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Abstract
We consider the typical workflow of a route planner in the context of short-term 
train timetabling, that is, the incremental process of adjusting a timetable for the 
next day or up to the next year. This process usually alternates between (1) making 
rough modifications to an existing timetable (e.g., shifting the departure of a train 
by half an hour) and then (2) making small adjustments to regain feasibility (e.g., 
reduce or increase the dwell time of some trains in some stations). The most time-
consuming element of this process is related to the second step, that is to manually 
eliminate all conflicts that may arise after a timetable has been modified. In this 
work, we propose a mixed-integer programming model tailored to solve precisely 
this problem, that is to find a conflict-free timetable that is as close as possible to 
a given one. Previous related work mostly focused on creating complex models to 
produce “optimal” timetables from scratch, which ultimately resulted in little to no 
practical applications. By using a simpler model, and by trusting route planners in 
steering the process towards a timetable with the desired qualities, we can get closer 
to handle real-life instances. The model has been integrated in a user interface that 
was tested and validated by Norwegian route planners to plan the yearly timetable of 
a busy railway line in Norway.

Keywords  Mixed-integer programming · Train timetabling · Job-shop scheduling

 *	 Giorgio Sartor 
	 giorgio.sartor@sintef.no

	 Oddvar Kloster 
	 oddvar.kloster@sintef.no

	 Bjørnar Luteberget 
	 bjornar.luteberget@sintef.no

	 Carlo Mannino 
	 carlo.mannino@sintef.no

1	 Mathematics and Cybernetics, SINTEF, Oslo, Norway
2	 Department of Mathematics, University of Oslo, Oslo, Norway

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-023-00243-2&domain=pdf


	 Operations Research Forum (2023) 4:65

1 3

65  Page 2 of 20

1  Introduction

Train planning, sometimes referred to as timetabling, is the long process of 
producing new feasible train timetables that satisfy certain service requirements 
(e.g., three trains per hour from station A to station B), rolling stock constraints, 
planned maintenance disruptions, and robustness levels. In this work, we refer to 
timetabling as the train planning process carried out by the railway infrastructure 
managers, lasting from 1 year to 1 day, sometimes also called short-term 
timetabling. This should not be confused with long-term timetabling (also called 
strategic timetabling), which is a longer process lasting multiple years with the 
main purpose of investigating changes in the capacity of a railway network by 
proposing additional/different train services, infrastructure upgrades, or both. The 
two processes differ in scope but also in the input provided to them. In long-term 
timetabling, one must usually produce a new timetable from scratch given a desired 
set of train services and a possibly modified railway infrastructure. In (short-term) 
timetabling, one usually starts from a given (possibly  infeasible) timetable and 
makes modification based on new preferences/constraints of the train operators, 
planned maintenance work, and customer satisfaction. This process typically lasts 
about a year, but it also continues after a timetable has been finalized and entered 
into operation. In fact, even from 1 day to another, a timetable might require small 
adjustments or planning of additional trains (usually freight or service trains). A 
summary of the entire process is described in Table 1.

Depending on the chosen planning horizon, different levels of flexibility are adopted 
and different requirements can apply. For example, a new timetable for the next year 

Table 1   A summary of a typical timetabling process carried out by European railway infrastructure man-
agers to determine the annual timetable

12 months in advance Pre-planned slots for international train traffic are announced. 
These are coordinated at European level and each country 
should adhere to them

10 months in advance Train operators start submitting the proposed timetables for their 
train services (“bids”). In the following few months, the railway 
infrastructure manager enters in a dialog with the train operators 
and puts together a conflict-free timetable taking into account 
these bids, planned maintenance work, and other preferences

6 months in advance A “base” timetable is published, so that train operators can start 
planning rolling stocks and crews

4 months in advance Train operators can provide feedback to the timetable and 
propose adjustments. In the following few months, the railway 
infrastructure manager will publish a sequence of tentative 
conflict-free timetables based on iterative feedback from train 
operators

1 month in advance The annual timetable is finalized and published. It will enter into 
operation starting from the next month

During the period in which the 
current annual timetable is in 
operation

The railway infrastructure manager is in constant communication 
with the train operators and the maintenance companies to adapt 
and adjust the annual timetable, even on a daily basis, to take 
into consideration extraordinary events, such as extra trains or 
critical maintenance
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could require a complete overhaul of the previous year’s timetable, maybe because 
new infrastructure was built and additional capacity has been added to the network. On 
the other hand, when planning the timetable for the next day, the timetable adopted in 
the current year is used as a starting point, and very limited modifications are allowed. 
Therefore, the planning process can take from a couple of hours (for the next day) to sev-
eral weeks (for the next year). In this work, we propose a MILP model and an interactive 
tool that can be used to support the short-term timetabling process in modern railway 
infrastructure management, both for the next-day timetable and the next-year timetable.

The route planners that are tasked to produce new timetables usually have 
many years of experience and a huge domain knowledge, which is difficult to 
transfer into a mathematical model that automatically builds optimal timetables. 
Moreover, the concept of an optimal timetable is still very vague and not well 
defined. And when new models are proposed to take into account typical 
measures of optimality (e.g., robustness, average passenger travel time), the 
increase in complexity usually makes them impractical for real-life instances. 
This is probably the reason why, to the best of our knowledge, there is currently 
no optimization-based decision support tool available off-the-shelf.

As described above, in a typical timetabling process, the route planners start from 
an existing timetable (or at least a sketch of it) and then adjust it in order to make 
it feasible. This adjustment is a tedious manual work that takes a large portion of 
their time, which could instead be spent more efficiently by letting them exploit their 
expertise to test, for example, different timetable scenarios or configurations.

