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Abstract. The design of a robust nonlinear position and force controller for a flexible joints robot
manipulator interacting with a rigid environment is presented. The controller is designed using the
concept of feedback linearization, sliding mode techniques, and LQE estimation methodologies. It
is shown that the nonlinear robot manipulator model is feedback linearizable. A robust performance
of the proposed control approach is achieved by accounting for the system parameters uncertainties
in the derivation of the nonlinear control law. An upper bound of the error introduced by parametric
uncertainties in the system is computed. Then, the feedback linearizing control law is modified by
adding a switching action to compensate the errors and to guarantee the achievement of the desired
tracking performance. The relationship between the minimum achievable boundary layer thickness
and the parametric uncertainties is derived. The proposed controller is tested using an experimental
flexible joints robot manipulator, and the results demonstrate its potential benefits in reducing the
number of sensors required and the complexity of the design. This is achieved by eliminating the
need for nonlinear observers. A robust performance is obtained with minimum control effort by
taking into account the effect of system parameter uncertainties and measurement noise.
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1. Introduction

In many robot manipulator systems, the joint flexibility, introduced by the drive
systems, such as shafts, belts, and chains, cannot be neglected [1, 2]. Poorly damped
oscillations may take place whenever the joint resonant frequencies are excited
which are usually located within the control bandwidth. Joint’s flexibility may
degrade the controller performance and may cause unstable behavior. Therefore,
joint’s flexibility has to be considered in the control design in order to achieve the
desired system performance.
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228 A. T. MASSOUD ET AL.

In several industrial applications, the robot end effector comes into contact with
the environment. Therefore, there is a need to control both the position and force
at the end effector in order to execute contact tasks properly. This problem has
been extensively studied for rigid robot manipulators. When the robot motion is
constrained by perfectly rigid surfaces, there are kinematic constraints on the mo-
tion of the end effector. McClamroch and Wang [3], Mills and Goldenberg [4],
and Yoshikawa [5, 6] considered these constraints in the dynamic model and in
the derivation of the control law. However, in the force control approaches by
Khatib [7] and DeLuca et al. [8], the constraints were not considered for decou-
pling, whereas the dynamic interactions were.

From this brief discussion, it can be seen that there is a need to consider joint
flexibility in modelling and control [1, 2] and to control both position and force
of the robot end point. Also, it is important to note that the joint flexibility has to
be accounted for, more in the case of force control than for pure position control
[9, 10]. However, the problem of controlling both position and force of flexible
joints robot manipulators did not receive much attention by the control and robot
theorists and few solutions have been reported in the literature. Krishnan and Mc-
Clamroch [11] applied a linear quadratic controller for the linearized constrained
model. Mills [12] applied the idea of a composite control to a singular perturbed
model. Spong [13] utilized the concept of integral manifold and corrective control
of singularly perturbed nonlinear systems to extend the force control of rigid robots
to the case of flexible joints. Jankowski and ElMaraghy [14] used the general-
ized coordinate portioning technique for coordinate reduction which ensures exact
feedback linearization for hybrid position and force control.

Researchers proposed some adaptive control strategies for position control of
flexible joint robot manipulators. Ghorbel et al. [15] and Hung [16] applied the
adaptive control algorithm developed by Slotine and Li [17] to flexible joint ro-
bots. They simply modified the control law derived for rigid robots by adding a
corrective term to damp out the elastic oscillations at the joints. The results were
applied to an experimental single-link flexible-joint robot. The variable structure
control approach was adopted by Sira-Ramiraz et al. [18] in the design of the outer
loop control law for the linearized system. The system was first linearized by the
nonlinear feedback and coordinate transformation. The availability of the state vec-
tor of the linearized model is assumed when designing the robust controller. Mrad
and Ahmad [19] derived an adaptive control law based on an energy-motivated
Lyapunov function and a linear parametrization model of the links system only.
Recently, ElMaraghy and Massoud [20] presented a model-based adaptive algo-
rithms using inverse dynamics techniques and dynamic decoupling. These algo-
rithms were implemented using an experimental manipulator and very promising
results were obtained.

The previously discussed control approaches for force and position control of
flexible-joint robots suffer from some limitations. First, none of these approaches
was experimentally tested except the one presented in [20]. Second, most of the
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controller design use the singular perturbation techniques. This method is computa-
tionally expensive, and since it is interactive, it makes it impossible to symbolically
formulate the equations of motion [14]. Third, the problem of system parameters
uncertainties was not considered in most of the existing controllers. Since such
parameters cannot be known exactly, then any realistic control design should ac-
count for these uncertainties. Fourth, the need for measuring the full transformed
state vector is a problem common to all feedback linearization or inverse dynamics
based-controllers. Some of these control designs assume that all states are avail-
able. However, this assumption may not hold true and, in general, an observer is
needed to provide an estimate of the state. Existing observer designs range from
sliding mode to nonlinear adaptive observers. However, the design of nonlinear ob-
servers is generally very complex and defeats the whole purpose of using feedback
linearization, since the control design problem becomes nonlinear. In addition,
most of the existing controller designs assume only noise-free measurements. This
is often not true and, hence, noise must be taken into account.

