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Abstract. This paper gives PAC guarantees for “Bayesian” algorithms—algorithms that optimize risk mini-
mization expressions involving a prior probability and a likelihood for the training data. PAC-Bayesian algorithms
are motivated by a desire to provide an informative prior encoding information about the expected experimental
setting but still having PAC performance guarantees over all IID settings. The PAC-Bayesian theorems given here
apply to an arbitrary prior measure on an arbitrary concept space. These theorems provide an alternative to the
use of VC dimension in proving PAC bounds for parameterized concepts.
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1. Introduction

Much of modern learning theory can be divided into two seemingly separate areas—
Bayesian inference and PAC learning. Both areas study learning algorithms which take
as input training data and produce as output a concept or model which can then be tested on
test data. In both areas learning algorithms are associated with correctness theorems. PAC
correctness theorems provide performance guarantees which hold whenever the training and
test data are drawn independently from an identical distribution (IID). Bayesian correctness
theorems apply whenever the training and test data are generated according to the given
prior. For an experimental setting where training and test data are generated according to
some probability distribution other than the prior, no guarantee is proved.

The difference between the two areas can be viewed as a generality/performance tradeoff.
We define an “experimental setting” to be a probability distribution over training and test
data. A PAC performance guarantee applies to a broad class of experimental settings. A
Bayesian correctness theorem applies to only experimental settings consistent with the prior
used in the algorithm. However, in this restricted class of settings the Bayesian learning
algorithm can be optimal and will generally outperform PAC learning algorithms.

There has been considerable work in the area of structural risk minimization (SRM). Here
we interpret this broadly as describing any learning algorithm optimizing a tradeoff between
the “complexity”, “structure”, or “prior probability” of the concept or model learned and
the “goodness of fit”, “description length”, or “likelihood” of the training data. Under this
interpretation of SRM, Bayesian algorithms which select a concept of maximum posterior
probability (MAP algorithms) are viewed as a kind of SRM algorithm. Various approaches to
SRM are compared both theoretically and experimentally by Kearns, Mansour, Ng, and Ron
in (1995). They note that SRM algorithms for which one can prove PAC guarantees assign
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larger weight to concept complexity (prior probability) than do classical Bayesian MAP,
or equivalently, minimum description length (MDL) algorithms. They give experimental
evidence that Bayesian and MDL algorithms tend to over fit in experimental settings where
the Bayesian assumptions fail. Algorithms associated with PAC theorems guarantee a certain
performance on test data and so provide some theoretical insurance against over fitting. This
supports the idea of a performance/generality trade off. Bayesian algorithms are highly
effective when the Bayesian assumptions hold but can over fit when those assumptions fail.
PAC algorithms avoid over-fitting in all IID experimental settings but can not be tuned with
the kind of detailed information that an informative Bayesian prior provides. The PAC-
Bayesian theorems and algorithms described in this paper attempt to get the best of both
PAC and Bayesian approaches by combining the ability to be tuned with an informative
prior with PAC guarantees that hold in all IID experimental settings.

The PAC-Bayesian learning theorems presented here are related to a recent theorem by
Shawe-Taylor and Williamson (1997). They show that if one can find a ball of sufficient
volume in a parameterized concept space then the center of that ball has low error rate. The
theorems presented here, on the other hand, do not make any assumptions about the nature
of the concept space—the theorems apply to any prior measure on any space of concepts.
Here there is no assumption that the concept space has geometric structure—there is no
notion of “ball” or “center”, only the notion of a set of a certain measure. The error rate of
a set is taken to be the average error rate of its members. Ignoring the fact that the Shawe-
Taylor and Williamson result is about the center of a ball while the result here is about the
average over a set, the bounds given here are simpler and significantly tighter—they have
smaller constants and eliminate a factor of log(m).