Therefore, we consider attacking the timetabling problem from a different 
angle compared to the existing optimization literature (see, e.g., the survey papers 
and tutorials [1–7]). Unlike previous work that aims at producing an “optimal” 
timetable based on a combination of different objective functions, we mainly focus 
on producing a feasible timetable. In other words, we wish to aid the planning 
process rather than hoping to replace it. As in many previous works, we also make 
use of a mixed-integer linear programming approach, based on a so-called big-M 
formulation, as, e.g., [8–12]. The idea is simple. Starting from an existing (possibly 
infeasible) timetable T, route planners can use an interactive interface to add trains, 
modify them (e.g, shift/extend/shorten their schedules, change the minimum dwell 
times or running times in specific station and tracks), and set specific preferences 
(e.g., train A should have precedence over train B, train A should only run on 
Sundays). The resulting modified timetable T ′ will likely be infeasible, and the 
objective of our model would be to find a new timetable T �∗ that is feasible and as 
close as possible to T ′ (according to some reasonable distance measure). This way, 
we relieve the route planners from the tedious work of making small adjustments 
to a tentative timetable in order to make it feasible, giving them the possibility of 
trying and testing many more tentative timetables. We call this process incremental 
timetabling.

This approach has several advantages when it comes to the complexity of 
the MILP model. First of all, we do not need to deal with complex objective 
functions to represent, for example, the robustness of a timetable. But we also do 
not need to consider uncertainty in the passenger distribution or, in general, deal 
with stochastic constraints. Instead, we assume that route planners, through their 
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extensive expertise, are able to guide this process towards an “optimal” timetable, 
incrementally improving the quality of a timetable after each modification.

In this paper, we adapt and extend the model and approach developed in [10] 
to cope with this specific application and with a yearly timetable. In particular, we 
show that by carefully taking into consideration operational periods (i.e., trains 
having the same timetable across several days of the week), we can project all 
trains running throughout a year into a single day. This makes it possible to re-plan 
the yearly timetable for a busy railway line in Norway in just a few minutes. As 
of 2023, the same process is done manually and may require several hours. The 
idea of projecting trains with different operational periods is not entirely new as it 
was already introduced in [13] for a PESP formulation of the problem of finding 
(what they call) a partially periodic timetable. The authors show that, under 
certain assumptions, the original problem and the projected (periodic) problem are 
equivalent, and they use the latter to compute a daily timetable where trains can have 
different periodicity at different hours of the day.

2 � A MILP Formulation for Incremental Timetabling

Given a tentative (possibly infeasible) timetable for all trains, we aim to solve the 
problem of finding new feasible schedules for all trains such that the schedule of 
each train is as close as possible to its corresponding schedule in the given timetable. 
Here, we use the term “feasible” to identify a schedule that satisfies all operational 
rules: free-running, precedence, safety margin, and connection rules (all described 
below). In other words, the problem is very similar to a classical train scheduling 
problem, but with a somewhat uncommon objective function. Train scheduling 
problems have been studied for many years. Two main MILP formulations arose: 
time-indexed and big-M. The formulation we use in this paper is based on the 
big-M formulation extensively in described in [14] and later applied to many real-
world applications (see, for example, [10] and [15]). In this section, we present the 
formulation described in [15] for train scheduling, while in the next section, we 
describe how to project all trains running within a year into a single day.

We consider a set of trains A and a set of resources R. Each train a ∈ A has an 
associated route, that is a sequence of resources (r1,… , r|Ra|) , where Ra is the set 
of resources in the route of train a. We assume that the first and last resources are 
always stations. Tracks are simply resources with capacity 1, while stations are 
resources with capacity greater or equal than 1. The exact decomposition approach 
described in [14] considers a mesoscopic representation of the network [16], and 
it consists of repetitively solving a train scheduling problem that initially ignores 
operational rules in the stations, generating appropriate constraints on the fly only 
when those rules are violated by the incumbent schedule. Whenever no rules are 
violated, the incumbent solution is optimal. But one could also go one step further 
and actually initially ignore a larger set of operational rules, both in the stations and 
the tracks. This iterative constraint-generation algorithm has several nice properties. 
First, the initial problem formulation is relatively small. Secondly, determining 
whether a certain incumbent solution violates any rule can be done independently 
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for each resource, effectively decomposing the problem of identifying conflicts into 
a set of very small problems.

Following [14], we model the train scheduling problem as an extension of the 
job-shop scheduling problem with blocking and no-wait constraints first described 
in [17]. We introduce a scheduling variable ta

r
∈ ℝ to indicate the time train a ∈ A 

enters resource r ∈ Ra . With a slight abuse of notation, we define by ta
r+1

 the time 
train a enters the resource immediately after r in its route. Then, the time train 
a ∈ A leaves resource r ∈ R can simply be defined as ta

r+1
 . We assume R contains a 

fictitious resource rout that we can append to the end of the route of each train so that 
we can use the scheduling variable ta

rout
∈ ℝ to indicate the time train a leaves the 

last station of its route and exits the railway network. For consistency and simplicity, 
we denote by ta

rin
 the time train a enters the first station in its route.

Free‑Running Rules  We can start building our MILP model by limiting the mini-
mum and maximum running time of each train in each resource:

by limiting the arrival and departure time at the first and last station, respectively:

and by limiting the total travel time:

When r represents a track, (1) restricts the minimum and maximum running 
time in the track (usually dependent on the type of train, number of wagons and 
locomotives, and its weight). Instead, when r represents a station, (1) restricts the 
minimum and maximum dwell time in the station. All constraints (1)–(3) are usually 
called “free-running” constraints because they model the basic behavior of a train 
without considering interactions with other trains.