The objective of this paper is to present a robust nonlinear position tracking and
force controller for a two-link flexible joint robot manipulator. The controller is de-
signed using the concept of exact feedback linearization [21], sliding mode control
techniques, and linear optimal estimation techniques (LQE) [22]. The proposed
control approach takes into consideration the joint flexibility, the system parame-
ter uncertainties and measurement noise in order to achieve robust performance
and robust stability. In addition, the number of required measurement sensors is
reduced. The proposed control approach requires measurements of only the joint
angular positions and velocities.

This paper is organized as follows: Section 2 presents the robot manipulator
model, Section 3 contains the derivation of the linearizing state transformation
using the concept of feedback linearization. Section 4 presents the constraint frame
and force decoupling, Section 5 contains the design of the robust sliding mode
controller, Section 6 discusses the experimental results, and Section 7 contains
conclusions and plans for the future.

2. Dynamic Model of a Two-Link Flexible Joint Robot Manipulator

Consider the two-link flexible joint robot manipulator of Figure 1. The equations
of motion of a two-degree of freedom flexible joint manipulator in the presence of
contact forces, are given by (see [23])

D(q)q̈ + C(q, q̇)+ Blq̇ −K(qm − q) = −J TF, (1)

Imq̈m + Bmq̇m +K(qm − q) = τ, (2)

whereq is the link angular vector,qm is the motor angular position vector,D(·) is
the manipulator inertia matrix,C(·) is the Coriolis and centrifugal force vector,
K is the joint stiffness matrix,Im is the rotor inertia matrix,Bm is the motor
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viscous friction matrix,Bl is the joints viscous friction matrix,J is the manipulator
Jacobian,F is the force vector at the end effector expressed in the reference frame,
andτ is the control torque input. In (1)–(2), the expressions of the different system
variables and parameters are given by

q = [q1 q2]T, qm = [qm1 qm2]T,
(3)

F = [Fx Fy]T, τ = [τ1 τ2]T,
C(q, q̇) = d3q̇2 sinq2[−(2q̇1 + q̇2)] q̇2]T, (4)

D(q) =
[
d1+ 2d2 cosq2 d3+ d2 cosq2

d3+ d2 cosq2 d3

]
, (5)

J (q) =
[−l1 sinq1− l2 sin(q1 + q2) −l2 sin(q1+ q2)

l1 cosq1 + l2 cos(q1+ q2) l2 cos(q1+ q2)

]
, (6)

K =
[
k1 0
0 k2

]
, Bl =

[
bl1 0
0 bl2

]
,

(7)

Bm =
[
bm1 0
0 bm2

]
, Im =

[
Im1 0
0 Im2

]
,

d1 = I1+ I2+m1a
2
1 +m2

(
l21 + a2

2

)+mr2l21,
d2 = m2l1a2, (8)

d3 = I2+m2a
2
2.

In Equation (8),Ii, mi, ai , andli are, respectively, the moment of inertia about an
axis parallel to the axis of rotation passing through the center of mass, the mass,
the distance from the center of rotation to the center of mass, and the length of
link i, i = 1,2, whilemr2 is the mass of the second motor’s rotor. Computing the
determinant of the manipulator inertia matrixD(·) yields

γ (q2) 4− det(D(q))

>
(
I2+m2a

2
2

)(
I1+m1a

2
1 +mr2l21

)+ I2m2l
2
1 > 0, ∀q2 ∈ R. (9)

Using Equation (9), the system dynamics (1)–(2) can be rewritten in a state space
form as

Ẏ = A1(Y )+
m∑
i=1

biui +A2(Y )F, m = 2, (10)

whereA1(Y ), b1, b2, andA2(Y ) are defined accordingly whereas the state vector
Y and the control inputsu1 andu2 are given by

Y = [y1 . . . y8]T = [q1 q2 qm1 q̇1 q̇2 q̇m1 q̇m2]T,
u1 = τ1, u2 = τ2.

(11)
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Note that in this paper, we consider only such planar motions where gravity force
does not occur. The model (10)–(11) is a comprehensive model that has the advan-
tage of capturing the essential system dynamics while reducing the complexity of
the controller design. Next, the concept of MIMO feedback linearization is used to
design a nonlinear position/force controller for the nonlinear system (10).

3. Application of the Concept of FL To The Two-Link Flexible Joint Robot
Manipulator System

In the design of feedback control laws for complex nonlinear systems, the concept
of feedback linearization has emerged as a promising technique. The problem of
feedback linearization can be formulated as follows: Given a nonlinear system of
the form of (10) with a stable equilibrium pointX0, find if possible, aC∞-one-to-
one transformationT (X) and an appropriate control law, both defined in an open
and dense setWY , such that the dynamics of the transformed system has the form
of

Ż = 3Z + Bν, (12)

where3 andB are constant matrices with the pair(3,B) being controllable.
Necessary and sufficient conditions for the existence of such a transformation are
stated by the following theorem.

THEOREM 1 ([21]). The nonlinear system(10),with the assumptionrank{[b1 . . .

bm]} = m, is feedback linearizable in an open and dense setWY of Rn if, and only
if, the following conditions are satisfied:
(1) For eachi = 0 . . . n − 1, the distributionGi has constant dimension inWY ,

whereGi is defined as

Gi = span
{
adkAbj , 06 k 6 i, 16 j 6 m

}
, (13)

where the Lie brackets ofbj with respect toA, denoted by adkAbj , are defined
as

adkAbj =
[
A,adk−1

A bj
]

= ∂(adk−1
A bj )

∂Y
A− ∂a

∂Y
adk−1

A bj , k > 1, ad0
Abj = bj , (14)

where∂A/∂Y and∂bj /∂Y denote the Jacobian ofA(·) andbj (·), respectively.
(2) The distributionGn−1 has dimensionn in WY .
(3) For eachi = 0, . . . , n− 2, the distributionGi is involutive inWY .