2. Notational conventions

For a countable distributionP the notationP(x) denotes the probability of valuex under
the distributionP. We use “distributed variables”, i.e., variables implicitly associated with
probability distributions.1 The notationEx f (x) denotes the expectation off (x) when the
distributed variablex is selected according to its associated distribution.Px8(x) denotes
the probability of8(x) whenx is selected according to its distribution. When the intended
random variable (the intended measure space) is clear from context, the notationP(U )will
abbreviatePx(x ∈ U ). The notationPx∈U8(x) denotesPx(x ∈ U ∧ 8(x))/Px(x ∈ U ).
Similarly, Ex∈U f (x) = (Ex Ix∈U f (x))/Px(x ∈ U ) whereIx∈U is 1 if x ∈ U and 0 other-
wise. Forδ > 0, the notation∀δx8(x) meansPx8(x) ≥ 1− δ.

3. Two PAC-Bayesian theorems

This section presents the two main theorems of the paper. Each theorem is preceded by
a preliminary theorem that has appeared in similar forms in earlier papers. In each case
the preliminary theorem is a uniform convergence theorem quantifying over all concepts
in a countable concept class while the main theorem is a uniform convergence theorem
quantifying over all measurable subsets of an arbitrary measure space of concepts.
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The first preliminary theorem is a variant of a theorem given by Shawe-Taylor et al.
(1996). As Shawe-Taylor et al. note, the first theorem is closely related to a theorem due
to Linial, Mansour and Rivest (1991). Linial, Mansour and Rivest consider realizable PAC
concept learning where the concept space is countably infinite with infinite VC dimension.
In their analysis they make use of a particular assignment of weights to concepts where the
sum of the weights equals 1. Shawe-Taylor et al. realized that any weighting summing to 1
suffices for the analysis and reinterpreted this weighting as a kind of Bayesian prior.

Assume a given distributionP over a countably infinite class of concepts such that
P(c) > 0 for all conceptsc in the class. Also assume a fixed distribution over instances, a
given target conceptt in the class of concepts, and some way of associating each concept
with a set of instances (the set of instances accepted by that concept). We writex ∈ c to
indicate thatx is an instance of the conceptc. As usual, the error rateε(c) of conceptc is
defined for the given targett to be the probability over the choice ofx thatc disagrees with
t on x. We say that a concept is consistent with a set of instances if it agrees with the target
concept on those instances.

Preliminary Theorem 1. For any probability distribution P assigning nonzero proba-
bility to every concept in a countable concept class containing a target concept t, and any
probability distribution on instances, we have, for anyδ > 0, that with probability at least
1− δ over the selection of a sample of m instances, the following holds for all concepts c
agreeing with t on that sample.

ε(c) ≤
ln 1

P(c) + ln 1
δ

m

The proof is a straightforward union bound argument. One observes that the probability
that a conceptc with error rateε is consistent with a sample ofm instances is at most
e−εm. If ε is larger than that allowed by the above bound, the probability thatc is consistent
with the sample is no larger thanP(c)δ. The probability that somec violating the bound is
consistent with the sample is then bounded by

∑
c P(c)δ = δ.

This theorem suggests a simple PAC-Bayesian learning algorithm. In particular, given a
training sample one selects a conceptc that minimizes the given upper bound onε(c). This
will be a concept, among those consistent with the training data, that maximizesP(c), and
hence a concept with maximum posterior probability.

Consider an experimental setting where training and test data are generated by first
selecting a target concept at random using some particular distribution. For this setting
we can tune the performance of the algorithm associated with Preliminary Theorem 1 by
adjusting the prior used in the algorithm to be similar to the distribution in the experimental
setting. In this way we can give the algorithm knowledge of the expected experimental
setting while preserving a performance guarantee that holds in all IID settings.

The algorithm associated with Preliminary Theorem 1 selects a concept with maximum
posterior probability (MAP). From a Bayesian perspective, MAP algorithms have serious
drawbacks. Consider an experimental setting where the target concept is selected according
to the prior used in the algorithm. The optimal learning algorithm in this setting takes as
input a sampleSand outputs the concept that accepts an instancex if P(x ∈ t | S) ≥ 1

2. We
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can compute this posterior probability as follows whereU is the set of concepts consistent
with the sampleS.