Precedence Rules  When planning two or more trains in the  same network, viola-
tions of the precedence rules may arise. In this paper, we refer to precedence rules 
as all those rules that make sure two or more trains will not interfere with each 
other within a resource, that is whether one or more trains need to give precedence 
to other trains in a resource. Here, we assume that given a set of trains (with their 
routes) and a resource, there exists an oracle able to determine whether these trains 
can be feasibly scheduled (and routed) within the resource whenever they happen to 
“meet” simultaneously in the resource. If the oracle returns a negative answer, then 
there must be no positive time interval in which all trains of this set can occupy the 
resource at the same time. For example, in a single track, a train must leave the track 
before another train can enter, and therefore, no set of two trains traversing the same 
track can ever meet in that track at the same time. Similarly, in a small station with 

(1)
ta
r+1

− ta
r
≥ �a

r
a ∈ A, r ∈ Ra,

ta
r+1

− ta
r
≤ Λa

r
a ∈ A, r ∈ Ra,

(2)
ta
rin

≥ �a a ∈ A,

ta
rout

≤ Φa a ∈ A,

(3)ta
rout

− ta
rin

≤ �a a ∈ A.
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two tracks but only a single platform track, two passenger trains can never be present 
at the same time (since they both need to use the platform). The oracle can take into 
account the characteristics of the trains (e.g., length, type), the infrastructure of the 
resource (e.g., length of tracks and platforms), the available feasible routes, et cetera. 
Like any model, this is an abstraction of reality. However, as long as the informa-
tion provided to the oracle is rich enough, this abstraction is sufficient to produce 
schedules that would also be feasible in a very realistic environment, as proven in 
other recent works (see, for example, [15, 18]). The details of the oracle are not 
particularly relevant for this work, and some examples include both simpler imple-
mentations based on graph coloring algorithms [14] and more complex algorithms 
based on very precise microscopic station models [19]. Note that, in general, deter-
mining whether trains can be feasibly scheduled inside a resource is computation-
ally hard, especially if the resource represents a large, complex piece of the railway 
infrastructure (e.g., a large station serving several lines). However, in our macro-
scopic approach, resources represent either single tracks or stations with relatively 
simple feasibility rules, and the computational time spent on the oracle is negligible 
compared to solving the MILPs.

Now that we know which trains can and cannot be in each resource at the same 
time, we simply need the model to be able to measure the train occupancy of each 
resource. To formulate this, we can start by looking at the interactions between 
each pair of trains within a resource. Later, we will see how to combine interactions 
across pairs of trains to deduce interactions among larger sets of trains and therefore 
measure the train occupancy. Note that only two situations can occur when there 
is a possibility for two trains to meet in a resource. Either they actually meet in the 
resource (i.e., the intervals of time spent in the resource by each train overlap at least 
in one point) or one train leaves the resource before the other enters. The latter gives 
rise to two symmetric cases, as we will see below. Note that not all trains can meet 
in every resource; therefore, we can limit the number of binary variables based on 
the potential interactions.

Define the set Ω+ ⊆ R × A × A as the set of (resource, train, train) triplets (r, a, b) 
such that r ∈ Ra ∩ Rb . Note that Ω+ is symmetric: Whenever (r, a, b) ∈ Ω+ , so is 
(r, b, a). To avoid redundancy in the model due to this symmetry, we also define 
Ω ⊂ Ω+ such that when (r, a, b) ∈ Ω+ , then either (r, a, b) ∈ Ω or (r, b, a) ∈ Ω , but 
not both. The choice of which is arbitrary.

Then, the interactions between pairs of trains can be described with the following 
binary variables:

•	 pab
r

∈ {0, 1} , (r, a, b) ∈ Ω+ : this precedence variable is equal to 1 whenever train 
a exits the resource r before train b enters it (i.e., a precedes b in resource r), 0 
otherwise. In other words, if pab

r
= 1 , then tb

r
≥ ta

r+1
.

•	 mab
r

∈ {0, 1} , (r, a, b) ∈ Ω : this meeting variable is equal to 1 whenever train 
a meets train b in resource r, 0 otherwise. In other words, if mab

r
= 1 , then 

tb
r
≤ ta

r+1
∧ ta

r
≤ tb

r+1
 , that is, train b enters resource r before train a leaves and 
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train a enters resource r before train b leaves. Note that mab
r

 is defined for the 
smaller set Ω , and its symmetric version mba

r
 does not exist.

Then, we can model these variables with the following constraints:

where M is a large enough constant (i.e., the infamous big-M coefficient). The first 
constraint makes sure that either one train precedes the other train in the resource or 
they actually meet in the resource. The other constraints tie these binary variables 
to the scheduling variables. For example, if pab

r
= 1 , then the second constraint 

becomes active and tb
r
≥ ta

r+1
 , that is, train b can enter resource r only after train 

a has left, and all the remaining big-M constraints become inactive (i.e., always 
satisfied). The observant reader might notice that the set of constraints in (4) can be 
simplified by eliminating one of the binary variables. However, we use this slightly 
redundant formulation here and throughout the rest of the paper in the interest of a 
clearer presentation.

