
Vol.:(0123456789)

Operations Research Forum (2023) 4:65
https://doi.org/10.1007/s43069-023-00243-2

1 3

RESEARCH

An Optimization‑Based Decision Support Tool
for Incremental Train Timetabling

Oddvar Kloster1 · Bjørnar Luteberget1 · Carlo Mannino1,2 · Giorgio Sartor1

Received: 24 February 2023 / Accepted: 8 August 2023 / Published online: 30 August 2023
© The Author(s) 2023

Abstract
We consider the typical workflow of a route planner in the context of short-term
train timetabling, that is, the incremental process of adjusting a timetable for the
next day or up to the next year. This process usually alternates between (1) making
rough modifications to an existing timetable (e.g., shifting the departure of a train
by half an hour) and then (2) making small adjustments to regain feasibility (e.g.,
reduce or increase the dwell time of some trains in some stations). The most time-
consuming element of this process is related to the second step, that is to manually
eliminate all conflicts that may arise after a timetable has been modified. In this
work, we propose a mixed-integer programming model tailored to solve precisely
this problem, that is to find a conflict-free timetable that is as close as possible to
a given one. Previous related work mostly focused on creating complex models to
produce “optimal” timetables from scratch, which ultimately resulted in little to no
practical applications. By using a simpler model, and by trusting route planners in
steering the process towards a timetable with the desired qualities, we can get closer
to handle real-life instances. The model has been integrated in a user interface that
was tested and validated by Norwegian route planners to plan the yearly timetable of
a busy railway line in Norway.

Keywords  Mixed-integer programming · Train timetabling · Job-shop scheduling

 *	 Giorgio Sartor
	 giorgio.sartor@sintef.no

	 Oddvar Kloster
	 oddvar.kloster@sintef.no

	 Bjørnar Luteberget
	 bjornar.luteberget@sintef.no

	 Carlo Mannino
	 carlo.mannino@sintef.no

1	 Mathematics and Cybernetics, SINTEF, Oslo, Norway
2	 Department of Mathematics, University of Oslo, Oslo, Norway

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-023-00243-2&domain=pdf

	 Operations Research Forum (2023) 4:65

1 3

65  Page 2 of 20

1  Introduction

Train planning, sometimes referred to as timetabling, is the long process of
producing new feasible train timetables that satisfy certain service requirements
(e.g., three trains per hour from station A to station B), rolling stock constraints,
planned maintenance disruptions, and robustness levels. In this work, we refer to
timetabling as the train planning process carried out by the railway infrastructure
managers, lasting from 1 year to 1 day, sometimes also called short-term
timetabling. This should not be confused with long-term timetabling (also called
strategic timetabling), which is a longer process lasting multiple years with the
main purpose of investigating changes in the capacity of a railway network by
proposing additional/different train services, infrastructure upgrades, or both. The
two processes differ in scope but also in the input provided to them. In long-term
timetabling, one must usually produce a new timetable from scratch given a desired
set of train services and a possibly modified railway infrastructure. In (short-term)
timetabling, one usually starts from a given (possibly infeasible) timetable and
makes modification based on new preferences/constraints of the train operators,
planned maintenance work, and customer satisfaction. This process typically lasts
about a year, but it also continues after a timetable has been finalized and entered
into operation. In fact, even from 1 day to another, a timetable might require small
adjustments or planning of additional trains (usually freight or service trains). A
summary of the entire process is described in Table 1.

Depending on the chosen planning horizon, different levels of flexibility are adopted
and different requirements can apply. For example, a new timetable for the next year

Table 1   A summary of a typical timetabling process carried out by European railway infrastructure man-
agers to determine the annual timetable

12 months in advance Pre-planned slots for international train traffic are announced.
These are coordinated at European level and each country
should adhere to them

10 months in advance Train operators start submitting the proposed timetables for their
train services (“bids”). In the following few months, the railway
infrastructure manager enters in a dialog with the train operators
and puts together a conflict-free timetable taking into account
these bids, planned maintenance work, and other preferences

6 months in advance A “base” timetable is published, so that train operators can start
planning rolling stocks and crews

4 months in advance Train operators can provide feedback to the timetable and
propose adjustments. In the following few months, the railway
infrastructure manager will publish a sequence of tentative
conflict-free timetables based on iterative feedback from train
operators

1 month in advance The annual timetable is finalized and published. It will enter into
operation starting from the next month

During the period in which the
current annual timetable is in
operation

The railway infrastructure manager is in constant communication
with the train operators and the maintenance companies to adapt
and adjust the annual timetable, even on a daily basis, to take
into consideration extraordinary events, such as extra trains or
critical maintenance

1 3

Operations Research Forum (2023) 4:65	 Page 3 of 20  65

could require a complete overhaul of the previous year’s timetable, maybe because
new infrastructure was built and additional capacity has been added to the network. On
the other hand, when planning the timetable for the next day, the timetable adopted in
the current year is used as a starting point, and very limited modifications are allowed.
Therefore, the planning process can take from a couple of hours (for the next day) to sev-
eral weeks (for the next year). In this work, we propose a MILP model and an interactive
tool that can be used to support the short-term timetabling process in modern railway
infrastructure management, both for the next-day timetable and the next-year timetable.

The route planners that are tasked to produce new timetables usually have
many years of experience and a huge domain knowledge, which is difficult to
transfer into a mathematical model that automatically builds optimal timetables.
Moreover, the concept of an optimal timetable is still very vague and not well
defined. And when new models are proposed to take into account typical
measures of optimality (e.g., robustness, average passenger travel time), the
increase in complexity usually makes them impractical for real-life instances.
This is probably the reason why, to the best of our knowledge, there is currently
no optimization-based decision support tool available off-the-shelf.

As described above, in a typical timetabling process, the route planners start from
an existing timetable (or at least a sketch of it) and then adjust it in order to make
it feasible. This adjustment is a tedious manual work that takes a large portion of
their time, which could instead be spent more efficiently by letting them exploit their
expertise to test, for example, different timetable scenarios or configurations.

