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Abstract. Despite great advances in the area of Formal Verification during the last ten years, simulation is currently
the primary means for performing design verification. The definition of an accurate and pragmatic measure for
the coverage achieved by a suite of simulation vectors and the related problem of coverage directed automatic test
generation are of great importance. In this paper we introduce a new set of metrics, called the Event Sequence
Coverage Metrics (ESCMs). Our approach is based on a simple and automatic method to extract the control flow of a
circuit so that the resulting state space can be explored for validation coverage analysis and automatic test generation.
During simulation we monitor, in addition to state and transition coverage, whether certain control event sequences
take place or not. We then combine formal verification techniques, using BDDs as the underlying representation,
with traditional ATPG and behavioral test generation techniques to automatically generate additional sequences
which traverse uncovered parts of the control state graph, or exercise an uninstantiated control event sequence.
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1. Introduction

Design verification deals with checking the confor-
mance of the design to its functional specification at
any level of abstraction, but usually at higher levels of
abstraction (i.e. behavioral or register transfer level).
It is a process very critical in making sure that the
design is bug-free before tapeout. However, design
verification is a very complex task which becomes
even more difficult in the case of modern, high per-
formance circuits which employ a series of design
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and architectural techniques aiming at boosting their
performance (i.e., pipelining, superscalar execution,
speculative execution, dynamic scheduling, branch
prediction, etc.). These techniques add significant
complexity and make circuits susceptible to very sub-
tle design errors. Detection of such errors requires the
combination of a series of conditions to take place in
a specified temporal sequence. Setting up these condi-
tions is a very hard task. Currently both Formal Veri-
fication and Validation by Simulation are employed to
attack the design verification problem.

While much progress has been made in automating
the verification process and using formal verification
tools, a major limitation of this technology is still the
size of the circuits it can handle. As a result, validation
by simulation is still the primary means of checking the
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correctness of a design. Under this methodology the
design is simulated for all the vectors in a functional
test suite, in an environment that models the actual
hardware system, and the simulation output is checked
against expected results to determine whether the de-
sign is behaving as specified. The test vectors can be
generated by random or pseudo-random (biased) test
generators, constraint solvers, can be taken from typi-
cal workloads, or can be hand written by the designers
based on the functional specification of the design. It
has been observed that all these methods fail to pro-
vide a measurable degree of confidence that a complex
design has been adequately tested.

Associated with validation through simulation are
the problems of “coverage” and generation of simula-
tion inputs. Coverage is a measure of the completeness
of a test suite. The ideal metric for evaluating the func-
tional coverage of a test suite would be the fraction of
specified behaviors exercised by that suite. A behavior
can be modeled as an execution of the design. Find-
ing all possible execution paths has exponential com-
plexity and attempting to exercise all of them would
require enormous computational resources. The next
best measure is the fraction of reachable states or tran-
sitions that have been exercised. This is the approach
adopted in [1] when defining functional coverage
metrics.

In this paper we will briefly review the ECFM model
(Section 3), before introducing a new set of coverage
metrics, called Event Sequence Coverage Metrics (ES-
CMs) in Section 4. These new metrics are designed to
complement the metrics defined in [1]. In this methodo-
logy the designer specifies interesting control event se-
quences that need to be exercised during simulation.
These sequences are specified in a specialized language
that we provide. Alternatively they can be specified as
non-deterministic Finite State Machines (FSMs) in a
hardware description language like VHDL or Verilog.
These control sequences can capture the complex in-
teraction of control events, especially those that affect
the datapath, and generating tests for them gives suf-
ficient confidence that the majority of difficult corner
cases will be exercised. The main motivation behind
the introduction of these new coverage metrics is that
full transition coverage even on the ECFM of a de-
sign may be neither possible nor desirable. The for-
mer is true due to the fact that the non control parts
of the design are modeled non deterministically, and
the latter is true because not all transitions may need

to be exercised to fully test functionality [2], although
the concept of equivalent transitions [1] eliminates this
problem for the most part. We believe that a lot of these
event sequences can be generated automatically (for
example making sure that the design never enters an
illegal state). However, if the behaviors being checked
involve complicated parts of the design like the bus pro-
tocol, the designer needs to provide the sequences to be
monitored. Alternatively a subset of Model Checking
[3] properties that have not been formally verified can
be utilized to generate interesting event sequences.

We also apply the same abstract model to automatic
test generation for validation vectors. Our approach to
test generation is twofold (Section 5). We first provide
a technique for Coverage-Directed Test Generation. In
this regard we can either supplement a given test suite
that does not achieve satisfactory functional coverage
according to our metrics, or generate test sequences that
guarantee high coverage of the control behavior of the
design. Additionally for event sequences not exercised
by the functional test suite we automatically generate
test vectors that would cause the machine to go through
that sequence of events. We employ techniques widely
used in formal verification to automatically generate
tests to exercise all control transitions. Test sequence
generation is performed on the ECFM model. This se-
quence may not be directly applicable to the original
machine because of data conflicts [4]. In this case, we
use traditional test generation techniques to expand the
generated sequence and map it back to the original ma-
chine.