To transform the system (10) into the form of (12), we start by verifying the
three conditions of Theorem 1. Computing the vectorsadkAbj , k = 1, . . . ,3, j =
1,2, and their Lie brackets, it can be shown that the system (10) satisfies all three
conditions of Theorem 1 in the setWY = R8.
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Also, by using the Frobenius Theorem [21] it is shown, that the transforma-
tion T is given by

T = [T1 . . . T8]T =
[
λ1 λ2 L

1
Aλ1 L

1
Aλ2 L

2
Aλ1 L

2
Aλ2 L

3
Aλ1 L

3
Aλ2

]T
, (15)

where the scalar functionsλ1(Y ) and λ2(Y ) satisfy the following set of partial
differential equations:

∂λl

∂ym
= 0, 16 l 6 2, 36 m 6 8, (16)

d3
∂λl

∂y1
− (d3+ d2 cosy2)

∂λl

∂y2
6= 0, 16 l 6 2, (17)

(d3+ d2 cosy2)
∂λl

∂y1
− (d1+ 2d2 cosy2)

∂λl

∂y2
6= 0, 16 l 6 2. (18)

Choosingλ1(Y ) = y1 andλ2(Y ) = y2, it can be easily verified that Equations (16)–
(18) hold, which yields the following linearizing state transformation:

T (Y ) = [q1 q2 q̇1 q̇2 q̈1 q̈2
...
q1

...
q2
]T
. (19)

Note that the transformation, given in (19), is not a unique solution of the set
of Equations (16)–(18). However, the chosen solution has the advantage that the
new state space coordinates consist of the joint angles, angular speeds, angular
accelerations, and angular jerks, which are physical system parameters that can be
measured or computed. Therefore, the output equation of the transformed system
dynamics will be linear, which facilitates the control design phase.

The dynamics of the transformed system are computed by solving Equation (1)
for the motor position vector, differentiating twice and substituting into Equa-
tion (2), which yields

M(q)
d4q

dt4
+ hp + hf +N(q)J TF̈ = τ = u. (20)

HereM(q) is a new inertia matrix,hp is a vector the elements of which are non-
linear functions ofq, q̇, q̈,

...
q , hf is a vector the elements of which are nonlinear

functions ofq, q̇, q̈, F, Ḟ , andN(q) is a new matrix the elements of which are
functions of the inertial parameters of the links and motors and joint stiffness. The
system given by Equation (20) can be written in a state space form as

ẋ = f (x)+ g(x̄1
)
τ, x = [x̄1 x̄2 x̄3 x̄4

]T = [q q̇ q̈ ...
q
]T
, (21)

whereq = [q1 q2]T. This model will be used in the control development presented
in Section 5.
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4. Constraint Frame and Forces for Decoupling

When dealing with rigid robots, it is sufficient to transform the link angular ac-
celeration and the contact force into the constraint frame in order to obtain the
decoupled systems. However, for flexible joints robot system, the fourth derivative
of the link angular position vector and the second derivative of the contact forces
must be transformed into the constraint frame in order to obtain the decoupled
systems. In this section, the required transformations are derived. Note that in this
paper, only planar constraint surfaces are considered.

Assume that there arem (m 6 2) independent constraint frictionless surfaces
which are holonomic and given by an algebraic equation, in the reference frame,
in the form of

φi(X) = 0, i = 1, . . . ,m, (22)

whereY is the end-effector position vector in the reference frame. Differentiating
the constraint equation with respect to time yields the equation describing the end-
effector velocity in the reference frame, yields

Rf Ẋ = 0, (23)

where the matrixRf is defined as

Rf = [e6−m+1 . . . e6]T, e6−m+i = dφi(X)/dX

‖dφi(X)/dX‖ . (24)

Note thate6−m is a unit vector normal to the constraint surface (22). Assuming that
there exists a set of vectors(e1, . . . , e6−m) such thatei, i = 1, . . . ,6− m, are of
unit length, differentiable functions ofX, mutually independent, and independent
of (e6−m+1, . . . , e6), then the following two rotational matrices can be defined:

Rp = [e1 . . . e6−m]T, R =
[
Rp
Rf

]
= [e1 . . . e6]T. (25)

The matrixRf represents the coordinate axes normal to the constraint surfaces,
while the matrixRp represents the coordinate axes that complementRf . The co-
ordinate system with its origin at the current end-effector positionX and with the
unit bases(e1, . . . , e6−m) defines the constraint frame. Note that the matricesRf
andRp are orthogonal. The rotation matrixR is the velocity transformation matrix
from the reference frame into the constraint frame. This transformation and its
derivatives are given by

Ẋt = RẊ, Ẍt = RẌ + ṘẊ,
...
Xt =

...
R + 2ṘẌ + R̈Ẋ,

(26)
d4Xt

dt4
= Rd4X

dt4
+ 3

(
R̈Ẍ + Ṙ...

X
)+ ...