Therefore, we consider attacking the timetabling problem from a different
angle compared to the existing optimization literature (see, e.g., the survey papers
and tutorials [1–7]). Unlike previous work that aims at producing an “optimal”
timetable based on a combination of different objective functions, we mainly focus
on producing a feasible timetable. In other words, we wish to aid the planning
process rather than hoping to replace it. As in many previous works, we also make
use of a mixed-integer linear programming approach, based on a so-called big-M
formulation, as, e.g., [8–12]. The idea is simple. Starting from an existing (possibly
infeasible) timetable T, route planners can use an interactive interface to add trains,
modify them (e.g, shift/extend/shorten their schedules, change the minimum dwell
times or running times in specific station and tracks), and set specific preferences
(e.g., train A should have precedence over train B, train A should only run on
Sundays). The resulting modified timetable T ′ will likely be infeasible, and the
objective of our model would be to find a new timetable T �∗ that is feasible and as
close as possible to T ′ (according to some reasonable distance measure). This way,
we relieve the route planners from the tedious work of making small adjustments
to a tentative timetable in order to make it feasible, giving them the possibility of
trying and testing many more tentative timetables. We call this process incremental
timetabling.

This approach has several advantages when it comes to the complexity of
the MILP model. First of all, we do not need to deal with complex objective
functions to represent, for example, the robustness of a timetable. But we also do
not need to consider uncertainty in the passenger distribution or, in general, deal
with stochastic constraints. Instead, we assume that route planners, through their

	 Operations Research Forum (2023) 4:65

1 3

65  Page 4 of 20

extensive expertise, are able to guide this process towards an “optimal” timetable,
incrementally improving the quality of a timetable after each modification.

In this paper, we adapt and extend the model and approach developed in [10]
to cope with this specific application and with a yearly timetable. In particular, we
show that by carefully taking into consideration operational periods (i.e., trains
having the same timetable across several days of the week), we can project all
trains running throughout a year into a single day. This makes it possible to re-plan
the yearly timetable for a busy railway line in Norway in just a few minutes. As
of 2023, the same process is done manually and may require several hours. The
idea of projecting trains with different operational periods is not entirely new as it
was already introduced in [13] for a PESP formulation of the problem of finding
(what they call) a partially periodic timetable. The authors show that, under
certain assumptions, the original problem and the projected (periodic) problem are
equivalent, and they use the latter to compute a daily timetable where trains can have
different periodicity at different hours of the day.

2 � A MILP Formulation for Incremental Timetabling

Given a tentative (possibly infeasible) timetable for all trains, we aim to solve the
problem of finding new feasible schedules for all trains such that the schedule of
each train is as close as possible to its corresponding schedule in the given timetable.
Here, we use the term “feasible” to identify a schedule that satisfies all operational
rules: free-running, precedence, safety margin, and connection rules (all described
below). In other words, the problem is very similar to a classical train scheduling
problem, but with a somewhat uncommon objective function. Train scheduling
problems have been studied for many years. Two main MILP formulations arose:
time-indexed and big-M. The formulation we use in this paper is based on the
big-M formulation extensively in described in [14] and later applied to many real-
world applications (see, for example, [10] and [15]). In this section, we present the
formulation described in [15] for train scheduling, while in the next section, we
describe how to project all trains running within a year into a single day.

We consider a set of trains A and a set of resources R. Each train a ∈ A has an
associated route, that is a sequence of resources (r1,… , r|Ra|) , where Ra is the set
of resources in the route of train a. We assume that the first and last resources are
always stations. Tracks are simply resources with capacity 1, while stations are
resources with capacity greater or equal than 1. The exact decomposition approach
described in [14] considers a mesoscopic representation of the network [16], and
it consists of repetitively solving a train scheduling problem that initially ignores
operational rules in the stations, generating appropriate constraints on the fly only
when those rules are violated by the incumbent schedule. Whenever no rules are
violated, the incumbent solution is optimal. But one could also go one step further
and actually initially ignore a larger set of operational rules, both in the stations and
the tracks. This iterative constraint-generation algorithm has several nice properties.
First, the initial problem formulation is relatively small. Secondly, determining
whether a certain incumbent solution violates any rule can be done independently

1 3

Operations Research Forum (2023) 4:65	 Page 5 of 20  65

for each resource, effectively decomposing the problem of identifying conflicts into
a set of very small problems.

Following [14], we model the train scheduling problem as an extension of the
job-shop scheduling problem with blocking and no-wait constraints first described
in [17]. We introduce a scheduling variable ta

r
∈ ℝ to indicate the time train a ∈ A

enters resource r ∈ Ra . With a slight abuse of notation, we define by ta
r+1

 the time
train a enters the resource immediately after r in its route. Then, the time train
a ∈ A leaves resource r ∈ R can simply be defined as ta

r+1
 . We assume R contains a

fictitious resource rout that we can append to the end of the route of each train so that
we can use the scheduling variable ta

rout
∈ ℝ to indicate the time train a leaves the

last station of its route and exits the railway network. For consistency and simplicity,
we denote by ta

rin
 the time train a enters the first station in its route.

Free‑Running Rules  We can start building our MILP model by limiting the mini-
mum and maximum running time of each train in each resource:

by limiting the arrival and departure time at the first and last station, respectively:

and by limiting the total travel time:

When r represents a track, (1) restricts the minimum and maximum running
time in the track (usually dependent on the type of train, number of wagons and
locomotives, and its weight). Instead, when r represents a station, (1) restricts the
minimum and maximum dwell time in the station. All constraints (1)–(3) are usually
called “free-running” constraints because they model the basic behavior of a train
without considering interactions with other trains.

Precedence Rules  When planning two or more trains in the same network, viola-
tions of the precedence rules may arise. In this paper, we refer to precedence rules
as all those rules that make sure two or more trains will not interfere with each
other within a resource, that is whether one or more trains need to give precedence
to other trains in a resource. Here, we assume that given a set of trains (with their
routes) and a resource, there exists an oracle able to determine whether these trains
can be feasibly scheduled (and routed) within the resource whenever they happen to
“meet” simultaneously in the resource. If the oracle returns a negative answer, then
there must be no positive time interval in which all trains of this set can occupy the
resource at the same time. For example, in a single track, a train must leave the track
before another train can enter, and therefore, no set of two trains traversing the same
track can ever meet in that track at the same time. Similarly, in a small station with

(1)
ta
r+1

− ta
r
≥ �a

r
a ∈ A, r ∈ Ra,

ta
r+1

− ta
r
≤ Λa

r
a ∈ A, r ∈ Ra,

(2)
ta
rin

≥ �a a ∈ A,

ta
rout

≤ Φa a ∈ A,

(3)ta
rout

− ta
rin

≤ �a a ∈ A.