The main contributions of this paper are presented
in Sections 4.1 where we introduce a new set of cover-
age metrics, and 5 where we show how these metrics
can guide the test generation process. Particularly in
Section 5.3.2 we introduce a new approach to solving
the mapping back problem which is one of the main
issues in all abstraction based test generation method-
ologies [4, 5, 2, 6]. An overview of the system is
depicted in Fig. 1.

The system consists of a test model generation facil-
ity (extraction of the ECFM of the design which may
be an iterative process), a test generation subsystem
which includes the mapping-back facility and is driven
by coverage metrics, and a coverage monitoring facil-
ity. The vectors that are generated can be used to com-
pare two descriptions against each other. Additionally,
during simulation, we can monitor the occurence of
event sequences.
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Fig. 1. System overview.

2. Previous Work

There exist ad-hoc techniques for coverage estimation
in functional validation used in practice. These include
toggle coverage on signals in the HDL program and
HDL statement coverage. It is generally accepted that
these are not accurate measures of functional (behavi-
oral) coverage. For a more detailed discussion please
refer to [1]. Other approaches to evaluate coverage
check that all states are visited [7]. The coverage
metric presented in [1] and reviewed briefly here is
also based on a similar metric which measures transi-
tions traversed not in the state machine representing the
original circuit but in an abstracted machine capturing
the control flow of the design.

More recently, approaches to coverage measurement
and test generation presented in [5, 2] and [6] use tech-
niques similar to the ones presented in this paper. State
machines for part of the circuit, usually the control
part, are extracted from the HDL description by various
means and used as the target of the test generation. The
approach in [5] uses graph traversal of the state graph
for the extracted machine to traverse all its transitions.
The main difference with the work presented here lies
in the mapping of the tests generated on the extracted
machine back to the original circuit. Their approach
is to artificially inject the required signal values during
simulation, while we propose the use of conventional
ATPG and behavioral test generation techniques to ex-
pand the test sequence generated on the extracted model
so as to make it valid on the original circuit. Controlled
simulation limits the exploration of the design space.

For example assume that a test contains a floating point
exception. Using the approach in [5] the actual data on
the datapath is ignored during the test. The excep-
tion is simply forced by taking control of the signal
that specifies the occurence of the exception. Bugs re-
lated to the actual data that coused the exception won’t
be detected. The work in [5] is extended in [2] with
the concept of control events which basically repre-
sent a set of commands to the datapath. A control
event is a set of control state variable values observed
by the datapath. Coverage is then defined as the frac-
tion of control events covered over the total number of
reachable control events. We believe that the concept of
equivalent transitions in [4] achieves the same objec-
tive. Furthermore, we employ a more generic form of
control events in this paper. The approach in [6] also
targets part of the state space in a manner very similar to
ours and uses the counterexample facility in the SMV
model checker [3] to generate a test for each transition
in the targeted state space. However, mapping this test
to the actual machine is a textual translation process by
means of pattern matching. A high level operation is
viewed as a long sequence of low level state transitions
that drive the unit along the high level execution path.
A parser follows the state transitions and generates a
high level operation whenever it recognizes a pattern
indicating that such a transaction is taking place. A ran-
dom biased test generator is then used to fill in blanks.
Finally [8] introduces an observability-based code cov-
erage metric. The approach is based on injecting tags
in variables in the HDL and observe the “activation”
and “propagation” of these tags to the outputs during



176 Moundanos and Abraham

simulation. It is an approach tied to the HDL syntac-
tic style and based on the principle of activating every
statement in the HDL which has been shown to not be
an accurate coverage estimation method.

There have been other efforts to use information ob-
tained from the high-level description in order to pro-
duce either functional tests or stuck-at fault test suites or
to assist a lower level test generation tool. In [9], an ex-
tended finite state machine (EFSM) model is extracted
from the behavioral description and is exhaustively
traversed to generate functional tests. Exhaustive
traversal of this machine ensures that all statements
in the original code are executed. This approach ana-
lyzes the syntactic structure of the HDL program and
identifies equivalence relations among parts of the data
space. Such equivalence classes can be reencoded us-
ing fewer bits thus leading to a smaller FSM. The final
FSM is equivalent to the original FSM. Obviously this
does not always result in dramatic reduction in size.
The dependence on syntactic style enables handling of
larger machines than classical equivalence partitioning
could handle. But it is also a drawback since it enforces
hard restrictions on the coding style. In [10, 11] two
more systems with the same objective as our approach,
namely exercise the design for interesting bugs, are
described. However, they operate at the instruction
set architecture level or even higher, at the operational
interface level and use techniques like symbolic simu-
lation and constraint solving to generate effective tests.

Some researchers have used test suites generated
from conventional ATPG tools used for structural test-
ing to do functional verification. For example, the ap-
proach followed in [12–14] introduces the concept of
“design errors” to model possible functional faults.
Coverage of the test suite is the fraction of possible de-
sign errors detected by the suite. While this approach
is effective at the gate or lower levels in detecting com-
mon designer mistakes, it is primarily a localized struc-
tural approach and does not give an indication of the
extent to which the behavior of the design has been
exercised.

