2 cts

Fig. 1   Comparison of CFLA, CFLA2 and CTS on CFSTP instances
with linear coalition values. In each figure, each point is the
avg ± std∕2 , where avg is the average over 100 problems of the value

indicated on the Y-axis and std is the standard deviation of avg . The
tasks are fixed to 300, while the number of agents is denoted by the
X-axis

11  On a machine with an Intel Core i5-4690 processor (quad-core
3.5 GHz, no Hyper-Threading) and 8 GB DDR3-1600 RAM.

SN Computer Science (2021) 2:165	 Page 11 of 15  165

SN Computer Science

We conducted the tests with our fork of RMAS-
Bench12 [17], a benchmark platform based on the RCRS.
We chose it because it allows comparisons against ready-to-
use implementations of BinaryMS (“Introduction”) and the
Distributed Stochastic Algorithm (DSA) [40]. We use them
as a baseline because:

•	 Max-Sum and its variants are widely used and can obtain
partial solutions with very high degrees (“Introduction”).
In particular, BinaryMS can produce a solution within
the time limit enforced by the RCRS13 and with the same
quality as FMS [27].

•	 Since numerous empirical evaluations have proven its
efficacy in many different domains, DSA is a touchstone
for testing DCOP and RCRS algorithms [10].

“Simplified CTS” describes how CTS can be adapted for
use in the latest RCRS version.14 The following two sections
report our setup and results, respectively.

Simplified CTS

In the current RCRS version, deadlines and workloads are
not accessible to agents. Thus, we cannot implement CTS
since we can neither verify the spatial constraints in Phase
1 nor can we implement Phase 2 (“Overall Procedure of
CTS”). However, the RMASBench allows to obtain the
utility of a task, which is a quantitative measure that indi-
cates the current importance of a task. Consequently, we
implemented a modified Phase 1 in which each agent can
independently choose to work on the closest task with the
highest utility. We call this variant Simplified CTS (S-CTS).

The time complexity of S-CTS is O(dmax ⋅ |V|) since the
agents do not coordinate with each other and their choice
is carried out in parallel. Although S-CTS may seem like a
major handicap, we show below that it offers a reasonable
trade-off between performance and complexity.

Setup

All tests are based on the Paris map, one of the most used
in the RoboCup competition. We kept the default setup [27,
Section 6.1] because, according to the authors, it maximises
the performance of both BinaryMS and DSA.

In RMASBench, there are police patrols and fire brigades.
A police patrol can unblock roads, while a fire brigade can
extinguish fires. Having 2 agent types allows studying

inter-team coordination aspects. Since this is not in our
scope, we did not consider road blockades. As a result, our
problems are easier and our baseline is more competitive.
Figure 2 gives an example.

The RCRS is based on scenarios [31]. A scenario is a
class of problems, whose main parameter is the number of
agents. In RMASBench, there are 5 scenarios, respectively,
with 15, 21, 27, 33 and 40 fire brigades. Other settings are
as follows.

•	 The agents are homogeneous, that is, they all have the
same speed and water tank size.

•	 There are 3 ignition points and each scenario is replicated
30 times. At each execution, a pseudo-random number
generator influences the way the fires spread from igni-
tion points to nearby buildings.

•	 To get a non-trivial number of fires, the agents are added
25 seconds after the start.

•	 Each simulation runs for a maximum of 5 minutes, end-
ing earlier if all fires have been extinguished.

•	 The coalitions are super-additive [3, Section 2.1.2.2].
That is, u(C, v) = |C|.

•	 Deadlines and workloads are randomly generated by the
RCRS.

Fig. 2   Detail of an example problem on the Paris map. The red dots
are fire brigades and the blue lines are their water jets. The colour of
the buildings reflects their status: grey means no damage; yellow to
red means on fire; blue to purple means that the fire has been extin-
guished, and black means that the building is burnt. The darker the
colour, the greater the damage. On the centre-right is a fire station, to
which the fire brigades return to refill

12  https​://doi.org/10.5281/zenod​o.43206​58.
13  That is, 1 s per problem time unit.
14  https​://githu​b.com/robor​escue​/rcrs-serve​r/relea​ses/tag/2020-onlin​
e-compe​titio​n.

https://doi.org/10.5281/zenodo.4320658
https://github.com/roborescue/rcrs-server/releases/tag/2020-online-competition
https://github.com/roborescue/rcrs-server/releases/tag/2020-online-competition

	 SN Computer Science (2021) 2:165165  Page 12 of 15

SN Computer Science

For each scenario and algorithm, we plot the average and
standard deviation of:

1.	 Problem completion time (“Comparison Tests”).
2.	 The number of buildings that burned at least once,

denoted by bonce.
3.	 Score, or the percentage of damage suffered by the city,

where 100% means completely burnt. This is the main
RCRS metric, defined on the total area of the city build-
ings and scenario-based parameters.