	 Operations Research Forum (2023) 4:65

1 3

65  Page 6 of 20

two tracks but only a single platform track, two passenger trains can never be present
at the same time (since they both need to use the platform). The oracle can take into
account the characteristics of the trains (e.g., length, type), the infrastructure of the
resource (e.g., length of tracks and platforms), the available feasible routes, et cetera.
Like any model, this is an abstraction of reality. However, as long as the informa-
tion provided to the oracle is rich enough, this abstraction is sufficient to produce
schedules that would also be feasible in a very realistic environment, as proven in
other recent works (see, for example, [15, 18]). The details of the oracle are not
particularly relevant for this work, and some examples include both simpler imple-
mentations based on graph coloring algorithms [14] and more complex algorithms
based on very precise microscopic station models [19]. Note that, in general, deter-
mining whether trains can be feasibly scheduled inside a resource is computation-
ally hard, especially if the resource represents a large, complex piece of the railway
infrastructure (e.g., a large station serving several lines). However, in our macro-
scopic approach, resources represent either single tracks or stations with relatively
simple feasibility rules, and the computational time spent on the oracle is negligible
compared to solving the MILPs.

Now that we know which trains can and cannot be in each resource at the same
time, we simply need the model to be able to measure the train occupancy of each
resource. To formulate this, we can start by looking at the interactions between
each pair of trains within a resource. Later, we will see how to combine interactions
across pairs of trains to deduce interactions among larger sets of trains and therefore
measure the train occupancy. Note that only two situations can occur when there
is a possibility for two trains to meet in a resource. Either they actually meet in the
resource (i.e., the intervals of time spent in the resource by each train overlap at least
in one point) or one train leaves the resource before the other enters. The latter gives
rise to two symmetric cases, as we will see below. Note that not all trains can meet
in every resource; therefore, we can limit the number of binary variables based on
the potential interactions.

Define the set Ω+ ⊆ R × A × A as the set of (resource, train, train) triplets (r, a, b)
such that r ∈ Ra ∩ Rb . Note that Ω+ is symmetric: Whenever (r, a, b) ∈ Ω+ , so is
(r, b, a). To avoid redundancy in the model due to this symmetry, we also define
Ω ⊂ Ω+ such that when (r, a, b) ∈ Ω+ , then either (r, a, b) ∈ Ω or (r, b, a) ∈ Ω , but
not both. The choice of which is arbitrary.

Then, the interactions between pairs of trains can be described with the following
binary variables:

•	 pab
r

∈ {0, 1} , (r, a, b) ∈ Ω+ : this precedence variable is equal to 1 whenever train
a exits the resource r before train b enters it (i.e., a precedes b in resource r), 0
otherwise. In other words, if pab

r
= 1 , then tb

r
≥ ta

r+1
.

•	 mab
r

∈ {0, 1} , (r, a, b) ∈ Ω : this meeting variable is equal to 1 whenever train
a meets train b in resource r, 0 otherwise. In other words, if mab

r
= 1 , then

tb
r
≤ ta

r+1
∧ ta

r
≤ tb

r+1
 , that is, train b enters resource r before train a leaves and

1 3

Operations Research Forum (2023) 4:65	 Page 7 of 20  65

train a enters resource r before train b leaves. Note that mab
r

 is defined for the
smaller set Ω , and its symmetric version mba

r
 does not exist.

Then, we can model these variables with the following constraints:

where M is a large enough constant (i.e., the infamous big-M coefficient). The first
constraint makes sure that either one train precedes the other train in the resource or
they actually meet in the resource. The other constraints tie these binary variables
to the scheduling variables. For example, if pab

r
= 1 , then the second constraint

becomes active and tb
r
≥ ta

r+1
 , that is, train b can enter resource r only after train

a has left, and all the remaining big-M constraints become inactive (i.e., always
satisfied). The observant reader might notice that the set of constraints in (4) can be
simplified by eliminating one of the binary variables. However, we use this slightly
redundant formulation here and throughout the rest of the paper in the interest of a
clearer presentation.

Now that we established a way to determine whether two trains meet in a
certain resource, we can use the well-known Helly’s Theorem to extend this
concept to a set of trains. In fact, it is easy to show that given a set of trains S,
they will all meet simultaneously in a resource r if and only every pair meets in r,

that is if and only if
∑

{a,b}⊆S m
ab
r

=

�
�S�
2

�
 . Recall our assumption on the oracle,

that for every set of trains S ⊆ A and for every resource r ∈ R , we can determine
whether they can all meet simultaneously in that resource. Define by Sr the set of
(minimal) subsets of trains that would receive a negative answer from the oracle
in resource r. Then, we can make sure that all precedence rules are satisfied
simply by making sure that none of those sets of trains will ever meet
simultaneously in each specific resource:

Safety Margin Rules  After modeling the basic free-running behavior of trains and
preventing them from colliding by introducing the precedence rules, we still need
additional constraints to model safety margin rules. These rules come in the form
of required minimum time separation between events. One typical example is when
two passenger trains running in opposite direction along single-tracks are approach-
ing at the same time a station with two platforms. Since each train will be routed to
a different platform and they enter the station from different directions, they are not
expected to collide or interfere with each other within the station. However, one of
the trains could miss its assigned route due to a malfunction (in the infrastructure

(4)

pab
r
+ pba

r
+ mab

r
= 1 (r, a, b) ∈ Ω,

ta
r+1

− tb
r
≤ M(1 − pab

r
) (r, a, b) ∈ Ω+,

tb
r
− ta

r+1
≤ M(1 − mab

r
) (r, a, b) ∈ Ω,

ta
r
− tb

r+1
≤ M(1 − mab

r
) (r, a, b) ∈ Ω,

(5)
∑

{a,b}⊆S m
ab
r

≤

�
�S�
2

�
− 1 r ∈ R, S ∈ S

r
.

	 Operations Research Forum (2023) 4:65

1 3

65  Page 8 of 20

or the brakes, for example) and hit the other incoming train. In this situation, safety
margin rules usually impose that the train entering the station last may do so only
after a certain amount of time has passed since the first train has entered the station.