RẊ,
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whereXt is the end effector position in the constraint frame. The expression of the
link position 4th derivative in the constraint frame is computed using the forward
kinematic transformations, which yields

d4q

dt4
= J−1

[
R−1

(
d4Xt

dt4
− ax

)
− aq

]
, (27)

whereaq andax are given by

aq = 3
(
J̇

...
q + J̈ q̈)+ ...

J q̇, ax = 3
(
Ṙ

...
X + R̈Ẍ)+ ...

RẊ. (28)

It should be noted that

d4Xt

dt4
=
[

d4P

dt4
0

]T

, (29)

whereP is the end-effector position vector tangential to the constraint surfaces.
This relationship states that the end-effector velocity and its higher order deriv-
atives normal to the constraint surfaces are zero because the end-effector cannot
penetrate the planar constraining surfaces considered in this paper.

The end-effector velocityẊ can be expressed in the reference frame as a
6-dimensional vectorV consisting of a transnational and a rotational along each
axis as follows:

V = TvẊ, (30)

whereTv is a 6× 6 transformation matrix. It can be shown that the transformation
of the contact force and its derivatives, from the reference frame to the constraint
frame, are given by

F = (Rf T −1
v )Tff 4− Lff ,

Ḟ = Lḟf + Lff ,
F̈ = Lf̈f + 2L̇ḟf + L̈ff4Lf̈f + af ,

(31)

whereff represents the contact force vectorF in terms of the unit vectorL which
is normal to the constraint surfaces. Equation (26) gives the expression of the con-
tact force vectorF due to the vector forceff , at the tip of the end-effector, in the
reference frame. The contact forceff is normal to the constraint surfaces and it is
the negative equivalent of the Lagrangian multiplierκ, i.e.,ff = −κ. It should be
noted that Equation (26) does not prescribe the manner in which the force vector
and its first two derivatives are obtained, but enables the transformation of these
vectors from the constraint frame into the reference frame. The contact forceff
can be computed using the constraint and the rigid dynamics of the robot, which
yields

ff =
(
Rf JD

−1J TL
∣∣−1[

Rf JD
−1h1+ Rf J̇ q̇ + Ṙf J q̇

])
, (32)
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where the functionh1(·) yields from the substitution of (31) into (20) and using (1)
and (2).

5. Robust Sliding Mode Controller Design

5.1. BASIC CONCEPT

Sliding mode control methodology has emerged as a promising technique for de-
signing robust controllers for a class of nonlinear systems. This technique is based
on choosing a suitable surface in the state space, typically a linear hypersurface
called switching surface, and switching the control input on this surface. The con-
trol input is then chosen such that the trajectories near the sliding surface are
guaranteed to be directed towards the surface. Once the system is trapped on the
surface, the closed loop dynamics are completely governed by the equations that
define the surface. Therefore, since the parameters defining the surface are chosen
by the designer, the closed-loop dynamics of the system will be independent of the
perturbations in the system parameters and robustness will be achieved [24]. The
design of the sliding mode controller consists of three steps. First, sliding surfaces
are defined for the position and force subsystems. Then, a nominal control law is
designed for the nominal model, without including the effect of system parameter
variations. Finally, the nominal control law is modified by adding a switching term
based on the sign of the error in the position and force subsystems and bounds of
the disturbance vector.

5.2. CONTROLLER DESIGN

As mentioned previously, the sliding surfaces have to be defined. Letspi andsf i
be the sliding surfaces for the position and force tracking errors, respectively,
expressed in the constraint frame as

spi =
(

d

dt
+ κpi

)2 ∫ t

0
zpi dr, i = 1, . . . ,6−m, (33)

sf i =
(

d

dt
+ κf i

)2 ∫ t

0
zf i dr, i = 1, . . . ,6−m+ 1, . . . ,6, (34)

wherezpi and zf i are theith end-effector position and force tracking errors in
the constraint frame andκpi andκf i are positive scalar constants. The appropriate
control law, with which the desired performance is achieved, has to satisfy the
following sliding condition:

ṡpi = 0, i = 1, . . . ,6−m, (35)

ṡf i = 0, i = 6−m+ 1, . . . ,6. (36)

Conditions (35) and (36) guarantee that the position and force tracking errors con-
verge to zero. Expanding Equations (35), (36), using Equations (33) and (34), we
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have that

ṡpi = d4zpi

dt4
+ 4κpi

d3zpi

dt3
+ 6κ2

pi

d2zpi

dt2
+

+4κ3
pi

dzpi
dt
+ κ4

pizpi = 0, i = 1, . . . ,6−m, (37)

ṡf i = d2zf i

dt2
+ 2κf i

dzf i
dt
+ κ2

f izf l = 0, i = 6−m+ 1, . . . ,6. (38)

Define the vectorsSp, Sf , andS as follows:

Sp = [sp1 . . . sp6−m]T, Sf = [sf 6−m+1 . . . sf6]T, S = [ST
p S

T
f ]T. (39)

The nonlinear robot model (20)–(21) can be rewritten to augment the position and
force in the constraint frame as