Now that we established a way to determine whether two trains meet in a 
certain resource, we can use the well-known Helly’s Theorem to extend this 
concept to a set of trains. In fact, it is easy to show that given a set of trains S, 
they will all meet simultaneously in a resource r if and only every pair meets in r, 

that is if and only if 
∑

{a,b}⊆S m
ab
r

=

�
�S�
2

�
 . Recall our assumption on the oracle, 

that for every set of trains S ⊆ A and for every resource r ∈ R , we can determine 
whether they can all meet simultaneously in that resource. Define by Sr the set of 
(minimal) subsets of trains that would receive a negative answer from the oracle 
in resource r. Then, we can make sure that all precedence rules are satisfied 
simply by making sure that none of those sets of trains will ever meet 
simultaneously in each specific resource:

Safety Margin Rules  After modeling the basic free-running behavior of trains and 
preventing them from colliding by introducing the precedence rules, we still need 
additional constraints to model safety margin rules. These rules come in the form 
of required minimum time separation between events. One typical example is when 
two passenger trains running in opposite direction along single-tracks are approach-
ing at the same time a station with two platforms. Since each train will be routed to 
a different platform and they enter the station from different directions, they are not 
expected to collide or interfere with each other within the station. However, one of 
the trains could miss its assigned route due to a malfunction (in the infrastructure 

(4)

pab
r
+ pba

r
+ mab

r
= 1 (r, a, b) ∈ Ω,

ta
r+1

− tb
r
≤ M(1 − pab

r
) (r, a, b) ∈ Ω+,

tb
r
− ta

r+1
≤ M(1 − mab

r
) (r, a, b) ∈ Ω,

ta
r
− tb

r+1
≤ M(1 − mab

r
) (r, a, b) ∈ Ω,

(5)
∑

{a,b}⊆S m
ab
r

≤

�
�S�
2

�
− 1 r ∈ R, S ∈ S

r
.
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or the brakes, for example) and hit the other incoming train. In this situation, safety 
margin rules usually impose that the train entering the station last may do so only 
after a certain amount of time has passed since the first train has entered the station.

In general, there may be rules for all combinations of events on each pair 
of trains in each resource. The following separation times then apply when the 
specific event for train a happens before the specific event for train b in resource 
r:

•	 �ab
r  : The minimum time separation in resource r between the arrival events of 

trains a, b;
•	 �ab

r  : The minimum time separation in resource r between the arrival of train a 
and the departure of train b;

•	 �ab
r  : The minimum time separation in resource r between the departure of train 

a and the arrival of train b;
•	 �ab

r  : The minimum time separation in resource r between the departure events 
of train a, b.

Note that �ab
r

 , for example, could be different from �ba
r

 , depending on the train 
characteristics or the railway infrastructure. For the arrival-vs-departure 
restrictions, we can reuse the precedence variables introduced in (4):

The first constraint says that if train b does not exit resource r before train a 
enters (i.e., pba

r
= 0 ), then train b can leave that resource only after �ab

r
 time has 

passed since train a has entered (i.e., tb
r+1

≥ ta
r
+ �ab

r
 ). The second has a similar 

meaning. However, note that the second constraint in (6) is a generalization of the 
second constraint in (4), which could then be omitted.

Whenever we have that mab
r

= 1 (i.e., train a meets train b in resource r), 
pab
r

= pba
r

= 0 , and we cannot use these variables to determine which train 
entered the resource first. Moreover, their arrival order might be different 
from their departure order, e.g., when one train overtakes another in a station. 
Therefore, additional binary variables are needed to enforce the remaining two 
time restrictions. For every (r, a, b) ∈ Ω+ , we introduce variable uab

r
∈ {0, 1} to 

model the relation between train arrivals. Specifically, if uab
r

= 1 , then train a 
enters resource r before train b enters the same resource, i.e., ta

r
≤ tb

r
 . Similarly, 

we introduce variable vab
r

∈ {0, 1} to model the relation between train departures. 
If vab

r
= 1 , then train a exits resource r before train b exits the same resource, 

i.e., ta
r+1

≤ tb
r+1

 . These variables and the corresponding remaining safety margin 
restrictions can then be modeled with the following constraints:

(6)
tb
r+1

− ta
r
≥ �ab

r
−Mpba

r
(r, a, b) ∈ Ω+,

tb
r
− ta

r+1
≥ �ab

r
−M(1 − pab

r
) (r, a, b) ∈ Ω+,
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Connection Rules  Some trains are intended to be serviced by the same rolling stock, 
usually turning around at a terminal station. When this is the case, we must impose a 
minimum time between the first train’s arrival and the second’s departure. There are 
also cases where two trains should meet in a station to exchange passengers, leading 
to similar constraints.

Define Γ ⊆ R × A × A as the set of (resource, train, train) triplets (r, a, b) such 
that a connects to b in station r. The connection time is modeled by the constraint

where �ab
r

 is the minimum time between a’s arrival and b’s departure. In the case 
where one physical rolling-stock is assigned to trains a, b, running in that order, we 
have (r, a, b) ∈ Γ , where station r is the last resource in a’s route and the first in b’s 
route. In the case where trains a, b meet in some station r to exchange passengers, 
we have both (r, a, b) ∈ Γ and (r, b, a) ∈ Γ.

Objective Function  As mentioned in the introduction and at the beginning of this 
section, we consider an objective function that is quite uncommon in the literature of 
train timetabling. In fact, we disregard the more common objectives such as robust-
ness or average passenger travel time, and we simply measure the distance of the 
incumbent timetable from a given timetable. The idea is that route planners would 
have already taken into account these considerations while making a tentative (but 
likely infeasible) timetable. Although they cannot optimize over robustness or aver-
age passenger travel time, they have many years of experience and a huge domain 
knowledge, both of which can prove to be more significant than an approximated 
robustness measure, for example.