P(x ∈ t | S) =
∑

c∈U : x∈c P(c)∑
c∈U P(c)

The optimal concept in this setting takes a weighted vote over all concepts consistent with
the sample where the weight of each concept is proportional to its prior probability.

We now give a “mixture” version of Preliminary Theorem 1. For the mixture theorem
we allow any (possibly uncountable) measure space of concepts. For a fixed target concept
t and any measurable subsetU of the concept space we defineε(U ) to beEc∈Uε(c). Given
a concept setU we can define a prediction process by selecting a conceptc from U (with
probability proportional to the prior) and then usingc to predict whetherx is an instance of
the target concept. The error rateε(U ) is the error rate of this stochastic prediction process.
We now have the following mixture theorem.

Theorem 1. For any measure on any concept space and any measure on a space of
instances we have, for δ > 0, that with probability at least1−δ over the choice of a sample
of m instances all measurable subsets U of the concepts such that every element of U is
consistent with the sample and with P(U ) > 0 satisfies the following.

ε(U ) ≤
ln 1

P(U ) + ln 1
δ
+ 2 lnm+ 1

m

Although Theorem 1 holds for arbitrary concept measures, it is useful to consider the
special case of enumerable concept classes. Note that ifU is a singleton set then Theorem 1
gives essentially the same bound as the corresponding preliminary theorem. However, The-
orem 1 is significantly stronger than the preliminary theorem. Theorem 1 makes a uniform
claim about all subsets of concepts.

Theorem 1 justifies a learning algorithm which selects a setU so as to minimize the
above upper bound on the error rate. The optimal setU is precisely the set of all concepts
consistent with the sample. In practice, however, the set of concepts consistent with the
sample may be difficult to find, or may be infinite. So the algorithm may only be able to
construct a subset of this optimal set. The above bound provides a performance guarantee
for any such subset. As with the preliminary theorem, the performance of Theorem 1 can be
tuned by setting the prior distribution on concepts to be similar to the distribution appearing
in the expected experimental setting.

Although Theorem 1 is much stronger than the preliminary theorem it follows almost
immediately from a general quantifier reversal principle.

Quantifier Reversal Lemma 1. Let x and y be random variables and letδ range over
real numbers. Let8(x, y, δ) be any measurable formula such that for any x and y we have
{δ ∈ (0, 1] :8(x, y, δ)} = (0, δmax] for someδmax. If

∀x ∀δ > 0∀δy8(x, y, δ)
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then for anyδ > 0 and0< β < 1 we have

∀δy∀α > 0∀αx8
(
x, y, (αβδ)1/(1−β)

)
The proof of the Quantifier Reversal Lemma is given in the next section. The Quantifier

Reversal Lemma immediately yields a proof of Theorem 1. LetC(S) be the set of concepts
that agree with the target concept on the sampleS. By a standard argument, ifε(c) >

ln 1
δ

m
thenPSc ∈ C(S) ≤ δ. This can be rewritten as follows.

PS

(
c ∈ C(S) ∧ ε(c) > ln 1

δ

m

)
≤ δ

∀c∀δ > 0∀δS
[

c ∈ C(S) impliesε(c) ≤ ln 1
δ

m

]

Now by the quantifier reversal lemma we get the following.

∀δS∀α > 0∀αc
[

c ∈ C(S) impliesε(c) ≤
ln 1

αβδ

(1− β)m

]

Now consider any sampleS satisfying this condition and any setU of concepts such that
each concept inU is consistent withS. We can now instantiateα with P(U )

m yielding the
following.

∀ P(U )
m c

[
c ∈ C(S) impliesε(c) ≤

ln 1
P(U ) + ln 1

δβ
+ ln m

(1− β)m

]

Let γ be the fraction ofU violating the above formula. Since the the number of concepts
violating this formula is no larger thanP(U )m , we haveγ ≤ 1

m . Furthermore, since the error
rate of all concepts is bounded by 1 we have the following.