τ = u

= H(q)


d4P

dt4

d2f

dt2

+ hp(q, q̇, q̈, q)+ hf (q, q̇, q̈, F, Ḟ )+
+MJ−1

(
R−1ax − aq

)+NJ Taf , (40)

whereP is (6−m)×1 end-effector position vector tangential to the constraint sur-
face,R is the velocity transformation from the reference frame into the constraint
frame, defined in the Section 4,H(q) is a matrix whose first(6−m) columns are
the first(6− m) columns of the matrixM(RJ)−1 and the remaining columns are
those of the matrixNJ TL. By solving the sliding conditions (37) and (38) for the
fourth position derivative and the second force derivative and substituting into (40)
we get the control law:

τ = u

= H(q)

 d4Pd

dt4
+ 4κp

d3zp

dt3
+ 6κ2

p

d2zp

dt2
+ 4κ3

p

dzp
dt
+ κ4

pzp

f̈d + 2κf żf + κ2
f zf

+
+hp(·)+ hf (·)+MJ−1(R−1ax − aq

)+NJ Taf (41)

4− H(q)0(·)+ hp(·)+ hf (·)+MJ−1
(
R−1ax − aq

)+ NJ Taf ,

wherePd andfd are the desired end-effector position vector tangential to the con-
strained frame and the desired contact forces, respectively. The control law (41)
satisfies the sliding conditions (37) and (38), when the system parameters are ex-
actly known and, hence, the desired system performance can be achieved. However,
in the presence of parameter uncertainties, the control law (41) can no longer
guarantee the achievement of the desired position nor the force tracking perfor-
mance. In such case, the control torque can best be computed using an estimate or
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approximation of the robot parameters, i.e., Equation (41) is modified as:

τ̂ = Ĥ (q)

 d4Pd

dt4
+ 4κp

d3ẑp

dt3
+ 6κ2

p

d2ẑp

dt2
+ 4κ3

p

dẑp
dt
+ κ4

pẑp

f̈d + 2κf żf + κ2
f zf

+
+ ĥp(·)+ ĥf (·)+ M̂J−1(R−1âx − aq

)+ N̂J Tâf (42)

4− Ĥ (q)0̂(·)+ ĥp(·)+ ĥf (·)+ M̂J−1(R−1âx − aq
)+ N̂J Tâf .

The control law (42) is similar to the dynamic hybrid control law except that the
former uses the estimated robot parameters. In order to satisfy the sliding condi-
tions (35), (36), despite the presence of uncertainties in the robot parameters, the
control law (41) is modified by adding a discontinuous term across each of the
surfacesSp = 0 andSf = 0. Thus, the robust control law is given by:

τ = u = τ̂ − Ĥ (q)Kdsgn(S), (43)

whereτ̂ is given in (42),S is defined in (54),Kd is the switching gain matrix which
is a positive definite diagonal matrix, and sgn(S) is a vector defined as:

sgn(S) = [sgn(Sp) sgn(Sf )]T
= [

sgn(sp1) . . . sgn(sp6−m) sgn(sf 6−m+1) . . . sgn(sf 6)
]T
, (44)

where sgn is the sign function defined by:

sgn(x) =
{+1 if x > 0,
−1 if x < 0.

(45)

The design of the switching gain matrixKd which ensures the availability of the
sign vector in (43) is presented next. The control law (43) can be rearranged in a
way that enables computing an upper bound for the disturbance as follows:

τ = Ĥ (q)0(·)+ ĝ(q, q̇, q̈, ...q , F, Ḟ )+ Ĥ (q)δ(...zp, z̈p, żf , .̂..zp, ˆ̈zp, ˆ̇zf )−
− Ĥ (q)Kdsgn(S), (46)

where0(·) is defined in (45),̇zf , z̈p,
...
zp are the estimate oḟzf , z̈p,

...
zp which

will be discussed in the following section, and the vector functionsĝ(·) andδ(·)
are given by:

ĝ
(
q, q̇,

...
q , F, Ḟ

) = ĥp
(
q, q̇, q̈,

...
q
)+ ĥf (q, q̇, q̈, F, Ḟ )+

+ M̂J−1
[
R−1âx − qq

]+ N̂J Tâf , (47)

δ
(...
zp, z̈p,

.̂..
zp, ˆ̈zp, żf , ˆ̇zf

) = [ 4κp(
...
zp − .̂..

zp)+ 6κ2
p(z̈p − ˆ̈zp)

2κf (żf − ˆ̇zf )

]
. (48)

Define the matrices̃H = H − Ĥ and1 = H−1H̃ . Then the matrixĤ can be
expressed aŝH = H(1+ I ). The sliding conditions (35), (36) are modified from
plane surfaces to hyperplanes with some thickness as:

|S| 6 µ, µ4[µp µf ]T4[µp1 . . . µpm−6 µf 6−m+1 . . . µf 6]T, (49)
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where theµi ’s are strictly positive constants. When the control law (46) is applied,
the following error dynamics results:

H(q)Ṡ = H(q)π(t)−H(D + I )Kdsgn(S), (50)

where the functionπ(t) is a disturbance term given by

π(t) = −(H−1g̃
(
q, q̇, q̈,

...
q , F, Ḟ

)+ (D + I )δ(...zp, z̈p, .̂..zp, ˆ̈zp)+D0(·)) (51)

and the function̂0(·) is defined in (42). It can be seen that if the gain matrixKd
satisfies the condition

(D + I )Kd > µ+ π(t), (52)

then the sliding conditions, given by (49), are satisfied, which yields

1

2

d

dt
S2 6 −µ|S|. (53)

Condition (53) states that the squared distance, measured byS2, decreases along
the trajectories. Thus, this condition constrains the trajectories to point toward the
surfaceS.