4.	 Average CPU time15 per problem time unit.

We do not consider message-related metrics because S-CTS
agents do not communicate (“Simplified CTS”).

Results

The more the agents communicate with each other, the bet-
ter they coordinate. In turn, this leads to lower completion
times and numbers of burned buildings. Because there is
no exchange of messages in S-CTS and BinaryMS has the
highest communication overhead, they are, respectively, the
least and the most performing in Fig. 2a, b.

Nevertheless, this does not result in a drastic drop in per-
formance. In Fig. 2c, in the worst-case scenario (i.e., 21
agents), on average S-CTS scores about 10% (resp. 5% ) less
than BinaryMS (resp. DSA). This is not trivial, given that
S-CTS is a simplification and that the scenarios used are

15 21 27 33 40
50

100

150

200

Number of agents

Pr
ob

le
m

co
m
pl
et
io
n
tim

e
(a)

15 21 27 33 40
0

200

400

600

Number of agents

b o
nc
e

(b)

15 21 27 33 40
0

5

10

15

Number of agents

Sc
or
e
(%

)

(c)

15 21 27 33 40
0

100

200

300

Number of agents

Av
er
ag
e
C
PU

tim
e
(m

s)

(d)

s-cts dsa binaryms

Fig. 3   Performance of S-CTS in RMASBench using DSA and Binary
Max-Sum as baselines. In each figure, the X-axis defines the number
of agents in the scenario, while each point is the avg ± std∕2 , where

avg is the average over 30 simulations of the value indicated by the
Y-axis, and std is the standard deviation of avg

15  Based on an Intel Xeon E5-2670 processor (octa-core 2.6 GHz
with Hyper-Threading).

SN Computer Science (2021) 2:165	 Page 13 of 15  165

SN Computer Science

fine-tuned to maximise the performance of BinaryMS and
DSA.

Regarding the average CPU time (Fig. 2d), S-CTS is up
to 2 orders of magnitude (resp. 1) faster than BinaryMS
(resp. DSA). This is because BinaryMS has a pre-processing
phase that requires exponential time (“Introduction”) while
DSA, despite having a time complexity similar to that of
S-CTS [10, Table 4], has a message-passing phase as well.

In Fig. 2a–c, the trends converge to zero because the
more agents there are, the less relevant the solver becomes.
In other words, the greater the number of agents, the higher
the quality of solutions. We can deduce that the degree
of agent communication is directly proportional to the
score and inversely proportional to the CPU time. How-
ever, as we have seen, the performance difference between
communication and no communication is not necessarily
significant.

Conclusions

In this paper, we proposed two novel algorithms to solve the
CFSTP. The first is CFLA2 , an improved version of CFLA,
and the second is CTS, which is the first to be simultane-
ously anytime, efficient and with convergence guarantee.
CFLA2 can replace CFLA in offline settings or for small
problems, while CTS provides a baseline for benchmarks
with dynamic and large problems. Moreover, we showed
how a simplified but parallel variant of CTS is enough to
compete with high-performance solvers (i.e., BinaryMS and
DSA) in the RCRS. Because it significantly outperforms
CFLA and is more applicable than CFLA2 , we can con-
sider CTS to be the new state-of-the-art CFSTP solver. Due
to its features (“Analysis and Discussion”), CTS can also be
used in contexts that are not necessarily real-time, but can be
still captured by the CFSTP model, such as multi-robot area
coverage or exploration of environments that are dangerous
for humans [30, Section 8].

The limitation of CTS is that it cannot define the quality
of its approximation (“Analysis and Discussion”). Moreover,
the fact that it maximises the agent working times (“Com-
parison Tests”) implies that some agents may take longer to
complete some tasks and therefore may not work on others.
Thus, if an optimal solution exists, in general CTS cannot
guarantee to obtain it. The CFSTP model also has some limi-
tations, including

•	 The tasks have all the same weight and have no order.
This does not capture scenarios such as search and rescue
missions, where some tasks may have higher priority or
must be completed before others [20, 24, 28].