In general, there may be rules for all combinations of events on each pair
of trains in each resource. The following separation times then apply when the
specific event for train a happens before the specific event for train b in resource
r:

•	 �ab
r  : The minimum time separation in resource r between the arrival events of

trains a, b;
•	 �ab

r  : The minimum time separation in resource r between the arrival of train a
and the departure of train b;

•	 �ab
r  : The minimum time separation in resource r between the departure of train

a and the arrival of train b;
•	 �ab

r  : The minimum time separation in resource r between the departure events
of train a, b.

Note that �ab
r

 , for example, could be different from �ba
r

 , depending on the train
characteristics or the railway infrastructure. For the arrival-vs-departure
restrictions, we can reuse the precedence variables introduced in (4):

The first constraint says that if train b does not exit resource r before train a
enters (i.e., pba

r
= 0 ), then train b can leave that resource only after �ab

r
 time has

passed since train a has entered (i.e., tb
r+1

≥ ta
r
+ �ab

r
 ). The second has a similar

meaning. However, note that the second constraint in (6) is a generalization of the
second constraint in (4), which could then be omitted.

Whenever we have that mab
r

= 1 (i.e., train a meets train b in resource r),
pab
r

= pba
r

= 0 , and we cannot use these variables to determine which train
entered the resource first. Moreover, their arrival order might be different
from their departure order, e.g., when one train overtakes another in a station.
Therefore, additional binary variables are needed to enforce the remaining two
time restrictions. For every (r, a, b) ∈ Ω+ , we introduce variable uab

r
∈ {0, 1} to

model the relation between train arrivals. Specifically, if uab
r

= 1 , then train a
enters resource r before train b enters the same resource, i.e., ta

r
≤ tb

r
 . Similarly,

we introduce variable vab
r

∈ {0, 1} to model the relation between train departures.
If vab

r
= 1 , then train a exits resource r before train b exits the same resource,

i.e., ta
r+1

≤ tb
r+1

 . These variables and the corresponding remaining safety margin
restrictions can then be modeled with the following constraints:

(6)
tb
r+1

− ta
r
≥ �ab

r
−Mpba

r
(r, a, b) ∈ Ω+,

tb
r
− ta

r+1
≥ �ab

r
−M(1 − pab

r
) (r, a, b) ∈ Ω+,

1 3

Operations Research Forum (2023) 4:65	 Page 9 of 20  65

Connection Rules  Some trains are intended to be serviced by the same rolling stock,
usually turning around at a terminal station. When this is the case, we must impose a
minimum time between the first train’s arrival and the second’s departure. There are
also cases where two trains should meet in a station to exchange passengers, leading
to similar constraints.

Define Γ ⊆ R × A × A as the set of (resource, train, train) triplets (r, a, b) such
that a connects to b in station r. The connection time is modeled by the constraint

where �ab
r

 is the minimum time between a’s arrival and b’s departure. In the case
where one physical rolling-stock is assigned to trains a, b, running in that order, we
have (r, a, b) ∈ Γ , where station r is the last resource in a’s route and the first in b’s
route. In the case where trains a, b meet in some station r to exchange passengers,
we have both (r, a, b) ∈ Γ and (r, b, a) ∈ Γ.

Objective Function  As mentioned in the introduction and at the beginning of this
section, we consider an objective function that is quite uncommon in the literature of
train timetabling. In fact, we disregard the more common objectives such as robust-
ness or average passenger travel time, and we simply measure the distance of the
incumbent timetable from a given timetable. The idea is that route planners would
have already taken into account these considerations while making a tentative (but
likely infeasible) timetable. Although they cannot optimize over robustness or aver-
age passenger travel time, they have many years of experience and a huge domain
knowledge, both of which can prove to be more significant than an approximated
robustness measure, for example.

The model receives as input a timetable T, that is, a target value t̄a
r
 for each

scheduling variable ta
r
 , a ∈ A, r ∈ Ra . The objective of the model is to find new

values for the scheduling variables ta
r
 such that all constraints are satisfied and the

new incumbent timetable is as close as possible to the given one. To measure this
distance, we start by considering the absolute difference da

r
∈ ℝ

+ , da
r
= |ta

r
− t̄a

r
| ,

which can be modeled with the following linear constraints:

Then, two common choices for measuring the total distance between a given
timetable and the incumbent timetable consist of the following:

(7)

uab
r
+ uba

r
= 1 (r, a, b) ∈ Ω,

tb
r
− ta

r
≥ �ab

r
−M(1 − uab

r
) (r, a, b) ∈ Ω+,

vab
r
+ vba

r
= 1 (r, a, b) ∈ Ω,

tb
r+1

− ta
r+1

≥ �ab
r

−M(1 − vab
r
) (r, a, b) ∈ Ω+,

(8)tb
r+1

− ta
r
≥ �ab

r
(r, a, b) ∈ Γ,

(9)
ta
r
− t̄a

r
≤ da

r
a ∈ A, r ∈ Ra,

t̄a
r
− ta

r
≤ da

r
a ∈ A, r ∈ Ra.

	 Operations Research Forum (2023) 4:65

1 3

65  Page 10 of 20

•	
∑

a∈A,r∈Ra

da
r  : Total sum of absolute differences;

•	 max
a∈A,r∈Ra

da
r  : Maximum absolute difference.

We choose the former for two reasons. First, minimizing the maximum absolute dif-
ference requires additional constrains (to linearize the maximum value) and it usu-
ally introduces symmetry, both of which could impact the computation time. Sec-
ondly, we have been asked by Norwegian route planners to have the possibility of
limiting the absolute differences for some trains, which can then also be used to
limit their maximum value:

In some cases, a subset of trains is known to have already feasible schedules,
and these schedules should remain fixed. In other cases, the new schedules of some
trains should not deviate too much from the schedules of the given timetable. Then,
route planners have the possibility of imposing these preferences through the param-
eter �a.

In conclusion, the entire problem consists of minimizing
∑

a∈A,r∈Ra d
a
r
 , subject to

constraints (1)–(10).

3 � Solution Algorithm

The full MILP model grows quickly in size when the number of trains in the prob-
lem increases. The number of constraints of types (4), (6), and (7) is quadratic in
the number of trains (assuming that all trains run on the same line), and the num-
ber of constraints of type (5) can grow even quicker, when there are stations where
many trains can meet. More significantly, the number of binary variables needed
to express the constraints is also quadratic in the number of trains. This can make
the full problem challenging to solve to optimality. However, only relatively few of
these constraints are actually needed, because most of them forbid situations that
only occur when trains deviate significantly from the given timetable. Since the
objective precisely aims at producing a solution similar to the given timetable, these
constraints are unlikely to be relevant for the optimal solution.