3. The Extracted Control Flow Machine Model

Most CAD algorithms depend on an implicit or explicit
exploration of the design state space which, for the ma-
jority of modern circuits, is huge mainly because of a
large data path component. This phenomenon makes
many CAD problems intractable by present techniques.
One area of hope is the use of abstraction. Another
point is that in most applications, including design

verification and test generation, it is the flow of control
that is of prime interest. The ECFM of a sequential
circuit is a model of the control flow in the design.
The difficulty in identifying the control circuitry lies in
defining the interface of the control units with the rest
of the circuit, and not in differentiating the control reg-
isters from registers holding pure data. In the ECFM
methodology, it is the designer’s choice which regis-
ters are to be considered as contributing to the control
state space and which make up the data. Consequently,
we abstract the data registers from the circuit and group
the data into “equivalence” classes with respect to their
effect on the control.

More formally, let us assume that the sequential
behavior of a circuit is represented as a Finite State
Machine (FSM). This Mealy type FSM is a 6-tuple
(6,O, S, s0,1,3), where

6={0, 1}nis the input space (n is the number of input
bits)

O={0, 1}l is the output space (l is the number of
output bits)

S={0, 1}c+d is the finite state space (c is the number
of control bits andd is the number of data bits)

s0={〈 Esc, Esd〉} is the set of initial states,Esc ∈ {0, 1}c
and Esd ∈ {0, 1}d

1 : 6 × S→ S is the next-state functional vector,
1= [δ1..δc+d], and
3 : 6 × S→ O is the output functional vector,
3= [λ1..λl ].

The ECFM is also represented as a Mealy type FSM
(6′,O′, S′, s0′,1′,3′), where

6′ = {0, 1}n′+d′ is the input space (n′ ≤ n, d′ ≤ d)
O′ = {0, 1}l ′ is the output space (l ′ ≤ l )
S′ = {0, 1}cis the finite state space

s0′ = {〈sc〉}is the set of initial states,sc ∈ S′

1′ : 6′ × S′ → S′ is the next-state functional vector,
1′ = [δ1..δc], and

3′ : 6′ × S′ → O′is the output functional vector,
3′ = [λ1..λl ′ ].

The input space of the ECFM shows the pre-
sence of data registers which are now primary inputs.
The ECFM input space is smaller thann+ d because
only those inputs and data registers that have an ef-
fect on control flow appear in the ECFM, the rest are
dropped. Some outputs of the original circuit also may
be dropped in the ECFM if they are not of interest
to the application at hand. A transition in the original
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circuit can be represented as a 4-tuple (Ei , Es1, Es2, Eo)
where Ei ∈6, Es1, Es2∈ S and Eo∈O and Eo=3(Ei , Es1)

and Es2=1(Ei , Es1). If we represent Es1 and Es2 as
Es1 = 〈 Es1c, Es1d〉 where Es1c ∈ {0, 1}c and Es1d ∈ {0, 1}d,
Es2 = 〈 Es2c, Es2d〉 where Es2c ∈ {0, 1}c and Es2d ∈ {0, 1}d,
then this transition maps to the corresponding transition
(〈Ei , Es1d〉, Es1c, Es2c, Eo) in the ECFM. Thus, every transi-
tion in the original circuit maps to at least one transition
in the ECFM. Furthermore,Eo = 3′(〈Ei , Es1d〉, Es1c) and
Es2c = 1′(〈Ei , Es1d〉, Es1c).

Definition 1. Two transitions (Ei , Es1, Es2, Eo) and (Ej , Es3,

Es4, Ep) in the ECFM of a circuit areequivalent iff Es1 =
Es3 and Es2 = Es4 andEo= Ep.

We thus define an equivalence relation among tran-
sitions in the ECFM such that transitions are grouped
into equivalence classes.

Lemma 1. The equivalence partitions on the tran-
sitions of the ECFM of a circuit define corresponding
equivalence partitions on the transitions of the original
circuit.

As we have seen, each transition in the original cir-
cuit maps to a corresponding transition in the ECFM
and it is an onto mapping. Thus every transition in the
original circuit can be placed in the same equivalence
class of its corresponding transition in the ECFM such
that all transitions in a class affect the flow of control in
the same manner. In essence the process of grouping
equivalent transitions in the ECFM of a circuit par-
titions the state space of the original circuit in terms
of its effect on the control flow of the circuit. This is
true since data register values in the original design
have moved on the transitions as PIs in the ECFM.
Those ECFM transitions are grouped together (if they
are equivalent according to Definition 1) and therefore
the corresponding states (in terms of data values) in the
original circuit are also grouped together.

It should be noted that computing the reachable
states in the ECFM does not directly correspond to
the control states that may be reachable in the actual
machine. Rather, it is an over-estimation of the reach-
able control state space because some data registers
of the original circuit are unconstrained in the ECFM
and may assume values not possible in the actual cir-
cuit. However, it is intuitively a close approximation
because, in general, data assumes any value. Thus the
ECFM is not equivalent to the original machine, as is
the case for the EFSM [9].

4. Functional Coverage Metrics

We now describe how the ECFM can be used to derive a
pragmatic estimate of the functional coverage provided
by a sequence of input vectors.