The model receives as input a timetable T, that is, a target value t̄a
r
 for each 

scheduling variable ta
r
 , a ∈ A, r ∈ Ra . The objective of the model is to find new 

values for the scheduling variables ta
r
 such that all constraints are satisfied and the 

new incumbent timetable is as close as possible to the given one. To measure this 
distance, we start by considering the absolute difference da

r
∈ ℝ

+ , da
r
= |ta

r
− t̄a

r
| , 

which can be modeled with the following linear constraints:

Then, two common choices for measuring the total distance between a given 
timetable and the incumbent timetable consist of the following:

(7)

uab
r
+ uba

r
= 1 (r, a, b) ∈ Ω,

tb
r
− ta

r
≥ �ab

r
−M(1 − uab

r
) (r, a, b) ∈ Ω+,

vab
r
+ vba

r
= 1 (r, a, b) ∈ Ω,

tb
r+1

− ta
r+1

≥ �ab
r

−M(1 − vab
r
) (r, a, b) ∈ Ω+,

(8)tb
r+1

− ta
r
≥ �ab

r
(r, a, b) ∈ Γ,

(9)
ta
r
− t̄a

r
≤ da

r
a ∈ A, r ∈ Ra,

t̄a
r
− ta

r
≤ da

r
a ∈ A, r ∈ Ra.
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•	
∑

a∈A,r∈Ra

da
r  : Total sum of absolute differences;

•	 max
a∈A,r∈Ra

da
r  : Maximum absolute difference.

We choose the former for two reasons. First, minimizing the maximum absolute dif-
ference requires additional constrains (to linearize the maximum value) and it usu-
ally introduces symmetry, both of which could impact the computation time. Sec-
ondly, we have been asked by Norwegian route planners to have the possibility of 
limiting the absolute differences for some trains, which can then also be used to 
limit their maximum value:

In some cases, a subset of trains is known to have already feasible schedules, 
and these schedules should remain fixed. In other cases, the new schedules of some 
trains should not deviate too much from the schedules of the given timetable. Then, 
route planners have the possibility of imposing these preferences through the param-
eter �a.

In conclusion, the entire problem consists of minimizing 
∑

a∈A,r∈Ra d
a
r
 , subject to 

constraints (1)–(10).

3 � Solution Algorithm

The full MILP model grows quickly in size when the number of trains in the prob-
lem increases. The number of constraints of types (4), (6), and (7) is quadratic in 
the number of trains (assuming that all trains run on the same line), and the num-
ber of constraints of type (5) can grow even quicker, when there are stations where 
many trains can meet. More significantly, the number of binary variables needed 
to express the constraints is also quadratic in the number of trains. This can make 
the full problem challenging to solve to optimality. However, only relatively few of 
these constraints are actually needed, because most of them forbid situations that 
only occur when trains deviate significantly from the given timetable. Since the 
objective precisely aims at producing a solution similar to the given timetable, these 
constraints are unlikely to be relevant for the optimal solution.

We solve the problem using an iterative algorithm that exploits this fact and add 
constraints in a lazy fashion, which has been shown to be very successful in reduc-
ing the computation time in the context of traffic management (see, for example, 
[20] and [21]). To start, we set up a MILP that excludes all constraints of types 
(4)–(7). Thus, each train is considered to be free running, except that train connec-
tions must be observed. Each iteration then consists of the following steps: 

	 (i)	 Solve the current MILP.
	 (ii)	 If infeasible, the timetabling problem as a whole is infeasible. Stop.
	 (iii)	 Check whether the solution violates any constraint of type (4)–(7).
	 (iv)	 If not, the solution is feasible and optimal. Stop.

(10)da
r
≤ �a a ∈ A, r ∈ Ra.
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	 (v)	 Otherwise, augment the MILP with the violated constraints.
	 (vi)	 Repeat

Steps iii and v are described in more detail below for each class of constraint.

Precedence Rules  Constraints (4) serve to define the binary precedence and meeting 
variables in terms of the scheduling variables. The binaries pab

r
 , pba

r
 and mab

r
 are not 

present in the initial MILP, nor are the constraints, but by substituting the solution’s 
values of ta

r
 into (4), we may discover what values pab

r
 , pba

r
 and mab

r
 must have for the 

solution to be feasible. The found values of mab
r

 can then be substituted into (5) to 
discover the train subsets S ∈ Sr for which that constraint is violated.

While the above procedure is correct, we use a more direct way to find the 
violated precedence rules, based on a standard algorithm to identify maximal cliques 
in interval graphs. For each resource r, we collect the arrival and departure times ta

r
 

and ta
r+1

 for all visiting trains and sort them in ascending order. Now, we can run 
through the sorted sequence while maintaining a set S of present trains, which starts 
empty. When we encounter an arrival ta

r
 , we add a to S, and when we encounter a 

departure ta
r+1

 , we remove a from S. Every time we add a train to S, we ask the oracle 
to check whether the current set of trains can be meeting in that resource at the same 
time. Whenever we have an S for which the oracle returns a negative answer, we 
have found a violated instance of (5).

When (5) is found to be violated for some S, we add it to the MILP. We also add 
pab
r

 , pba
r

 , and mab
r

 and constraints (4) for all {a, b} ⊆ S where this has not yet been 
done.

Safety Margin Rules  The procedure for safety margin rules is similar. We order 
all arrivals and departures in resource r by time and run through them, checking 
whether any are closer than allowed. If so, the corresponding equation from (6) or 
(7) and associated binary are added to the MILP. When this involves pab

r
 , mab

r
 or pba

r
 , 

they must all be added, along with the corresponding set of constraints from (4).