ε(U ) ≤ (1− γ )
ln 1

P(U ) + ln 1
δβ
+ ln m

(1− β)m + γ

In the case where this bound is less than one it is maximized whenγ is as large as possible,
i.e., whenγ = 1

m . So we have the following.

ε(U ) ≤
(

1− 1

m

) ln 1
P(U ) + ln 1

δβ
+ ln m

(1− β)m + 1

m

The final result is obtained by takingβ = 1
m .

Next we consider the unrealizable case. Here we assume only that for each conceptc and
instancex there is a lossl (c, x) ∈ [0, 1]. Concept learning is a special case where we can
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takel (c, x) to be 0 ifc agrees with the target and 1 ifc disagrees with the target. But now we
do not assume the target concept is in the concept class. From a Bayesian perspective it is
more interesting to consider the case of bounded log loss where each conceptc represents a
probability distribution over instances. We letP(x | c) denote the probability of instancex
under the distribution defined byc. We must assume that there is some (very small) minimum
probabilityε > 0 such that for all conceptsc and instancesx we haveP(x | c) ≥ ε. We can
then takel (c, x) to be(− log P(x | c))/(− logε). This ensures thatl (c, x) ∈ [0, 1].

Again we have a preliminary theorem making a uniform statement over a countable set
of concepts and then a main theorem making an analogous statement for any subset of any
measure space of concepts. For the preliminary theorem we again assume a distributionP
over a countable concept space assigning nonzero probability to each concept. Given any
loss functionl such thatl (c, x) ∈ [0, 1] and a fixed distribution on instances we definel̄ (c)
to beExl (c, x). Given a sampleS we definel̂ (c, S) to be 1

m

∑
x∈S l (c, x). Note that in the

case of log loss we have thatl̂ (c, S) is a function ofP(S| c).

Preliminary Theorem 2. For any probability distribution P assigning nonzero proba-
bility to each concept in a countable concept class, any probability measure on instances,
and any loss function l mapping a concept and an instance to[0, 1], we have, for δ > 0,
that with probability at least1− δ over the selection of an IID sample S of m instances all
concepts c satisfy the following.

l̄ (c) ≤ l̂ (c, S)+
√

ln 1
P(c) + ln 1

δ

2m

Essentially the same result can be found in a variety of places, e.g., [1, 2, 3]. As with
Preliminary Theorem 1, the proof is a simple application of the union bound over the set of
concepts but using the Chernoff bound for the probability that a given concept violates the
theorem.

Preliminary Theorem 2 is associated with a learning algorithm which selects a concept
minimizing the stated upper bound on error rate. In the case of log loss we have thatl̂ (c, S)
is a function ofP(S| c). So the algorithm selects a conceptc minimizing a function ofP(c)
and P(S| c). This is analogous to a Bayesian learning algorithm that selects a concept of
maximum posterior probability (a MAP algorithm). As with a Bayesian MAP algorithm, the
performance can be tuned to a particular experimental setting by selecting an appropriate
prior.

Bayesian concept mixtures are generally superior to a single MAP concept. Theorem 2
is a mixture version of Preliminary Theorem 2. For any measurable setU of concepts we
definel̄ (U ) to beEc∈U l̄ (c). For any sampleSwe definel̂ (U, S) to beEc∈U l̂ (c, S).

Theorem 2. For any probability measure on a space of concepts, any probability measure
on a space of instances, and any measurable loss function l mapping a concept and an
instance to[0, 1], we have, for δ > 0, that with probability at least1− δ over the selection
of an IID sample S of m instances all measurable subsets U of the concept space with
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P(U ) > 0 satisfy the following.

l̄ (U ) ≤ l̂ (U, S)+
√

ln 1
P(U ) + ln 1

δ
+ 2 lnm

2m
+ 1

m

It is again instructive to consider Theorem 2 for the case of a countable concept class. If
U is a singleton set then the bound in Theorem 2 is essentially the same as the bound in
the corresponding preliminary theorem. However, Theorem 2 is much stronger—it makes
a uniform statement about all subsets of concepts.