4.1. Previously Defined Coverage Metrics

In order to compute a quantitative measure that reflects
the quality of a test suite, we use two metrics, a state
coverage metric (SCM) and a more accurate transition
coverage metric (TCM). Given an initial state or a set
of possible initial states, we first compute the reachable
states in the ECFM. The two metrics are then given as,

SCM= Number of states visited in the ECFM

Total number of reachable states in the ECFM
(1)

TCM = Number of transitions traversed in the ECFM

Total number of reachable transitions in the ECFM

(2)

Obviously, TCM is the most comprehensive met-
ric of the two. However, we have found that it helps
to consider 100% SCM as the first target. Providing
pointers to the part of the state space that is not covered
by the given tests is a useful feature in case the designer
wishes to address the coverage holes by adding tests.
The coverage metrics reflect the amount of control be-
havior exercised during the simulation.

There are two points that need to be made about this
approach. First, 100% transition coverage may not be
possible. This is the case because some transitions in
the ECFM may require data values that are not pos-
sible in the original machine. Hence, it is reasonable
to be satisfied with a relatively high value of TCM.
Completely characterizing the input space of the ECFM
to avoid such cases is an unsolved problem. Second,
the user has some control over the ECFM generation
and can iterate over the extraction process by changing
the designation of registers as control or data. Recall
that data registers will not appear in the ECFM if they
are not in any dependency set (no control registers or
primary outputs of the design functionally depend on
them).

4.2. Extending the Coverage Metrics

The coverage metrics (TCM and SCM) that were de-
scribed in the previous section provide a realistic and
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meaningful measure of the control behavior of a cir-
cuit exercised by a set of verification vectors. However,
they cannot capture the control behavior described by
the interaction of several subparts of the design which
is expressed by activation of state transitions in a spe-
cific order. This is why a more accurate coverage met-
ric would be Execution Path Coverage. However, this
is unrealistic since it has exponential complexity. We
propose, as a solution to this problem, a new approach
which is called Event Sequence Coverage.

In this respect we concentrate on monitoring Control
Event Sequences that are specified by the user. More
specifically the user (designer) comes up with a test
plan for a specific design. This test plan includes the
critical event sequences that he or she wants monitored
during simulation. By an event sequence we simply
mean a series of events that have to take place in a
specific order and according to some specific timing
requirements. In our framework we define two types
of event sequences: “good” sequences which indicate
the presence of desirable behavior (this is a type of
liveness requirement) and “bad” sequences which are
monitored in order to ensure the absence of undesirable
behavior (safety requirement). Along these lines we
define two additional coverage metrics:

ESCMincl

= Number of good Event Sequences covered

Total number of good Event Sequences monitored

(3)

ESCMexcl

= Number of bad Event Sequences covered

Total number of bad Event Sequences monitored

(4)

As is obvious from the above discussion, TCM,
SCM, ESCMincl→ 100% while, ESCMexcl → 0%.
Particularly in the case of ESCMexcl, what we are in-
terested in is making sure that for the test suite unter
monitoring (before or after enhancement) none of the
bad sequences are being observed. In the case that a
bad sequence is observed we can provide a witness to
the designer to facilitate the debugging process. In that
sense test generation is only directed by the other three
metrics.

The Test Plan goals are specified by the user in a spe-
cialized Input Language, and are eventually translated
into a special form of State Machines, the Event Se-
quence Finite State Machines (ESFSMs), which are

characterized by the presence of non deterministic
states. We take advantage of non determinism to de-
scribe the timing requirements of the event sequences.
The Input Language is described in the following:

INCLUDE | EXCLUDE
TE <triggering_event> IMPLIES
CA <consequent_action>

The Triggering Event is simply described as a series
of Boolean expressions which involve signals and
Boolean connectives.

{<bool_expr1>,...,<bool_exprN>}

The Consequent Action is described in the following
form:

[Comb_Op]
{<set_of_signals>}{<tw1>,...,<twN>}
[{<set_of_signals>}{<tw1>,...,<twN>},...]
[FOLLOWED]
[{<set_of_signals>}{<tw1>,...,<twN>},...]

where CombOp can be AND, OR, MUTEX (mutual
exclusion).

In the above description tw stands for timing win-
dow, a construct used to describe the timing require-
ments of the event sequences. A timing window (TW)
[t1, t2] specifies when and for how long a signal is to be
asserted, wheret1, t2 are natural constants witht1 ≤ t2.
If t1 = t2 then [t1, t2] = [t1]. The start point is rela-
tive to the Triggering Event (TE), infinity is equivalent
to the end of simulation and endpoints are inclusive.
[0] means that the signal preceding the TW must be
asserted at the same cycle as the triggering event. The
following list describes the different forms of Timing
Windows:

• [..t1]: signal has to be asserted from 0 tot1 cycles
continuously.
• [t1..]: signal has to be asserted fromt1 to∞ contin-

uously.
• [t1..t2]: signal has to be asserted fromt1 to t2 contin-

uously.
• [∗t1]: signal has to be asserted at least once from 0

to t1.
• [t1∗]: signal has to be asserted at least once fromt1

to∞.
• [t1, t2]: signal has to be asserted at least once from

t1 to t2.
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Fig. 2. An FSM for Event Sequence 1.

Fig. 3. An FSM for Event Sequence 2.

• [∗t1, t2∗]: signal has to be asserted at least once from
0 to t1 or t2 to∞.
• [t1∗..t2]: signal has to be asserted sometime between

t1 andt2 and remain asserted untilt2.