4 � Modeling a Yearly Timetable

So far, we have described a timetabling problem that does not take into account 
train periodicity, that is trains that have the same exact schedule on different days 
of the year. A naive application of the method described above would result in the 
unnecessary modeling of such trains, making the problem intractable. When looking 
at a busy Norwegian railway line with about 100 trains a day (see Sect. 5.2 about 
the real-life experiments), this would result in a problem with roughly 36,500 trains. 
However, it turns out that only 160 of those trains have unique schedules. This is 
very common. Neither do route planners have the capacity to create customized 
timetables for each day of the year, nor is it desirable from a traveler’s point of view 
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to have different timetables from day to day and week to week. In this section, we 
describe how to model periodic trains when solving for a yearly timetable.

As before, we consider a set of trains A and a timetable T. In addition, for each 
train a, we are given a pattern Da ⊆ D = {1, 2, ..., 365} . This pattern indicates on 
which days during the year the train runs. So instead of representing a single point 
in time, the scheduling variable ta

r
 now represents the time at which train a enters 

resource r on each day present in pattern Da.
The canonical interval in which time is expressed is the interval [0, �) , where 

0 represents midnight at the start of some day in D, and � represents midnight at 
the end of the same day. The timetable is expressed so that the target time at the 
first station in any train’s route is always within the interval [0, �) . The subsequent 
target times along a train’s route must be increasing, with no wraparound taking 
place. Thus, if a train’s timetable starts late in the day and continues into the 
next day, it will contain target times ≥ � . The scheduling variables ta

r
 likewise 

normally take values in the interval [0, �) , but may exceed � when the train runs 
across midnight. Additionally, ta

r
 is allowed to take negative values, which is rare, 

but may happen if a train that is targeted to start soon after midnight receives an 
earlier start time before midnight in the MILP solution.

The general structure of the MILP model and algorithm for the periodic case 
are the same as of the non-periodic case described above, but we must now take 
into account that time t + � on some day d ∈ D represents the same time as t on 
day d + 1 . Thus, two trains may conflict if their times on the same resource differ 
by approximately � . We must also consider the fact that not all trains run on all 
days, and if two trains do not both run on any common day in D, then they do not 
actually conflict when they have similar times on the same resource.

As a concrete example, consider the safety margin rule for time between 
arrivals, expressed by the two first constraints of (7). We wish to check if this rule 
is violated for trains a, b in resource r, and if so, add the appropriate variables 
and constraints. The algorithm runs as follows: 

1.	 First, check whether Da and Db have any common element. If Da ∩ Db = � , the 
trains never run on the same day. Go to step 3.

2.	 Check if tb
r
< ta

r
+ 𝛼ab

r
 and ta

r
< tb

r
+ 𝛼ba

r
 . If so, the rule is violated. Add uab

r
 , uba

r
 and 

the associated constraints from (7) to the MILP.
3.	 Next, check if for any d ∈ Da , we have d + 1 ∈ Db . If so, the trains may conflict 

when a runs one day and b the next day. Otherwise, go to step 5.
4.	 Check if tb

r
+ 𝜂 < ta

r
+ 𝛼ab

r
 and ta

r
< tb

r
+ 𝜂 + 𝛼ba

r
 . If so, the rule is violated: Train 

a starting on day d and train b starting on day d + 1 arrive too close. Add to the 
MILP uab

r
 , uba

r
 and the associated constraints, modified with the offset � to take 

into account the 1-day difference: 

(11)

uab
r
+ uba

r
= 1

tb
r
− ta

r
≥ �ab

r
− � −M(1 − uab

r
)

ta
r
− tb

r
≥ �ba

r
+ � −M(1 − uba

r
)



1 3

Operations Research Forum (2023) 4:65	 Page 13 of 20  65

5.	 To handle violations when a runs the day after b, repeat steps 3 and 4 with a and 
b swapped.

The modifications in handling the remaining rules are analogous: In the form 
given in (4)–(8), the constraints apply only when the patterns of both trains share 
a day. But also, a modified form, where tb

r
 is offset by � or −� , applies when for 

some d ∈ Da , d + 1 ∈ Db or d − 1 ∈ Db , respectively. We do not describe the 
remaining rules in detail, but note the following points:

•	 The connection rules (8) are all added to the initial LP. Only one form of each 
is needed, whose offset ( −� , 0 or � ) is chosen as the one most similar to the 
difference between the connected target times.

•	 When searching for violations of the precedence rules, we add three versions 
of each time to the collection of times to be sorted, i.e., ta

r
− � , ta

r
 and ta

r
+ � for 

an arrival time, and record the offset that belongs to each. Each train in the set 
S of trains present has an associated offset, and the sets given to the oracle are 
those subsets of S whose patters and offsets imply that they all meet on some 
common day in D.

5 � Real‑Life Experiments

This section presents how the model described in this paper can be used in a real-
life setting and evaluates its performance. Section 5.1 presents the main features 
of a graphical user interface that was developed in collaboration with Norwegian 
route planners, which they can use to interact directly with the model and the 
algorithm. Section  5.2 describes a set of representative test instances and the 
algorithm’s performance on these instances.

5.1 � User Interface

For railway planning professionals to make productive use of the algorithm 
described above, it is helpful to have a graphical user interface where they can 
load and save timetables, display and manipulate timetables graphically, set vari-
ous parameters, start the algorithm, and monitor its progress.

We have developed such a user interface in collaboration with Norwegian route 
planners. The software uses a server-client architecture, with a computation back-
end server running the algorithm and using Gurobi v10.0 [22] for solving the 
MILP problems, and a graphical front-end running on Windows for manipulating 
the timetable graphically. An overview of the graphical user interface is shown in 
Fig. 1. Timetables are loaded and saved in the railML v2.2 file format.