•	 The task workloads are assumed static, when in reality
they might be dynamic (e.g., fires that grow in intensity).

•	 Agent communication is perfect and without costs (i.e.,
free comm environment [26]). Instead, real-world com-
munication channels may fail or have operational con-
straints, such as low bandwidth or limited network topol-
ogy (e.g., sparse robot swarms [34]).

•	 Each agent knows its subproblem a priori (i.e., total
knowledge or deterministic environment behaviour [10,
Section 3]). In real-world domains, task states are par-
tially or not known a priori, thus the agents must balance
the exploration of the environment and the exploitation
of the acquired information [35, 36].

Consequently, future work aims at

1.	 Extending CTS to give quality guarantees on the solu-
tions found, and testing its scalability in dynamic bench-
marks.

2.	 Extending the CFSTP model to eliminate the aforemen-
tioned limitations and capture more disaster response
scenarios.

3.	 Designing an anytime, optimal and distributed algorithm
to solve both the CFSTP and our extension.

4.	 Investigating efficient inter-team coordination in the
RCRS [27]. Specifically, focusing on problems with
fires, road blockades and victims trapped under the rub-
ble.

Acknowledgements  We thank Mohammad Divband Soorati, Ryan
Beal and the anonymous reviewers for their corrections, comments and
suggestions. We also thank the EUMAS 2020 Conference Chairs, Nick
Bassiliades, Georgios Chalkiadakis and Dave de Jonge, for inviting us
to publish in this special issue. Luca Capezzuto acknowledges the use
of the IRIDIS High Performance Computing Facility, and associated
support services at the University of Southampton, in the completion
of this work.

Funding  This research is sponsored by the https​://www.axa-resea​rch.
org/en/proje​ct/sarva​pali-gopal​-ramch​urn AXA Research Fund. Danesh
Tarapore is supported by an EPSRC New Investigator Award grant
(EP/R030073/1).

Declarations 

 Code and Data Availability  The source code of the tests reported in
“Comparison Tests” to “Tests with the RoboCup Rescue Simulation”
and the numerical data used to generate Figs. 1 and 3 are available at
the following URLs: https​://doi.org/10.5281/zenod​o.43206​71, https​
://doi.org/10.5281/zenod​o.43206​58. https​://doi.org/10.5281/zenod​
o.43206​73.

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long

https://www.axa-research.org/en/project/sarvapali-gopal-ramchurn
https://www.axa-research.org/en/project/sarvapali-gopal-ramchurn
https://doi.org/10.5281/zenodo.4320671
https://doi.org/10.5281/zenodo.4320658
https://doi.org/10.5281/zenodo.4320658
https://doi.org/10.5281/zenodo.4320673
https://doi.org/10.5281/zenodo.4320673

	 SN Computer Science (2021) 2:165165  Page 14 of 15

SN Computer Science

as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Alexander ED. Principles of emergency planning and manage-
ment. Oxford University Press; 2002.

	 2.	 Bogner K, Pferschy U, Unterberger R, Zeiner H. Optimised sched-
uling in human–robot collaboration—a use case in the assembly
of printed circuit boards. Int J Prod Res. 2018;56(16):5522–40.

	 3.	 Chalkiadakis G, Elkind E, Wooldridge M. Computational aspects
of cooperative game theory. Synth Lect Artif Intell Mach Learn.
2011;5(6):1–168.

	 4.	 Chao IM, Golden BL, Wasil EA. The team orienteering problem.
Eur J Oper Res. 1996;88(3):464–74.

	 5.	 Coppola DP. Introduction to international disaster management.
Elsevier; 2006.

	 6.	 Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to
algorithms. 3rd ed. MIT Press; 2009.

	 7.	 Donald, K.E.: The art of computer programming, volume 4, fasci-
cle 2: generating all tuples and permutations. Pearson Education;
2005.

	 8.	 Dos Santos F, Bazzan ALC. Towards efficient multiagent task
allocation in the robocup rescue: a biologically-inspired approach.
AAMAS. 2011;22(3):465–86.

	 9.	 Farinelli A., Rogers A., Petcu A., Jennings N.R.: Decentralised
coordination of low-power embedded devices using the max-sum
algorithm. In: Proceedings of the 7th international joint confer-
ence on Autonomous agents and multiagent systems - (AAMAS
’08). International Foundation for Autonomous Agents and
Multiagent Systems, Richland; vol. 2. 2008. p. 639–646.