Figures 2 and 3 illustrate the translation of two exam-
ple event sequences into ESFSMs. The first sequence
indicates that signal q will be asserted 1 cycle after
p is asserted and will remain asserted for up to 3
cycles:

{INCLUDE TE {p} CA {q}{[1..*4]}

The second event sequence indicates that signal q will
eventually be asserted 2 cycles after p is asserted:

INCLUDE TE {p} CA {q}{[2*]}

The timing window in the second event sequence has
the semantics of eventuality, thus the semantics of in-
finity. Therefore, it cannot be represented as an FSM.
In cases like these we internally complement the event

sequence description and translate this new sequence
into an ESFSM. We then check for absence (pres-
ence) of bad (good) behavior depending on whether
the original event sequence was a “good” (“bad”) se-
quence.

Our Event Sequence coverage system is depicted in
Fig. 4. First the ECFM of the design is extracted and is
given as input, along with the functional test suite, to
the core of the Event Sequence Coverage System which
consists of a 2-value logic simulator and a symbolic en-
gine based on BDDs. Event Sequences are translated
into ESFSMs and for each one of them a coverage
monitor structure is created. The Coverage Monitor
contains both an explicit and a symbolic description
of the ESFSM. When the simulation starts for each
occurrence of a Triggering Event a Coverage Monitor
is instantiated. This facilitates reporting on multiple
occurrences of the same event sequence. If a “good”
event sequence is not observed during simulation, then
the facility is provided for the generation of a test se-
quence that would activate that event sequence. If a
“bad” event sequence is observed during simulation, a
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Fig. 4. Event Coverage System.

witness can be generated to help the designer pinpoint
what caused the undesirable behavior. The test genera-
tion system is described in more detail in the following
section.

5. Test Generation

5.1. Coverage Directed Test Generation

Figure 5 describes the Coverage-Directed Test Gene-
ration System. In this case SCM or TCM drive the test
generation process. There are three main subsystems;
A logic simulator, a coverage estimation system based
on a symbolic engine that utilizes BDDs and a justifi-
cation subsystem. The simulator simulates each pro-
duced vector on a model of the original circuit, while
coverage estimation is done on the ECFM of the cir-
cuit. As can been seen the input vectors to the ECFM
may consist of both Primary Inputs (PIs) and data regi-
sters. The role of the simulator is to provide the values
for those ECFM inputs that used to be data registers.
Test generation is terminated if a user-specified level of

coverage is achieved or if a user-specified time limit is
reached. The objective is to come up with a set of tran-
sition sequences starting from the initial state whose
union will include all transitions in the ECFM graph.
The traversal of the graph initially proceeds in a depth-
first manner, selecting untraversed transition groups out
of each visited state until no more untraversed groups
exist. We mark control states out of which untraversed
transition groups exist. These states are placed in a set
and graded based on two criteria: the number of un-
traversed transition groups out of them and the number
of unvisited next states that they have. We give higher
priority to the second factor and break ties based on
the first factor. When we reach a state where no more
choices exist, we go back to the set of marked states
and pick one state based on the discussion above. This
introduces a breadth-first flavor in our search and al-
lows us to visit a more diverse part of the ECFM state
graph given the time and memory limits. The transi-
tion sequence generated starting from a marked state is
prepended with a prefix sequence leading to it from the
reset state. This sort of “backtracking” sometimes can
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Fig. 5. Coverage-Directed Test Generation System.

lead us all the way back to the reset state, in which case
a new transition sequence is started. The input vectors
to the ECFM may consist of both Primary Inputs (PIs)
and data registers. This means that the transition se-
quences generated in the way described above cannot
be directly used for simulation of the original unit un-
der test. The data values need to be justified, and if that
is not possible the part of the transition sequence after
the “unjustifiable” vector is dropped. There are several
ways in which the justification can be achieved. For
example one can use high level functional information
to put the right values into the data registers at the right
time. A more detailed discussion on this issue can be
found in Section 5.3.

5.2. Test Generation for Event Sequences

At this point we need some definitions:

Definition 2. An input sequence that can be applied
to a partially specified circuitC in states such that the
destination states for all induced transitions are speci-
fied is said to beapplicable to circuitC in states.

Definition 3. States1 in Finite State MachineM1 is
compatible with states2 in Finite State MachineM2 iff

every input sequence that is applicable toM1 in state
s1 is also applicable toM2 in states2 and causes the
two machines to produce the same output sequence
when applied toM1 in initial states1 andM2 in initial
states2.

In the case of ESFSMs some states are characteri-
zed by non deterministic behavior in the sense that the
next state is not unique. Therefore, the notion of com-
patibility has to be modified to account for this non
determinism [15].

Definition 4. States1 in ESFSM M1 is loosely k-
compatible with states2 in Finite State MachineM2

if s1 is k-compatible withs2 for all input sequences of
length lesser than or equal tok that contain one and
only one applicable input vector for each non deter-
ministic state and all applicable input vectors for each
deterministic state.

Definition 5. States1 in ESFSMM1 is loosely com-
patible with states2 in Finite State MachineM2 if s1 is
compatible withs2 for all input sequences that contain
one and only one applicable input vector for each non
deterministic state and all applicable input vectors for
each deterministic state.
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The problem of proving the loose compatibility of
the ESFSM with the design ECFM is formulated as a
fixed point problem of discovering the set of states in
the design ECFM that are loosely compatible with the
start state of the EFSM.