When loading a timetable, that timetable is set as the reference timetable and 
drawn in black in the graphical timetable. The timetable’s time range covers 
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midnight to midnight of a single day. Because some trains run across the date 
limit (i.e., midnight), an additional 6  h before and after midnight are displayed 
with a darker background. By default (for overview), all trains are drawn in this 
same 1-day timetable, even those running on different days. The operation period 
selection can be used to narrow down the displayed trains to days-of-week, date 
ranges, or individual dates.

The user can make direct modifications of the reference timetable by clicking 
the trains in the graphical timetable. Available operations include the following:

•	 Clone train: Creates a new train that has the same timetable as an existing train. 
This is useful to add more trains for specific train services, and the new trains 
can be slotted into new times using the move train operation described below.

•	 Move train: Offsets arrival and departure times of all stations by the same 
amount. This is useful to provide the same train service at a different time of day.

•	 Stretch range: Increase or decrease the operational reserve (running times and/
or dwelling times) over a selected range. This is useful to make trains arrive/
depart earlier or later at specific stations while leaving other parts of its timetable 
unmodified (see Fig. 2).

There are also further basic operations available, such as canceling (removing) a train, 
changing the operational period, setting arrival/departure times, locking (“fixing") parts 
of the reference timetable, and moving a range (shifting operational reserve between 
before and after the range). All of these operations are performed by pointing and click-
ing with the mouse in the graphical timetable, letting the planning professionals work 
more graphically compared to most commercially available timetabling software. The 
idea is that a timetable is best manipulated and experimented with by working graphi-
cally and seeing the timetable as a whole, and then the tedious detail work required to 
make the timetable feasible can largely be left to the algorithm.

Fig. 1   The user interface. From the top menu bar, timetables can be loaded and saved as files, and con-
nection to the back-end computation server is initiated. On the left, algorithm parameters are set, and 
the solver’s log output can be monitored. On the right, the graphical timetable is displayed and can be 
directly manipulated by the mouse
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When the desired modifications to the reference timetable have been made, conflicts 
may have been introduced, and the user can start the algorithm to compute a new 
conflict-free timetable that is as close as possible to the reference one. The algorithm 
has two main modes: (1) Adjust timetable for all trains, which solves the problem 
described in Section 2 above, and (2) Find slot, which will modify only the timetables 
of currently selected trains. Both modes produce a feasible suggested timetable from the 
potentially infeasible reference timetable. When a suggested timetable has been found 
by the algorithm, it is drawn in red over the black reference timetable. The user may 
inspect the suggestion and continue making modifications to the reference timetable or 
the algorithm’s parameters. If the user is satisfied with the suggested timetable, they can 
accept the suggestion, setting it as the new reference timetable.

5.2 � Performance Evaluation

To demonstrate that the algorithm runs fast enough for interactive use, we produced 
a set of 40 reference timetables that represent incremental modifications of the kind 
that Norwegian route planners were interested in performing. All the modifications 
are based on the real 2021 full-year timetable for 160 trains on the Norwegian 
Dovrebanen line from Eidsvoll (near Oslo) to Trondheim, a 485-km long line with 
28 stations with passenger exchange. The original timetable contained detailed 
input data from the real 2021 production timetable, including train schedules, train 
types (class, length, etc.), passenger exchanges, minimum dwelling times, minimum 

Fig. 2   Stretching running times can be used to make trains faster or slower by decreasing or increasing 
the operational reserve proportionally over the selected range
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running times, and rolling stock correspondences. The timetable (and corresponding 
infrastructure model) also included the line from Oslo Central Station to Eidsvoll, 
where Dovrebanen begins, because most trains running on Dovrebanen will arrive or 
depart from Oslo. However, since the timetable’s scope was limited to Dovrebanen, 
the parts of the trains between Oslo and Eidsvoll were considered fixed (locked) and 
would not be modified as part of the Dovrebanen timetabling process (i.e., setting 
�a = 0 ). This allows route planners to add and modify trains on Dovrebanen and 
find feasible slots for them to travel also on the Oslo-Eidsvoll line, without changing 
the existing Oslo-Eidsvoll timetable.

We have produced modifications of four kinds, with 10 instances of each kind:

•	 add-long: Cloning a long-distance train (running the whole 500  km) and 
offsetting its times.

•	 add-short: Cloning a short-distance train (running locally near the terminal 
station) and offsetting its times.

•	 stretch: Shortening or lengthening a section of a train timetable.
•	 move: Offsetting a train timetable.

The modified timetables were produced manually using the graphical operations 
described in Section 5.1 above, based on the route planners’ examples of how they 
modify timetables in practice. This means that the modified timetables are made to 
be reasonable, in the sense that one does not, for example, make two trains with 
very overlapping timetables, or a train that blocks a single-track section for an 
unreasonable amount of time. But aside from more or less obviously irreparable 
timetables, the modifications were made without regard for detailed feasibility, such 
as trains meeting in the middle of a single-track section.