We solve the problem using an iterative algorithm that exploits this fact and add
constraints in a lazy fashion, which has been shown to be very successful in reduc-
ing the computation time in the context of traffic management (see, for example,
[20] and [21]). To start, we set up a MILP that excludes all constraints of types
(4)–(7). Thus, each train is considered to be free running, except that train connec-
tions must be observed. Each iteration then consists of the following steps:

	 (i)	 Solve the current MILP.
	 (ii)	 If infeasible, the timetabling problem as a whole is infeasible. Stop.
	 (iii)	 Check whether the solution violates any constraint of type (4)–(7).
	 (iv)	 If not, the solution is feasible and optimal. Stop.

(10)da
r
≤ �a a ∈ A, r ∈ Ra.

1 3

Operations Research Forum (2023) 4:65	 Page 11 of 20  65

	 (v)	 Otherwise, augment the MILP with the violated constraints.
	 (vi)	 Repeat

Steps iii and v are described in more detail below for each class of constraint.

Precedence Rules  Constraints (4) serve to define the binary precedence and meeting
variables in terms of the scheduling variables. The binaries pab

r
 , pba

r
 and mab

r
 are not

present in the initial MILP, nor are the constraints, but by substituting the solution’s
values of ta

r
 into (4), we may discover what values pab

r
 , pba

r
 and mab

r
 must have for the

solution to be feasible. The found values of mab
r

 can then be substituted into (5) to
discover the train subsets S ∈ Sr for which that constraint is violated.

While the above procedure is correct, we use a more direct way to find the
violated precedence rules, based on a standard algorithm to identify maximal cliques
in interval graphs. For each resource r, we collect the arrival and departure times ta

r

and ta
r+1

 for all visiting trains and sort them in ascending order. Now, we can run
through the sorted sequence while maintaining a set S of present trains, which starts
empty. When we encounter an arrival ta

r
 , we add a to S, and when we encounter a

departure ta
r+1

 , we remove a from S. Every time we add a train to S, we ask the oracle
to check whether the current set of trains can be meeting in that resource at the same
time. Whenever we have an S for which the oracle returns a negative answer, we
have found a violated instance of (5).

When (5) is found to be violated for some S, we add it to the MILP. We also add
pab
r

 , pba
r

 , and mab
r

 and constraints (4) for all {a, b} ⊆ S where this has not yet been
done.

Safety Margin Rules  The procedure for safety margin rules is similar. We order
all arrivals and departures in resource r by time and run through them, checking
whether any are closer than allowed. If so, the corresponding equation from (6) or
(7) and associated binary are added to the MILP. When this involves pab

r
 , mab

r
 or pba

r
 ,

they must all be added, along with the corresponding set of constraints from (4).

4 � Modeling a Yearly Timetable

So far, we have described a timetabling problem that does not take into account
train periodicity, that is trains that have the same exact schedule on different days
of the year. A naive application of the method described above would result in the
unnecessary modeling of such trains, making the problem intractable. When looking
at a busy Norwegian railway line with about 100 trains a day (see Sect. 5.2 about
the real-life experiments), this would result in a problem with roughly 36,500 trains.
However, it turns out that only 160 of those trains have unique schedules. This is
very common. Neither do route planners have the capacity to create customized
timetables for each day of the year, nor is it desirable from a traveler’s point of view

	 Operations Research Forum (2023) 4:65

1 3

65  Page 12 of 20

to have different timetables from day to day and week to week. In this section, we
describe how to model periodic trains when solving for a yearly timetable.

As before, we consider a set of trains A and a timetable T. In addition, for each
train a, we are given a pattern Da ⊆ D = {1, 2, ..., 365} . This pattern indicates on
which days during the year the train runs. So instead of representing a single point
in time, the scheduling variable ta

r
 now represents the time at which train a enters

resource r on each day present in pattern Da.
The canonical interval in which time is expressed is the interval [0, �) , where

0 represents midnight at the start of some day in D, and � represents midnight at
the end of the same day. The timetable is expressed so that the target time at the
first station in any train’s route is always within the interval [0, �) . The subsequent
target times along a train’s route must be increasing, with no wraparound taking
place. Thus, if a train’s timetable starts late in the day and continues into the
next day, it will contain target times ≥ � . The scheduling variables ta

r
 likewise

normally take values in the interval [0, �) , but may exceed � when the train runs
across midnight. Additionally, ta

r
 is allowed to take negative values, which is rare,

but may happen if a train that is targeted to start soon after midnight receives an
earlier start time before midnight in the MILP solution.

The general structure of the MILP model and algorithm for the periodic case
are the same as of the non-periodic case described above, but we must now take
into account that time t + � on some day d ∈ D represents the same time as t on
day d + 1 . Thus, two trains may conflict if their times on the same resource differ
by approximately � . We must also consider the fact that not all trains run on all
days, and if two trains do not both run on any common day in D, then they do not
actually conflict when they have similar times on the same resource.

As a concrete example, consider the safety margin rule for time between
arrivals, expressed by the two first constraints of (7). We wish to check if this rule
is violated for trains a, b in resource r, and if so, add the appropriate variables
and constraints. The algorithm runs as follows:

1.	 First, check whether Da and Db have any common element. If Da ∩ Db = � , the
trains never run on the same day. Go to step 3.