We first compute the set of pairs of 1-compatible
states in the ESFSM and the ECFM of the design. The
predicateγ given below encodes this set of transition
pairs,

γ (Ex, Eqa, Eqb) =
l∧

i=1

(
λai (Ex, Eqa)¯ λbi (Ex, Eqb)

)
(5)

where subscripta is used for the ESFSM and subscript
b is used for the ECFM of the design.

To find the set of looselyk + 1-compatible state
pairs LCk+1 from the set of looselyk-compatible pairs
LCk, we find theinverse imageandpre-imageof the
set LCk, i.e., the pairs of states which must end up
in loosely k-compatible states in one transition, and
the pairs of states which could end up in looselyk-
compatible states in one transition. We further ensure
that the transitions to LCk from its pre-image satisfy
the predicateγ .

LC0 = 1

LCk+1(Eqa, Eqb) = LCk(Eqa, Eqb)
∧

[(¬ND(Eqa)

∧∀Ex : LCk( EQa(Ex, Eqa), EQb(Ex, Eqb))∨
(ND(Eqa) ∧ ∃Ex : (γ (Ex, Eqa, Eqb)

∧ LCk( EQa(Ex, Eqa), EQb(Ex, Eqb))))]

(6)

where the predicate ND represents the non-deter-
ministic states in the ESFSM. In this equation current
state variablesEqa, Eqb are substituted by next state vari-
ables EQa, EQb and the corresponding next state (transi-
tion) functions are composed into the graph.

The set of loosely compatible state pairs WC is ob-
tained when the fixed-point is reached.

LC(Eqa, Eqb) = LCk(Eqa, Eqb) if LC k+1 = LCk (7)

The set of ECFM states compatible with the start
state of the ESFSMEqastart has characteristic function
given by

LC(Eqa, Eqb)Eqa=Eqastart
(8)

To continue with test generation for Event Se-
quences, in the case of good behavior not covered we
check the compatibility of the start state of the Event
Sequence FSM (ESFSM) with the ECFM of the design.
If the set of loosely compatible states is non empty we
form the product machine (note that in the above equa-
tions building the product machine was not required,
we just utilized the next state functions and not the tran-
sition relation) and traverse the state space from initial
states. The traversal is done by picking new states via
compatible transitions, while backward traversal is not
necessary. The procedure terminates either when a fi-
nal state is picked as next state or when a previously
picked transition is chosen again, since in this case we
have entered a loop. The PickOne function just picks
one cube from the ON-set of the function given as ar-
gument to it. An outline of the algorithm is given in
Fig. 6.

In the case of bad behavior observed during simu-
lation we want to provide a witness sequence that will
help the designer identify the cause of the problem.
We can either identify the vector sequence from the
input test suite that caused the bad behavior to occur,
or utilize the above described procedure to generate
the witness. Our experience indicates that the above
procedure usually generates shorter sequences.

During test generation mapping back to the original
machine may be necessary according to the discussion
in Section 5.3.

1. s0 = Initial State of Product Machine;
2. Picked= 0;
3. Build Transition Relation(T);
4. Build Compatible Transitions(γ );
5. Build Loosely Compatible State Pairs(LC);
6. LC( EQ)=Compose(LC(Eq), EQ);
7. i = 0;
8. repeat
9. pred= si (Eq) ∧ T(Ex, Eq, EQ);

10. if (si contains anon-deterministic state)
11. pred= pred∧ γ (Ex, Eq);
12. pred= pred∧ LC( EQ);
13. endif;
14. pick= PickOne(pred);
15. if (pick⊂ Picked)
16. break;
17. endif;
18. Picked= Picked∪ pick;
19. (inpi , si+1) = ∃Eq : pick(Ex, Eq, EQ);
20. i = i + 1;
21. si (Eq) = Compose(si ( EQ), Eq);
22. until (si contains END state);

Fig. 6. Procedure for Event Sequence Test Generation.
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5.3. Justification and Mapping Back

As was mentioned earlier when performing coverage-
directed test generation we need to either come up
with a sequence which will bring the original machine
from the initial state to a specific state or a sequence
that will take the machine from a given state to an-
other given state. When performing test generation for
event sequences, the test sequence generated on the
ECFM is not directly applicable to the original circuit.
This sequence has to be expanded and mapped back
to the original circuit. First, for inputs that have been
abstracted away in the ECFM model, random values
have to be provided. This will expand the sequence

Fig. 7. The mapping back problem.

Fig. 8. The mapping back problem-detailed view.

horizontally. Second, all data conflicts in the gener-
ated sequence must be resolved by justifying the val-
ues of those PI’s which are data registers in the original
circuit. This will expand the sequence vertically (see
Figs. 7 and 8).

5.3.1. ATPG Based Mapping Back.We propose the
use of ATPG techniques for performing both justifica-
tion and mapping back. We used HITEC [16] to demon-
strate the validity of our approach. HITEC can produce
a justification sequence for a given state back to a “don’t
care” initial state.