For each of the add-long and add-short instances, we calculated feasible 
timetables using each of the two algorithm modes (adjust timetable and find slot). 
For each of the stretch and move instances, only the adjust timetable mode was 
used. The algorithm was run on a server machine with an Intel Xeon Gold 6240 

Table 2   Running time results for incremental timetabling problem instances. The two leftmost columns 
indicate the instance category, each containing 10 problem instances. The Avg. iter. column averages the 
number of algorithm iterations. The Avg. confl. column averages the total number of conflict constraints 
that were added to the MILP model. The Min. time, Avg. time, and Max. time columns describe the mini-
mum, average, and maximum running times, respectively, of the 10 cases in the category

Instance category Time (s)

Mod. type Alg. mode Avg. iter Avg. confl. Min. Avg. Max.

add-long Adjust timetable 7.7 103.6 16.0 20.6 34.5
add-long Find slot 11.1 148.4 19.3 27.4 36.9
add-short Adjust timetable 5.3 72.4 10.5 13.1 19.1
add-short Find slot 7.8 80.0 10.7 17.4 29.6
move Adjust timetable 6.9 83.0 10.6 16.1 25.4
stretch Adjust timetable 7.2 83.3 10.5 15.9 20.4
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processor and 20 GB of memory. Running time results are shown in Table 2. All 
cases had the maximum time deviation from the reference timetable set to 60 min 
for all trains (expect for the fixed trains mentioned above). The table shows that all 
instances were solved in less than a minute, enabling a highly interactive workflow 
for timetable modifications. Across these computational experiments, 73% of the 
running time is spent on solving the MILP problem, while 11% is spent on the ora-
cle finding conflicts (i.e., checking for violations of (4)–(7)). Each call to the oracle 
takes on average only 1.24 µs. When conflicts are found, most of the corresponding 
constraints involve only two trains (99.2% of conflicts) and only a very few involve 
larger number of trains: 3 trains (0.5% of conflicts) and 4 trains (0.2%). Only a hand-
ful of oracle calls resulted in conflicts between more than 4 trains.

The effect of setting the maximum time deviation to other values (than our 
default 60 min) is shown in Fig. 3. When lowering the maximum time deviation, 
the problems are solved somewhat faster, but the objective value (i.e., the sum of 
deviations) increases. If the maximum time deviation is set too low, the problem 
becomes infeasible. For example, this happens in the cases presented in Fig. 3 when 
the maximum deviation is set to less than 8 min.

In our experience (and also in these experiments), we see that the running time of 
our algorithm on real-life instances is influenced by the number of conflicts and the 
number of iterations. The intuition is that denser timetables or busier infrastructures 
will lead to a higher number of conflicts and iterations, but these relationships are 

Fig. 3   Objective value and running time for a single problem instance (add-long case #1) as a func-
tion of the maximum deviation constraint. Top: using the adjust timetable algorithm mode. Bottom: 
using the find slot algorithm mode. Crosses indicate infeasible values for the max deviation
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not easily quantifiable. For example, if a timetable is almost feasible, the algorithm 
is likely to terminate almost immediately regardless of the density timetable or the 
available capacity in the infrastructure. However, we can report that the timetable 
used in these experiments was chosen by Norwegian route planners as a case study 
due to its length, high density, and little available capacity ([23]), all of which made 
manual modifications very time consuming.

6 � Discussion and Future Work

For several years, one important objective of the Operations Research community 
was to develop algorithms to produce “optimal” timetables. Unfortunately, 
while some of these algorithms have been validated on realistic instances, their 
usage in practical settings is still nonexistent, to the best of our knowledge. Two 
main reasons can be identified. First, the actual complexity and size of real-life 
instances can produce an unacceptable increase in computation time. Second, 
practitioners struggle with providing a precise definition of optimality, and 
timetables which are optimal according to an agreed objective function may 
eventually not satisfy the route planners.

In this work, we take a step back, and rather than trying to replace the work 
of a route planner, we just aid it. We consider the typical workflow of a route 
planner in the context of short-term timetabling, which consists of iterative 
adjustments of an existing timetable. Most of the time spent in this process by 
route planners goes into regaining feasibility after modifications to the timetable 
have been made. This is exactly what our model is designed to achieve. After 
the route planner applies changes to a timetable and this becomes infeasible, our 
model tries to adjust it to regain feasibility by making as little modifications as 
possible. This method has the advantage of dealing with both issues discussed 
above. First, the model remains simple enough that it can be applied to real-life 
instances. Second, we do not need to deal with a vague definition of optimality, 
leaving to the route planner the decision of how to make major changes in a 
timetable while only focusing on the very fine adjustments.

Another important aspect of the proposed approach has to do with the human 
factor. Route planners may not want a tool that tells them how an optimal 
timetable looks like. Rather, they may prefer a tool that helps them build one.

The decision support tool presented in this paper has been tested and validated 
over several weeks by the Norwegian route planners on a busy railway line in 
Norway, who reacted positively to the possibility of using this tool in the future. 
However, a few things are still missing before the tool is ready for introduction 
into the daily routine of a route planner. As it was presented, the algorithm does 
not support hourly periodicity (e.g., a train should leave a certain station at 
minute hh:05 of every hour), and we do not take that into account when regaining 
feasibility. This is important, because passengers expect most of the trains to be 
periodic throughout the day (i.e., they depart at regular intervals). To fix this, we 
plan to implement the concept of quasi-periodicity as described in [15], which 
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would let us produce an almost perfectly periodic timetable that can be presented 
to the public as a perfectly periodic timetable.

A more detailed oracle function that supports a precise microscopic modeling 
of more complex resources is also under development. This requires abundant 
care as to not ruin the assumption of our approach that the time spent on the oracle 
should be negligible in respect to the time spent on the main problem itself. Indeed, 
understanding the relationship between the running time of the algorithm and the 
complexity/number of oracle calls is an interesting avenue for future work.

Another useful feature would be the ability to relax parts of the model. Certain 
rules, e.g., the connection rules, are less important than the others and could be 
modeled as part of the objective rather than as constraints. Other small things that 
are missing from the current implementation include a more detailed interface to the 
railML format, support for more precise routing in stations, support for pre-signals, 
and some more, all of which we plan to include into the software in the following 
years.
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