2.	 Check if tb
r
< ta

r
+ 𝛼ab

r
 and ta

r
< tb

r
+ 𝛼ba

r
 . If so, the rule is violated. Add uab

r
 , uba

r
 and

the associated constraints from (7) to the MILP.
3.	 Next, check if for any d ∈ Da , we have d + 1 ∈ Db . If so, the trains may conflict

when a runs one day and b the next day. Otherwise, go to step 5.
4.	 Check if tb

r
+ 𝜂 < ta

r
+ 𝛼ab

r
 and ta

r
< tb

r
+ 𝜂 + 𝛼ba

r
 . If so, the rule is violated: Train

a starting on day d and train b starting on day d + 1 arrive too close. Add to the
MILP uab

r
 , uba

r
 and the associated constraints, modified with the offset � to take

into account the 1-day difference:

(11)

uab
r
+ uba

r
= 1

tb
r
− ta

r
≥ �ab

r
− � −M(1 − uab

r
)

ta
r
− tb

r
≥ �ba

r
+ � −M(1 − uba

r
)

1 3

Operations Research Forum (2023) 4:65	 Page 13 of 20  65

5.	 To handle violations when a runs the day after b, repeat steps 3 and 4 with a and
b swapped.

The modifications in handling the remaining rules are analogous: In the form
given in (4)–(8), the constraints apply only when the patterns of both trains share
a day. But also, a modified form, where tb

r
 is offset by � or −� , applies when for

some d ∈ Da , d + 1 ∈ Db or d − 1 ∈ Db , respectively. We do not describe the
remaining rules in detail, but note the following points:

•	 The connection rules (8) are all added to the initial LP. Only one form of each
is needed, whose offset ( −� , 0 or � ) is chosen as the one most similar to the
difference between the connected target times.

•	 When searching for violations of the precedence rules, we add three versions
of each time to the collection of times to be sorted, i.e., ta

r
− � , ta

r
 and ta

r
+ � for

an arrival time, and record the offset that belongs to each. Each train in the set
S of trains present has an associated offset, and the sets given to the oracle are
those subsets of S whose patters and offsets imply that they all meet on some
common day in D.

5 � Real‑Life Experiments

This section presents how the model described in this paper can be used in a real-
life setting and evaluates its performance. Section 5.1 presents the main features
of a graphical user interface that was developed in collaboration with Norwegian
route planners, which they can use to interact directly with the model and the
algorithm. Section 5.2 describes a set of representative test instances and the
algorithm’s performance on these instances.

5.1 � User Interface

For railway planning professionals to make productive use of the algorithm
described above, it is helpful to have a graphical user interface where they can
load and save timetables, display and manipulate timetables graphically, set vari-
ous parameters, start the algorithm, and monitor its progress.

We have developed such a user interface in collaboration with Norwegian route
planners. The software uses a server-client architecture, with a computation back-
end server running the algorithm and using Gurobi v10.0 [22] for solving the
MILP problems, and a graphical front-end running on Windows for manipulating
the timetable graphically. An overview of the graphical user interface is shown in
Fig. 1. Timetables are loaded and saved in the railML v2.2 file format.

When loading a timetable, that timetable is set as the reference timetable and
drawn in black in the graphical timetable. The timetable’s time range covers

	 Operations Research Forum (2023) 4:65

1 3

65  Page 14 of 20

midnight to midnight of a single day. Because some trains run across the date
limit (i.e., midnight), an additional 6 h before and after midnight are displayed
with a darker background. By default (for overview), all trains are drawn in this
same 1-day timetable, even those running on different days. The operation period
selection can be used to narrow down the displayed trains to days-of-week, date
ranges, or individual dates.

The user can make direct modifications of the reference timetable by clicking
the trains in the graphical timetable. Available operations include the following:

•	 Clone train: Creates a new train that has the same timetable as an existing train.
This is useful to add more trains for specific train services, and the new trains
can be slotted into new times using the move train operation described below.

•	 Move train: Offsets arrival and departure times of all stations by the same
amount. This is useful to provide the same train service at a different time of day.

•	 Stretch range: Increase or decrease the operational reserve (running times and/
or dwelling times) over a selected range. This is useful to make trains arrive/
depart earlier or later at specific stations while leaving other parts of its timetable
unmodified (see Fig. 2).

There are also further basic operations available, such as canceling (removing) a train,
changing the operational period, setting arrival/departure times, locking (“fixing") parts
of the reference timetable, and moving a range (shifting operational reserve between
before and after the range). All of these operations are performed by pointing and click-
ing with the mouse in the graphical timetable, letting the planning professionals work
more graphically compared to most commercially available timetabling software. The
idea is that a timetable is best manipulated and experimented with by working graphi-
cally and seeing the timetable as a whole, and then the tedious detail work required to
make the timetable feasible can largely be left to the algorithm.

Fig. 1   The user interface. From the top menu bar, timetables can be loaded and saved as files, and con-
nection to the back-end computation server is initiated. On the left, algorithm parameters are set, and
the solver’s log output can be monitored. On the right, the graphical timetable is displayed and can be
directly manipulated by the mouse

1 3

Operations Research Forum (2023) 4:65	 Page 15 of 20  65

When the desired modifications to the reference timetable have been made, conflicts
may have been introduced, and the user can start the algorithm to compute a new
conflict-free timetable that is as close as possible to the reference one. The algorithm
has two main modes: (1) Adjust timetable for all trains, which solves the problem
described in Section 2 above, and (2) Find slot, which will modify only the timetables
of currently selected trains. Both modes produce a feasible suggested timetable from the
potentially infeasible reference timetable. When a suggested timetable has been found
by the algorithm, it is drawn in red over the black reference timetable. The user may
inspect the suggestion and continue making modifications to the reference timetable or
the algorithm’s parameters. If the user is satisfied with the suggested timetable, they can
accept the suggestion, setting it as the new reference timetable.

5.2 � Performance Evaluation

To demonstrate that the algorithm runs fast enough for interactive use, we produced
a set of 40 reference timetables that represent incremental modifications of the kind
that Norwegian route planners were interested in performing. All the modifications
are based on the real 2021 full-year timetable for 160 trains on the Norwegian
Dovrebanen line from Eidsvoll (near Oslo) to Trondheim, a 485-km long line with
28 stations with passenger exchange. The original timetable contained detailed
input data from the real 2021 production timetable, including train schedules, train
types (class, length, etc.), passenger exchanges, minimum dwelling times, minimum

Fig. 2   Stretching running times can be used to make trains faster or slower by decreasing or increasing
the operational reserve proportionally over the selected range

	 Operations Research Forum (2023) 4:65

1 3

65  Page 16 of 20

running times, and rolling stock correspondences. The timetable (and corresponding
infrastructure model) also included the line from Oslo Central Station to Eidsvoll,
where Dovrebanen begins, because most trains running on Dovrebanen will arrive or
depart from Oslo. However, since the timetable’s scope was limited to Dovrebanen,
the parts of the trains between Oslo and Eidsvoll were considered fixed (locked) and
would not be modified as part of the Dovrebanen timetabling process (i.e., setting
�a = 0 ). This allows route planners to add and modify trains on Dovrebanen and
find feasible slots for them to travel also on the Oslo-Eidsvoll line, without changing
the existing Oslo-Eidsvoll timetable.