	10.	 Fioretto F, Pontelli E, Yeoh W. Distributed constraint optimization
problems and applications: a survey. JAIR. 2018;61:623–98.

	11.	 Gallud X, Selva D. Agent-based simulation framework and con-
sensus algorithm for observing systems with adaptive modularity.
Syst Eng. 2018;21(5):432–54.

	12.	 Godoy J, Gini M. Task allocation for spatially and temporally
distributed tasks. In: Proceedings of the 12th international confer-
ence on intelligent autonomous systems. Springer, Berlin; 2013.
p. 603–12.

	13.	 Hewitt C. The challenge of open systems. Cambridge University
Press; 1990. p. 383–95.

	14.	 Horling B, Lesser V. A survey of multi-organizational paradigms.
Knowl Eng Rev. 2005;19(4):281–316.

	15.	 Kitano H, Tadokoro S. Robocup rescue: a grand challenge for
multiagent and intelligent systems. AI Mag. 2001;22(1):39. https​
://rescu​esim.roboc​up.org.

	16.	 Kitano H et al., RoboCup Rescue: search and rescue in large-
scale disasters as a domain for autonomous agents research, IEEE
SMC’99 Conference Proceedings. 1999 IEEE International Con-
ference on Systems, Man, and Cybernetics (Cat. No.99CH37028),
Tokyo, vol.6, 1999. p. 739–43. https​://doi.org/10.1109/ICSMC​
.1999.81664​3.

	17.	 Kleiner A, Farinelli A, Ramchurn S, Shi B, Maffioletti F, Reffato
R. Rmasbench: benchmarking dynamic multi-agent coordination
in urban search and rescue. In: Proc. of the 12th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2013),

The international foundation for autonomous agents and multia-
gent systems (IFAAMAS); 2013. p. 1195–6.

	18.	 Koes M, Nourbakhsh I, Sycara K. Heterogeneous multiro-
bot coordination with spatial and temporal constraints. AAAI.
2005;5:1292–7.

	19.	 Korsah GA. Exploring bounded optimal coordination for hetero-
geneous teams with cross-schedule dependencies. Ph.D. thesis,
Carnegie Mellon University; 2011.

	20.	 Korsah GA, Stentz A, Dias MB. A comprehensive tax-
onomy for multi-robot task allocation. Int J Robot Res.
2013;32(12):1495–512.

	21.	 Krizmancic M, Arbanas B, Petrovic T, Petric F, Bogdan S. Coop-
erative aerial-ground multi-robot system for automated construc-
tion tasks. IEEE Robot Autom Lett. 2020;5(2):798–805. https​://
doi.org/10.1109/LRA.2020.29658​55.

	22.	 Liu C, Kroll A. Memetic algorithms for optimal task allocation
in multi-robot systems for inspection problems with cooperative
tasks. Soft Comput. 2015;19(3):567–84.

	23.	 Mataric MJ. Designing emergent behaviors: from local interac-
tions to collective intelligence. In: Proceedings of the second
international conference on from animals to animats 2: simulation
of adaptive behavior: simulation of adaptive behavior. MIT Press,
Cambridge; 1993. p. 432–41.

	24.	 Nunes E, Manner M, Mitiche H, Gini M. A taxonomy for task
allocation problems with temporal and ordering constraints. Robot
Auton Syst. 2017;90:55–70.

	25.	 Computational complexity. Pearson; 1993.
	26.	 Ponda SS, Johnson LB, Geramifard A, How JP. Cooperative mis-

sion planning for multi-UAV teams, chap. 60. Springer; 2015. p.
1447–90. https​://doi.org/10.1007/978-90-481-9707-1.

	27.	 Pujol-Gonzalez M, Cerquides J, Farinelli A, Meseguer P, Rod-
riguez-Aguilar JA. Efficient Inter-team task allocation in robo-
cup rescue. In: Proceedings of the 2015 international conference
on autonomous agents and multiagent systems (AAMAS ’15).
International foundation for autonomous agents and multiagent
systems; 2015. p. 413–21.

	28.	 Ramamritham K, Stankovic JA, Zhao W. Distributed scheduling
of tasks with deadlines and resource requirements. IEEE Trans
Comput. 1989;38(8):1110–23.

	29.	 Ramchurn SD, Farinelli A, Macarthur KS, Jennings NR.
Decentralized coordination in robocup rescue. Comput J.
2010;53(9):1447–61.