In general, we have a pair of partially or completely
specified states and need to generate a sequence that
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will bring the original machine from the first to the sec-
ond state. Each of these states consists of a control part
retained in the ECFM and a data part which is captured
in the transitions of the ECFM. In this case we take
the justification sequence generated by HITEC for the
second state and look for a subsequence that involves
the first state. This subsequence is then incorporated
in our test. If the first state is not involved then we try
to justify the second state from the reset state. How-
ever, the first alternative is preferable since it generally
leads to shorter test suites. If HITEC cannot produce
a justification sequence then the corresponding vectors
are dropped from our test. We force HITEC to gener-
ate the justification sequence that we need for a given
state by introducing an AND gate “implementing” that
state. The output of that gate becomes PO and we
introduce a stuck-at-zero fault on it. Additionally we
“cache” justification sequences so that if the same state
needs to be justified again we do not have to go through
the sequence expansion process again.

We believe that code specifically written to pro-
vide the functionality required by our technique will
improve the efficiency of our approach, both in terms
of speed and length of the generated justification se-
quences. Results shown for verification of sequential
circuits using modified ATPG techniques such as “par-
tial justification” [17] provide encouraging evidence
for this statement.

5.3.2. Using High Level Information for Mapping
Back. Our technique is modeled after the behavioral
Test Generation approach. In behavioral level Test Gen-
eration a fault model is usually assumed. This can be
something like stuck at or stuck open faults for con-
trol lines or some way of modeling faults in functional
operation blocks (for example a microoperation fault
when a arithmetic or relational operator is turned into
another). Then a four step process is employed:

• Fault Sensitization
• Justification
• Fault Effect Propagation
• Justification

In our technique we only need to justify required
values at the register outputs. So we do not assume
any fault model and we do not follow the four steps de-
scribed above. We support a synthesizable subset of the
Verilog HDL. The following statements are supported:
IF, CASE, simple FOR loops, blocking assignments,
continuous assignments, event control statements. We

also support multiple processes as long as the same
variable is not being assigned in more than one.

The first step in this process is register identification
for which we have two pieces of information. One is
the RTL description itself and the other is the informa-
tion on control latches that is provided by the designer
during the ECFM extraction process. We use the fol-
lowing three criteria to identify registers in Verilog.

1. Process has an edge. Everything on the Left Hand
Side (LHS) of assignments is considered a latch.

2. A Variable not assigned in every control path is con-
sidered a latch.

3. If the Sensistivity List (which is defined as what-
ever appears in the always process’s control event
expression) is not a superset of the Input list (which
is defined as the collection of variables appearing on
RHS of assignments, and contitions of conditional
statements) everything on the LHS of assignments
is considered a latch.

The circuit description in Verilog HDL is translated
into a Control-Data Flow Graph. The Control Flow
Graph contains nodes corresponding to conditions and
transitions among them, and thus captures sequenc-
ing and execution paths. The DataFlow Graph contains
nodes corresponding to data registers and operation
nodes (data transformation and test). The connection
between the two is done by associating control transi-
tions and operation nodes. This will become more clear
by means of an example. In Fig. 9 we show the descrip-
tion of a simple counter with reset and clock signals in

module counter(clk,rst,ld,in,out);
input clk,rst,ld,in;
output out;
reg [31:0] in,out,creg;
always begin

if(rst==1) creg=0;
else begin

creg=creg;
@(posedge clk)
if(clk==0) creg=creg;
else if(ld==1) creg=in;
else if(creg==64) creg=256;
else if(creg≤ 512) creg=creg+16;
else creg=creg-511;

end
out=creg;

end
endmodule

Fig. 9. Verilog description of small example.
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Fig. 10. Control-DataFlow Graph for simple example.

Verilog HDL. In Fig. 10 we show the corresponding
Control-DataFlow Graph.

During the justification process, if the initial val-
ues are consistent with the required ones then we are
done. Otherwise justification has to span multiple time
frames. Problems might arise due to counters, timers
and structures with large sequential depth. For example
counters may present problems because of the unrolling
that needs to be performed. The problem will be with
something like the reset logic of a counter that may have
to be explicitly unrolled to set up initial conditions.

A Data Registerr can be the target of several as-
signments within the same process. Assume we need
to justify valuev on registerr . We pick an assign-
mentA with LHS r and RHSe. The justification is
done by assigningv to e. If e is a primary input and
the assignment is not controled by conditionals we are
done, otherwise several objectives are added to the List
of Justification Objectives. Justification may have to
proceed through Arithmetic (+,−) and Logic Opera-
tors. In the latter case we use standard structural level
ATPG rules. For Arithmetic Operations the number of
choices needs to be controlled. Justifying through an
adder for example presents a lot of choices which we
cannot allow the tool to explore exhaustively. If con-
flicts arise during this process we have to backtrack.

There are two categories of backtrack points: one has
to do with which assignment was picked for the register
and the other is related to the values selected for justi-
fication through logic or arithmetic operators. Finally
each assignment and justification constraint is given a
time tag to signify when it is supposed to take place.

To illustrate this process consider the example de-
scribed in Fig. 9 again. Assume that we want to justify
256 on the output. One way would be to get it from the
input, but let us assume for illustration purposes that
we want to achieve this utilizing an internal assign-
ment. That means that we need to put the value 256 to
the creg. Table 1 shows the constraints and values for
inputs to do that. However, it is clear that we need to
justify the value 64 on creg before we can get to 256.
So we go back in time to do that (two more time frames
as Table 2 shows).