We have produced modifications of four kinds, with 10 instances of each kind:

•	 add-long: Cloning a long-distance train (running the whole 500 km) and
offsetting its times.

•	 add-short: Cloning a short-distance train (running locally near the terminal
station) and offsetting its times.

•	 stretch: Shortening or lengthening a section of a train timetable.
•	 move: Offsetting a train timetable.

The modified timetables were produced manually using the graphical operations
described in Section 5.1 above, based on the route planners’ examples of how they
modify timetables in practice. This means that the modified timetables are made to
be reasonable, in the sense that one does not, for example, make two trains with
very overlapping timetables, or a train that blocks a single-track section for an
unreasonable amount of time. But aside from more or less obviously irreparable
timetables, the modifications were made without regard for detailed feasibility, such
as trains meeting in the middle of a single-track section.

For each of the add-long and add-short instances, we calculated feasible
timetables using each of the two algorithm modes (adjust timetable and find slot).
For each of the stretch and move instances, only the adjust timetable mode was
used. The algorithm was run on a server machine with an Intel Xeon Gold 6240

Table 2   Running time results for incremental timetabling problem instances. The two leftmost columns
indicate the instance category, each containing 10 problem instances. The Avg. iter. column averages the
number of algorithm iterations. The Avg. confl. column averages the total number of conflict constraints
that were added to the MILP model. The Min. time, Avg. time, and Max. time columns describe the mini-
mum, average, and maximum running times, respectively, of the 10 cases in the category

Instance category Time (s)

Mod. type Alg. mode Avg. iter Avg. confl. Min. Avg. Max.

add-long Adjust timetable 7.7 103.6 16.0 20.6 34.5
add-long Find slot 11.1 148.4 19.3 27.4 36.9
add-short Adjust timetable 5.3 72.4 10.5 13.1 19.1
add-short Find slot 7.8 80.0 10.7 17.4 29.6
move Adjust timetable 6.9 83.0 10.6 16.1 25.4
stretch Adjust timetable 7.2 83.3 10.5 15.9 20.4

1 3

Operations Research Forum (2023) 4:65	 Page 17 of 20  65

processor and 20 GB of memory. Running time results are shown in Table 2. All
cases had the maximum time deviation from the reference timetable set to 60 min
for all trains (expect for the fixed trains mentioned above). The table shows that all
instances were solved in less than a minute, enabling a highly interactive workflow
for timetable modifications. Across these computational experiments, 73% of the
running time is spent on solving the MILP problem, while 11% is spent on the ora-
cle finding conflicts (i.e., checking for violations of (4)–(7)). Each call to the oracle
takes on average only 1.24 µs. When conflicts are found, most of the corresponding
constraints involve only two trains (99.2% of conflicts) and only a very few involve
larger number of trains: 3 trains (0.5% of conflicts) and 4 trains (0.2%). Only a hand-
ful of oracle calls resulted in conflicts between more than 4 trains.

The effect of setting the maximum time deviation to other values (than our
default 60 min) is shown in Fig. 3. When lowering the maximum time deviation,
the problems are solved somewhat faster, but the objective value (i.e., the sum of
deviations) increases. If the maximum time deviation is set too low, the problem
becomes infeasible. For example, this happens in the cases presented in Fig. 3 when
the maximum deviation is set to less than 8 min.

In our experience (and also in these experiments), we see that the running time of
our algorithm on real-life instances is influenced by the number of conflicts and the
number of iterations. The intuition is that denser timetables or busier infrastructures
will lead to a higher number of conflicts and iterations, but these relationships are

Fig. 3   Objective value and running time for a single problem instance (add-long case #1) as a func-
tion of the maximum deviation constraint. Top: using the adjust timetable algorithm mode. Bottom:
using the find slot algorithm mode. Crosses indicate infeasible values for the max deviation

	 Operations Research Forum (2023) 4:65

1 3

65  Page 18 of 20

not easily quantifiable. For example, if a timetable is almost feasible, the algorithm
is likely to terminate almost immediately regardless of the density timetable or the
available capacity in the infrastructure. However, we can report that the timetable
used in these experiments was chosen by Norwegian route planners as a case study
due to its length, high density, and little available capacity ([23]), all of which made
manual modifications very time consuming.

6 � Discussion and Future Work

For several years, one important objective of the Operations Research community
was to develop algorithms to produce “optimal” timetables. Unfortunately,
while some of these algorithms have been validated on realistic instances, their
usage in practical settings is still nonexistent, to the best of our knowledge. Two
main reasons can be identified. First, the actual complexity and size of real-life
instances can produce an unacceptable increase in computation time. Second,
practitioners struggle with providing a precise definition of optimality, and
timetables which are optimal according to an agreed objective function may
eventually not satisfy the route planners.

In this work, we take a step back, and rather than trying to replace the work
of a route planner, we just aid it. We consider the typical workflow of a route
planner in the context of short-term timetabling, which consists of iterative
adjustments of an existing timetable. Most of the time spent in this process by
route planners goes into regaining feasibility after modifications to the timetable
have been made. This is exactly what our model is designed to achieve. After
the route planner applies changes to a timetable and this becomes infeasible, our
model tries to adjust it to regain feasibility by making as little modifications as
possible. This method has the advantage of dealing with both issues discussed
above. First, the model remains simple enough that it can be applied to real-life
instances. Second, we do not need to deal with a vague definition of optimality,
leaving to the route planner the decision of how to make major changes in a
timetable while only focusing on the very fine adjustments.

Another important aspect of the proposed approach has to do with the human
factor. Route planners may not want a tool that tells them how an optimal
timetable looks like. Rather, they may prefer a tool that helps them build one.

The decision support tool presented in this paper has been tested and validated
over several weeks by the Norwegian route planners on a busy railway line in
Norway, who reacted positively to the possibility of using this tool in the future.
However, a few things are still missing before the tool is ready for introduction
into the daily routine of a route planner. As it was presented, the algorithm does
not support hourly periodicity (e.g., a train should leave a certain station at
minute hh:05 of every hour), and we do not take that into account when regaining
feasibility. This is important, because passengers expect most of the trains to be
periodic throughout the day (i.e., they depart at regular intervals). To fix this, we
plan to implement the concept of quasi-periodicity as described in [15], which

1 3

Operations Research Forum (2023) 4:65	 Page 19 of 20  65

would let us produce an almost perfectly periodic timetable that can be presented
to the public as a perfectly periodic timetable.