	30.	 Ramchurn SD, Polukarov M, Farinelli A, Truong C, Jennings
NR. Coalition formation with spatial and temporal constraints.
In: Proceedings of the 9th international conference on autono-
mous agents and multiagent systems: (AAMAS ’10). International
Foundation for Autonomous Agents and Multiagent Systems,
Richland, vol. 3; 2010. p. 1181–8.

	31.	 RoboCup Rescue Simulator Manual. RoboCup rescue simulation
team. Version 1.3. https​://rescu​esim.roboc​up.org/resou​rces/docum​
entat​ion. 2020

	32.	 Shehory O, Kraus S. Methods for task allocation via agent coali-
tion formation. Artif Intell. 1998;101(1–2):165–200.

	33.	 Stankovic JA, Spuri M, Ramamritham K, Buttazzo GC. Deadline
scheduling for real-time systems: EDF and related algorithms,
vol. 460. Springer Science & Business Media; 2013. Reprint of
the original 1998 edition.

	34.	 Tarapore D, Groß R, Zauner KP. Sparse robot swarms: moving
swarms to real-world applications. Front Robot AI. 2020;7:83.
https​://doi.org/10.3389/frobt​.2020.00083​.

	35.	 Taylor ME, Jain M, Jin Y, Yokoo M, Tambe M. When should there
be a "Me" in "Team"? distributed multi-agent optimization under
uncertainty. In: Proceedings of the 9th international conference
on autonomous agents and multiagent systems: (AAMAS ’10).
International Foundation for Autonomous Agents and Multiagent
Systems, Richland; 2010. p. 109–16

http://creativecommons.org/licenses/by/4.0/
https://rescuesim.robocup.org
https://rescuesim.robocup.org
https://doi.org/10.1109/ICSMC.1999.816643
https://doi.org/10.1109/ICSMC.1999.816643
https://doi.org/10.1109/LRA.2020.2965855
https://doi.org/10.1109/LRA.2020.2965855
https://doi.org/10.1007/978-90-481-9707-1
https://rescuesim.robocup.org/resources/documentation
https://rescuesim.robocup.org/resources/documentation
https://doi.org/10.3389/frobt.2020.00083

SN Computer Science (2021) 2:165	 Page 15 of 15  165

SN Computer Science

	36.	 Taylor ME, Jain M, Tandon P, Yokoo M, Tambe M. Dis-
tributed on-line multi-agent optimization under uncertainty:
balancing exploration and exploitation. Adv Complex Syst.
2011;14(03):471–528.

	37.	 Tsiligirides T. Heuristic methods applied to orienteering. J Oper
Res Soc. 1984;35(9):797–809.

	38.	 Weiss G, editor. Multiagent systems. 2nd ed. MIT Press; 2013.
	39.	 Ye D, Zhang M, Sutanto D. Self-adaptation-based dynamic

coalition formation in a distributed agent network: a mecha-
nism and a brief survey. IEEE Trans Parallel Distrib Syst.
2013;24(5):1042–51.

	40.	 Zhang W, Wang G, Xing Z, Wittenburg L. Distributed stochas-
tic search and distributed breakout: properties, comparison and

applications to constraint optimization problems in sensor net-
works. Artif Intell. 2005;161(1–2):55–87.

	41.	 Zhou J, Zhao X, Zhang X, Zhao D, Li H. Task allocation for multi-
agent systems based on distributed many-objective evolutionary
algorithm and greedy algorithm. IEEE Access. 2020;8:19306–
19318. https​://doi.org/10.1109/ACCES​S.2020.29670​61.

	42.	 Zilberstein S. Using anytime algorithms in intelligent systems. AI
Mag. 1996;17(3):73.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ACCESS.2020.2967061

	Anytime and Efficient Multi-agent Coordination for Disaster Response
	Abstract
	Introduction
	Problem Formulation
	Basic Definitions
	Coalition Allocations
	Coalition Values
	Constraints
	Objective Function

	Coalition Formation with Improved Look-Ahead
	The Concept of
	Phase 1: Defining the Legal Agent Allocations
	Phase 2: Selecting the Best Coalition for Each Task
	Phase 3: Defining the Degree of Each Task
	Phase 4: Overall Procedure of
	Analysis and Discussion

	Cluster-Based Task Scheduling
	Selecting the Best Task for Each Agent
	Overall Procedure of CTS
	Analysis and Discussion

	Comparison Tests
	Setup
	Results

	Tests with the RoboCup Rescue Simulation
	Simplified CTS
	Setup
	Results

	Conclusions
	Acknowledgements
	References