In order to determine the upper bound of the disturbanceπ(t) and investigate
the knowledge of the sign of the sliding surfaces, the estimate ofx, wherex is
defined in (21), must be computed first.

5.3. ESTIMATION OF THE TRANSFORMED STATE VECTORx

In this section, a simple solution to the problem of estimating the transformed
state vectorx is presented. First, rewrite the system (20)–(21), in thex-state space
coordinate, as:

ẋ =


0 I2×2 0 0
0 0 I2×2 0
0 0 0 I2×2

0 0 0 0

 x +


0
0
0
I2×2

 v 4− ALx + BLv, (54)

where the expression of the control inputv satisfies

v = M−1(q)τ −M−1(q)
[
hp(·)+ hf (·)+ N(q)J TF̈

] 4− α(x)u+ β(x). (55)

The new state vectorx consists of the joint anglesq, angular velocitiesq̇,
angular accelerations̈q, and angular jerks

...
q . In general, sensors that provide mea-

surements of the joint angles and angular speeds are commonly available in most
robot manipulator systems. However, sensors which provide accurate measure-
ments of the accelerations are not usually utilized due to their high cost. In addition,
the jerks can not be measured or computed with high accuracy. In order to reduce
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the cost of the proposed nonlinear controller, compared with the cost of exist-
ing ones, it is assumed that only measurements of the joint angles and angular
speeds are available. Therefore, the outputs of the original system and the linear
transformed system are given by

YL =
[
I2×2 02×2 02×2 02×2

02×2 I2×2 02×2 02×2

]
x + ηs4CLY + ηs, (56)

whereηs represents the measurement noise which is assumed to be a Gaussian
process with zero mean and covarianceRs.

Existing solutions for estimating the transformed state vector use measurements
of the full original nonlinear state vectorY along with the analytical expression of
linearizing transformation. This approach is effective when the measurements are
noise free. However, in the presence of measurement noise, which is often the
case, such a solution may lead to inaccurate estimates. One way to modify this
solution, in the case of noisy measurements, is to determine the conditional prob-
ability density function ofY given the measurement vectorYL, Py(Y/YL). Then,
the conditional probability density function of the transformed state can be com-
puted using the analytical expression of the linearizing transformation along with
Py(Y/YL). This approach requires solving Kushner Equation [25] forPy(Y/YL). In
general, an analytical solution is very difficult to find for such equation. However,
the problem of computing the estimate ofx can be solved in a simpler way by
taking advantage of the linear form of the transformed system dynamics (54)–(56).
Given the measurements vectorYL and the control inputv, computed using (55),
a linear optimal observer (Kalman filter) can be designed to generate an estimate
of the transformed statex, x̂, using linear quadratic estimation techniques (LQE).
The estimatêx becomes the output of the state estimator whose dynamics are given
by

d

dt
x̂ = (AL −KfCL)x̂ + BLv +KfYL, (57)

whereAL, BL, CL, v, andYL are defined in (54)–(56) andKf , is the estimator
gain given by

Kf = PfCT
LR
−1
f , Rf > 0. (58)

The matrixPf is the unique solution of the Ricatti equation

PfA
T
L +ALPf − PfCT

LR
−1
f CLPf = 0, (59)

whereQf andRf are the observer design parameters. The choice of the weighing
matricesQf andRf is based on the following criteria: (a) good tracking perfor-
mance, and (b) the cross-over frequency of the LQE return ratioL(s), defined as
L(s) = −C[sI − A]−1Kf , is less than the frequency bandwidth of the system,
wb. These constraints are necessary for noise rejection and to guarantee robustness
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towards unmodeled dynamics and model uncertainties, which become active for
frequencies abovewb [22].

Given that the error in estimating the state vectorx is guaranteed to be bounded,
using the LQE design, then the end-effector position error in the constraint frame
is also guaranteed to be bounded; that is there exist positive constantsσ1 andσ2

such that∥∥z̈p − ˆ̈zp∥∥ 6 σ1,
∥∥...
zp − .̂..

zp
∥∥ 6 σ2. (60)

These relationships state that the difference between the true and estimated state
vector is bounded.

Since the force and its first derivative, Equation (46), are continuous functions
of the statex and the robot parameter vector2, an upper bound for the force first
derivative can be derived as∥∥ḟf − ˆ̇ff ∥∥ = ∥∥Tf (Y,2)− Tf (Y, 2̂)∥∥ 6 JTf (Y )∥∥2̂∥∥, (61)

where the transformationTf (·) is defined as

Tf (Y,2) = ḟf , JTf = Jacobian(Tf ), (62)

whereJTf is evaluated with respect to2. Since the error in the state estimate and
the force derivative are bounded, an upper bound of the disturbance vectorπ(t)

exists. This enables the design of the switching gainKd which satisfies (52). Next,
the properties of the sliding surfaces are studied.