A more detailed oracle function that supports a precise microscopic modeling
of more complex resources is also under development. This requires abundant
care as to not ruin the assumption of our approach that the time spent on the oracle
should be negligible in respect to the time spent on the main problem itself. Indeed,
understanding the relationship between the running time of the algorithm and the
complexity/number of oracle calls is an interesting avenue for future work.

Another useful feature would be the ability to relax parts of the model. Certain
rules, e.g., the connection rules, are less important than the others and could be
modeled as part of the objective rather than as constraints. Other small things that
are missing from the current implementation include a more detailed interface to the
railML format, support for more precise routing in stations, support for pre-signals,
and some more, all of which we plan to include into the software in the following
years.

Author Contributions  All authors contributed equally to this work.

Funding  Open access funding provided by SINTEF The work has been funded by SINTEF (Norway) and
Bane NOR (Norway).

Data and Code Availability  The real-life experiments were conducted using real-life instances and
infrastructure data, which we do not have the permission to share. Similarly, the software is the results
of a commercial collaboration between SINTEF and Bane NOR, containing sensitive information that
cannot be shared freely.

Declarations 

Competing Interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Cacchiani V, Toth P (2012) Nominal and robust train timetabling problems. Eur J Oper Res
219(3):727–737

	 2.	 Cacchiani V, Toth P (2018) Robust train timetabling. Handbook of Optimization in the Railway
Industry, pp 93–115

	 3.	 Caimi G, Kroon L, Liebchen C (2017) Models for railway timetable optimization: applicability and
applications in practice. J Rail Transp Plan Manag 6(4):285–312

	 4.	 Galli L, Stiller S (2018) Modern challenges in timetabling. Handbook of Optimization in the Rail-
way Industry, pp. 117–140

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 Operations Research Forum (2023) 4:65

1 3

65  Page 20 of 20

	 5.	 Harrod SS (2012) A tutorial on fundamental model structures for railway timetable optimization.
Surv Oper Res Manag Sci 17(2):85–96

	 6.	 Kümmling M, Großmann P, Nachtigall K, Opitz J, Weiß R (2015) A state-of-the-art realization of
cyclic railway timetable computation. Public Transp 7(3):281–293

	 7.	 Lusby RM, Larsen J, Ehrgott M, Ryan D (2011) Railway track allocation: models and methods. OR
Spectr 33(4):843–883

	 8.	 Castillo E, Gallego I, Ureña JM, Coronado JM (2009) Timetabling optimization of a single railway
track line with sensitivity analysis. TOP 17(2):256–287

	 9.	 Forsgren M, Aronsson M, Kreuger P, Dahlberg H (2011) The Maraca: a tool for minimizing
resource conflicts in a non-periodic railway timetable. In: RailRome 2011

	10.	 Lamorgese L, Mannino C, Natvig E (2017) An exact micro-macro approach to cyclic and non-cyclic
train timetabling. Omega 72:59–70

	11.	 Liu SQ, Kozan E (2009) Scheduling trains as a blocking parallel-machine job shop scheduling prob-
lem. Comput Oper Res 36(10):2840–2852

	12.	 Yang L, Gao Z, Li K (2010) Passenger train scheduling on a single-track or partially double-track
railway with stochastic information. Eng Optim 42(11):1003–1022

	13.	 Caimi G, Laumanns M, Schüpbach K, Wörner S, Fuchsberger M (2011) The periodic service inten-
tion as a conceptual framework for generating timetables with partial periodicity. Transp Plan Tech-
nol 34(4):323–339

	14.	 Lamorgese L, Mannino C (2015) An exact decomposition approach for the real-time train dispatch-
ing problem. Oper Res 63(1):48–64

	15.	 Sartor G, Mannino C, Nygreen T, Bach L (2023) A MILP model for quasi-periodic strategic train
timetabling. Omega 116:102798

	16.	 de Fabris S, Longo G, Medeossi G, Pesenti R (2014) Automatic generation of railway timetables
based on a mesoscopic infrastructure model. J Rail Transp Plan Manag 4(1–2):2–13

	17.	 Mascis A, Pacciarelli D (2002) Job-shop scheduling with blocking and no-wait constraints. Eur J
Oper Res 143(3):498–517

	18.	 Leutwiler F, Corman F (2022) A logic-based benders decomposition for microscopic railway time-
table planning. Eur J Oper Res 303(2):525–540

	19.	 Mannino CNakkerud A (2023) Optimal train rescheduling in Oslo central station. Omega 116(C)
	20.	 Lamorgese L, Mannino C (2019) A noncompact formulation for job-shop scheduling problems in

traffic management. Oper Res 67(6):1586–1609
	21.	 Sartor G, Mannino C, Bach L (2019) Combinatorial learning in traffic management. In: Machine

Learning, Optimization, and Data Science: 5th International Conference, LOD 2019, Siena, Italy,
September 10–13, 2019, Proceedings 5, pp. 384–395. Springer

	22.	 Gurobi Optimization (2023) LLC: Gurobi Optimizer Reference Manual. https://​www.​gurobi.​com
	23.	 Bane NOR: Sprengt kapasitet på jernbanen fra Lysaker til Bodø. Accessed on July 4, 2023. https://​www.​

banen​or.​no/​nyhet​er-​og-​aktue​lt/​nyhet​er/​2023/​spren​gt-​kapas​itet-​pa-​jernb​anen-​fra-​lysak​er-​til-​bodo/

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://www.gurobi.com
https://www.banenor.no/nyheter-og-aktuelt/nyheter/2023/sprengt-kapasitet-pa-jernbanen-fra-lysaker-til-bodo/
https://www.banenor.no/nyheter-og-aktuelt/nyheter/2023/sprengt-kapasitet-pa-jernbanen-fra-lysaker-til-bodo/

	An Optimization-Based Decision Support Tool for Incremental Train Timetabling
	Abstract
	1 Introduction
	2 A MILP Formulation for Incremental Timetabling
	3 Solution Algorithm
	4 Modeling a Yearly Timetable
	5 Real-Life Experiments
	5.1 User Interface
	5.2 Performance Evaluation

	6 Discussion and Future Work
	References