Again the theorem can be associated with an algorithm which selects a setU minimizing
the given upper bound. In the case of log loss the procedure finds a setU minimizing a
function of P(U ) andP(S|U ). Hence it can be viewed as a kind of MAP procedure over
setsof concepts.

Theorem 2 is proved from the Quantifier Reversal Lemma in a manner similar to that of
Theorem 1. Using the Chernoff bound for an individual conceptc we get the following.

∀c∀δ > 0∀δSl̄ (c) ≤ l̂ (c, S)+
√

ln 1
δ

2m

The quantifier reversal lemma then implies the following.

∀δS∀α > 0∀αc l̄ (c) ≤ l̂ (c, S)+
√

ln 1
βδα

(1− β)2m

Again the result follows by settingβ = 1
m andα = P(U )

m .

4. The quantifier reversal lemma

First we prove a preliminary lemma. Letf be any measurable function from the space of
values ofy to the reals and letg be any measurable anti-monotone function from the open
interval(0, 1) to the reals, i.e.,g is such thatx ≥ z impliesg(x) ≤ g(z). We show that if
∀δ > 0∀δy f (y) ≥ δ thenEyg( f (y)) ≤ ∫ 1

0 g(z)dz. To see this first note that without loss
of generality we can assume that singleton sets have zero measure—we can always replace
the space of values ofy by a cross product of that space with the unit interval. If singleton
sets have zero measure then for any natural numbern > 0 it is possible to divide the values
of y into n disjoint setsU0, . . . ,Un−1 such that eachUi has measure 1/n and for alli > 0
we have thaty ∈ Ui implies f (y) ≥ i

n . So we have the following.

Eyg( f (y)) ≤ lim
n→∞

1

n

n−1∑
i=1

g

(
i

n

)
=
∫ 1

0
g(z) dz

We now prove the quantifier reversal lemma. Letx andy be any two random variables
and let8(x, y, δ) be any measurable formula whereδ ranges over real numbers where8
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satisfies the condition that for anyx andy we have{δ ∈ (0, 1] :8(x, y, δ)} = (0, δmax] for
someδmax. Define f (x, y) to be 0 if this set is empty and the unique value ofδmax otherwise.
For 0< δ ≤ 1 we have that8(x, y, δ) can be written asf (x, y) ≥ δ. Now assume that for
anyx andδ > 0 we have∀δy f (x, y) ≥ δ. For 0< β < 1 the preceding lemma implies the
following.

Ey[ f (x, y)]β−1 ≤
∫ 1

0
zβ−1dz= 1

β

Taking the expectation overx, reversing the, quantifiers and applying Markov’s inequality
gives the following.

EyEx[ f (x, y)]β−1 ≤ 1

β

∀δyEx[ f (x, y)]β−1 ≤ 1

βδ

∀δy∀α > 0∀αx [ f (x, y)]β−1 ≤ 1

αβδ

∀δy∀α > 0∀αx f (x, y) ≥ (αβδ)1/(1−β)

∀δy∀α > 0∀αx8(x, y, (αβδ)1/(1−β))

5. Discussion

The PAC-Bayesian theorems presented here justify learning algorithms which can take ad-
vantage of informative priors while preserving a PAC guarantee in all IID experimental
settings. While it seems that these theorems represent progress, there are some open ques-
tions. Theorem 4 can be viewed as optimizing a function ofP(U ) and P(S|U )—it is a
kind of MAP procedure oversetsof concepts. From a Bayesian perspective it would be
more satisfying to have some form of PAC-Bayesian posterior distribution over concepts.
Whether such a distribution can be formulated, and whether it can improve the performance
of the learning algorithm, remains open.
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Note

1. Distributed variables should be distinguished from random variables. A random variable is a function of a
distributed variable, e.g., ifx is a distributed variable thenf (x), g(x), andh(x) are different random variables
whose values are determined by the value ofx. Traditionally f (x), g(x) andh(x) are written asf , g, andh.
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