5.4. THE SLIDING SURFACE PROPERTIES

In this section, the bounds of the estimation error are combined with the properties
of the sliding surface in order to obtain a range in which the sliding mode control
can be applied. This requires the introduction of the boundary layer concept. In
practical applications, discontinuous control laws are known to generate very high
control activity which should be avoided. As a result, the objective of the surface
being converging to zero is replaced by keeping the surface within certain limits
that define the boundary layer thickness. The thickness of the boundary layer is
determined by the tracking errors. Outside the boundary layer, the control input is
applied while inside the boundary layer the control is interpolated as:

τ = τ̂ −Kd sat(S/φs), (63)

whereφs is a scalar positive constant that defines the boundary layer thickness and
sat is the saturation function defined as

sat(x) =
{
x if x 6 1,
sgn(x) if x > 1.

(64)

Thus, instead of aiming atS = 0 one aims at having

‖S‖ 6 φs. (65)
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Note that the choice ofφs depends on the availability of the transformed state vector
as well as the uncertainties in the system parameters. The relationship between the
minimum boundary layer thickness and the maximum error inS, due to parameter
uncertainties, can be derived. The true sliding surfaces for the position and force
tracking errors, defined in (35) and (36), can be decomposed into an estimated part
and a measured part as follows:

S = Su + Sn, Ŝ = Ŝu + Ŝn, (66)

where

Su =
[ ...
zp + 4κpz̈p

żf

]
, Ŝu =

[ ...
zp + 4κpz̈p

żf

]
,

Sn =
[

6κ2
pżp + 4κ3

pzp + κ4
p

∫ t
0 zp

2κf żf + κ2
f

∫ t
0 zf

]
. (67)

Computing the termS − Ŝ, yields

S − Ŝ = δs(t) 4−
[
(
...
zp − .̂..

zp)+ 4κp(z̈p − ˆ̈zp)
żf − żf

]
. (68)

Using the fact that the error in estimating the state vectorx is guaranteed to be
bounded and the properties of the force derivative expression given in (61), yields
the following upper bound for the error inS:∥∥S − Ŝ ∥∥ = ∥∥Su − Ŝu∥∥ = ∥∥δs(t)∥∥ 6 σs, whereσs >

∥∥∥∥ σ2+ 4κpσ1

σf

∥∥∥∥ , (69)

whereσf is defined as

‖żf − żf ‖ 6 σf . (70)

It is clear, by inspecting the bounds on the sliding surfaces, that the boundary
layerφs cannot be smaller thanσs. Thus, the boundary layer thickness satisfies:

S 6 φs 6 2σs. (71)

Note that it is possible to force the true surfaceS to remain inside the above
boundary layer sincêS is known. Equation (68) can be written as:

S = Ŝu + σs(t). (72)

Outside the boundary layer we have:

Ŝ > σs ⇒ sgn(S) = sgn
(
Ŝ
)
. (73)

Thus, the discontinuous control input can force the system to satisfy the sliding
conditions inside the boundary layer where

S < 2σs, Ŝ < σs, S ≈ Ŝ. (74)
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6. Experimental Tests

6.1. THE EXPERIMENTAL SETUP

The experimental setup used to implement the above controllers consists of a me-
chanical arm and a real time controller. The mechanical arm, illustrated in Figure 1,
is a two link modular direct drive manipulator which has been designed and built
to truly simulate the effects of the joint flexibility. Helical torsional springs are
used in the joint’s flexibility design. The current configuration has two resonant
frequencies of 5.2 and 7.5 Hz. The robot is equipped with four encoders to read the
positions of the motors and the links, and a force/torque sensor at the end effec-
tor. The real time controller was designed and built. It consists of a digital signal
processing card based on the TMS320C30 chip which is interfaced through a bus
to a number of input output devices for communication with robot sensors and mo-
tors. Details of the experimental robot can be found in [26]. Table 1 shows two lists
of the robot parameters are obtained using I-DEAS solid modeler and sine sweep
identification. Figure 2 shows the experimental flexible joints robot constrained by
a rigid straight wall. The robot end-effector is equipped with a roller to satisfy the
assumption that the wall is friction-free. The wall is made of a steel plate rigidly
fixed to the robot table by two L-shaped supports. The controller was implemented
and applied to the experimental flexible joint robot with a sampling frequency of 1
KHz. Parametric uncertainties were introduced by adding a 0.98 Kg steel block at
the center of mass of the second link. Two experiments were performed.

6.2. EXPERIMENT 1: NOISE-FREE MEASUREMENTS

In this test, the measured variables are the links and the motors angular positions
and velocities and the contact force. All measurements are assumed to be noise
free. The links angular accelerations and jerks are computed using the analytical
expression of the inverse transformationT −1, where the expression ofT is given

Figure 1. Solid model of the experimental flexible joints robot.
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Table I. Experimental robot parameters

Robot parameters I-DEAS Sine sweep

l1(m) 0.400

l2(m) 0.350

d1(Kg m2) 2.110 2.087

d2(Kg m2) 0.223 0.216

d3(Kg m2) 0.085 0.084

b1(N m s/rad) 2.041

b2(N m s/rad) 0.242

bm1(N m s/rad) 1.254

bm2(N m s/rad) 0.119

k1(N m/rad) 198.49 125.56

k2(N m/rad) 51.11 31.27

Im1(Kg m2) 0.1226 0.1224

Im2(Kg m2) 0.017 0.0168

Figure 2. Layout of the experimental flexible joint robot constrained by a straight wall.

Figure 3. Desired position trajectory for the dynamic hybrid controller.
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Figure 4. Desired velocity trajectory for the dynamic hybrid controller.

Figure 5. Desired force trajectory for the dynamic hybrid controller.

Figure 6. Position tracking error for the robust sliding mode controller (simulation).

in (19). The experiment layout is shown in Figure 2 and the task consists of moving
the end-effector by 0.4 m (starting from point A to point B) in theY -direction
according to a smooth desired position trajectory while applying a desired force
normal to the wall in 1.5 seconds, then to return to the initial point in another 1.5
seconds. The amplitude of the force is 12.0 N. The position and force surfaces
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Figure 7. Velocity tracking error for the robust sliding mode controller (simulation).

Figure 8. Force tracking error for the robust sliding mode controller (simulation).

are defined byκp = 25 andκf = 60. The boundary layer thickness is defined
by φp 6 2.0 andφf 6 5.0. These values were computed using experimental
tracking trajectories. Figures 3–5 shows the desired position, velocity, and force
tracking trajectories. Figures 6–8 show the simulation results of the position, ve-
locity, and force tracking errors. These figures indicate that the maximum errors
are: 0.25 mm for the position, 1.25 mm/s for the velocity, and 0.006 N for the
force. This demonstrates the good tracking performance provided by the proposed
controller. Figures 9 and 10 show the experimental angular position and velocity
tracking errors while Figure 11 shows the force tracking error. These figures indi-
cate that the proposed controller managed to achieve satisfactory position, velocity,
and force tracking (errors: less than 4 mm for the position and less than 0.04 m/s
for the velocity) despite the presence of parameter uncertainties. The uncertainties
were introduced by adding a 0.98 kg steel block at the center of mass of the second
link. Note that there is some discrepancy between the experimental and simulation
results. This is due to the fact that the effects of measurements noise are not taken
into account in this first experiment.
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Figure 9. Position tracking error for the robust sliding mode controller (experimental).

Figure 10. Velocity tracking error for the robust sliding mode controller (experimental).

Figure 11. Force trajectory tracking for the robust sliding mode controller (experimental).
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Figure 12. Joint’s angular positions: - - - desired, — actual, -.-. estimate,· · ·measured.
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Figure 13. Joint’s angular velocities: — actual, - - - estimate,· · · measured.

JINT1445.tex; 11/06/1999; 10:28; p.22



CONTROL OF FLEXIBLE JOINTS ROBOT MANIPULATORS 249

6.3. EXPERIMENT 2: NOISY MEASUREMENTS

In this second test, the controller was designed taking into consideration the mea-
surement noise and assuming that only measurements of the links angular positions
and velocities are available. A Gaussian noise is introduced in the measurements:
N ∼ (0,0.05) for the angular position andN ∼ (0,0.01) for the angular veloc-
ity. The simulations results are shown in Figures 12–16. Figures 12 and 13 show
plots of the measured, estimated, and actual angular positions and velocities of
the two joints. These figures indicate that the system reaches the desired trajectory
within 1.5 s without any overshoot, despite the presence of measurements noise.
Figures 14 and 15 show plots of the actual and the estimated motor angular posi-
tions and velocities. These figures demonstrate that the state estimator derived in
Section 5.3 is very simple, efficient and practical to use, since the estimated states
converge within less than one second and with minimum of oscillations. Thus, with
the proposed control approach, the use of sensors that measure the motor dynam-
ics can be omitted without affecting the performance of the FL-based controller.
Figure 16 shows that the desired performance can be achieved with reasonable
control effort (the maximum control torque is less 5.0 NM for the first link and
less 1.0NM for the second link which are very reasonable for such tasks). These
results clearly indicate that the proposed control approach is of potential bene-
fits for the hybrid position and force control of flexible joints robot manipulator
systems. Additional physical experiments are underway.

7. Conclusion

In this paper, a robust sliding mode controller was designed to control the position
and force of flexible joints robot manipulators constrained by a rigid environment,
in the presence of parameters uncertainty. The control law is derived using the con-
cept of feedback linearization and sliding mode technique. The set over which the
nonlinear flexible joint robot manipulator model (10) is feedback linearizable, was
determined. The controller is composed of a switching and an equivalent control
actions. The equivalent control action can achieve, in principle, perfect decoupling
when the robot parameters are known. The switching control action was designed
to compensate the closed loop error caused by the parametric uncertainty. It utilizes
the bounds on the robot parameters to obtain an upper bound for the closed loop
error which forces the position and force subsystems to remain on their sliding
surfaces. The effect of estimating the unmeasured elements of the state vector of
the feedback linearizable system (acceleration and jerk) and the contact forces first
derivatives results in the existence of a limit for the minimum achievable bound-
ary layer thickness, which is a direct measure of the tracking performance. The
relation between the parametric uncertainty measure and the minimum achievable
boundary layer thickness was obtained. Preliminary results show that the new ap-
proach for computing the state estimate, presented in Section 5.3, is very efficient
in reducing the cost and the complexity of the controller design. Simulation and
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Figure 14. Motor’s angular positions: — actual, - - - estimate.
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Figure 15. Motor’s angular velocities: — actual, - - - estimate.
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Figure 16. Control input torques.

experimental results indicate the validity of the presented robust controller in con-
trolling the end-point position and force trajectories despite parametric uncertainty
in the dynamic model. Future research includes the design and implementation of
the control algorithm for two industrial robots (AdeptOne and PUMA 560).
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