The collection of all constraints at a given time point
is kept as a BBD. The BDD can become incosistent
as a result of a justification operation at which point
backtracking is initiated. We use the following Boolean
encoding: Assuming thatN is the number of control
states, a statev ∈ N is encoded as an assignmentψN(v)

to a vectorEv of n Boolean variables withn ≥ dlog(N)e
For a givenm constraints at a given time frame we
introduce a vectorEk of m Boolean variablesk1, . . . , km
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Table 1. Justification constraints.

Time frame PI vectors Statement

1 (CLK==0,T) OUT=256

2 (CLK==1,T)(RST==0,T)(LD==0,T)(OUT==64,T) OUT=256

Table 2. Justification constraints contd.

Time frame PI vectors Statement

1 (CLK==0,T) OUT=256

2 (CLK==1,T)(RST==0,T)(LD==1,T)(IN==64,T) OUT=256

3 (CLK==0,T)(RST==0,T) OUT=256

4 (CLK==1,T)(RST==0,T)(LD==0,T) OUT=256

whereki is set to 1 when the corresponding constraint
occurs positively. Constraints which are complement
of each other are encoded with complemented varia-
bles. It is a unification process over a Boolean algebra.

For optimization purposes we use memorization
(caching) so that we do not repeat previously done
work. All generated justification sequences along with
the initial objective are cached for future reuse. Other
less obvious optimizations are based on “semantic”
principles. If what needs to be justified is a set of bits
belonging to a status register it is not important how that
is accomplished as long as it is. Also in some cases the
relative values of two data registers are of importance
and not their absolute values. In both of these situations
previous justification sequences can be reused.

6. Experimental Results

We applied our methodology to two microprocessors.
The circuit statistics are given in Table 3. The first four
columns provide information about the original circuit
(number of primary inputs and outputs and DFFs in the
circuit). The remaining four columns provide statistics
for it’s ECFM. Column 8 gives the extraction time of
the ECFM model. The number of DFFs in the ECFM
is significantly smaller than the number of DFFs in the

Table 3. Circuit statistics.

Original ECFM

Circuit PIs POs DFFs PIs POs DFFs Extraction

Viper 33 53 251 75 1 5 8.8s

gl85 17 27 256 44 11 14 8.5s

original circuit while there is an increase in the number
of primary inputs. The number of POs in the ECFM
is either the same as the number of POs in the original
circuit or smaller depending on whether the circuit has
data outputs. Data outputs are discarded in the ECFM
model.

The Viper microprocessor [8] is a 32-bit micropro-
cessor. It has four general purpose registers, two ALU
registers along with a memory address register and
an instruction register. The netlist has approximately
6000 gates. Memory is not included in this description.
The approximately 40 instructions include arithmetic,
comparison, Boolean instructions along with instruc-
tions for reading and writing to the memory. The Viper
halts operation if an exception is raised, which occurs
if an illegal instruction is fetched or overflow occurs.
The gl85 circuit is a model of the 8085 microproces-
sor. This model uses 8-bit input and output buses in
place of the 8-bit bidirectional address-data bus. The
instruction set includes data transfer, arithmetic, logic,
branch, stack, IO, machine control instructions. Each
instruction has one, two or three bytes. Operation of
the gl85 proceeds under the control of two state ma-
chines. The gl85 is considerably more complex than
the viper and traditional ATPG cannot deal effectively
with it. To illustrate this we attempted ATPG directly
on the gl85 model on a 200 MHz UltraSparc II with
1GB of memory. After 11 hours of CPU time the ef-
ficiency achieved was only 17%. This emphasizes the
need to employ abstractions as proposed in this paper.
This is also the reason why we did not use a test suite
generated by an automated tool like CRIS or HITEC
for gl85.

Table 4 presents our validation coverage analysis re-
sults on the above circuits. Column 2 gives the number
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Table 4. Functional Coverage results.

Circuit Vectors s-a Cov (%) SCM (%) TCM (%) Time (mins)

Viper 5959 91.46 100 91.46 8.84

gl85 24307 79.78 93.81 29.15 37.63

of test vectors applied. Columns 4 and 5 give the SCM
and TCM coverage metrics for the corresponding cir-
cuits and Column 6 gives the time to compute the cover-
age metrics in minutes. Take the Viper as an example.
Since the state space for the Viper is in the order of
1075, it is not possible to compute the reachable state
space using current techniques. Most of the state space
is due to the register file. So we evaluate the functional
coverage on the ECFM of the Viper (for which for-
mal verification techniques are applicable) which has
32 states out of which 17 are reachable from the initial
state. Our system also identified instances of unexer-
cised behavior. For example the circuit does not enter
the halt state with the comparison flag bit set. This im-
plies that an instruction causing the machine to enter
the halt state was not tested after an instruction causing
the flag to be set. For the gl85, 7296 states out of the
possible 16384 states in the ECFM are reachable.

Table 4 also correlates the stuck-at fault coverage
and the functional coverage for the test suites that we
utilized in our experiments. The test sequence used for
the viper was obtained using CRIS [19]. The test se-
quence for gl85 was taken from a manually generated
functional test [20]. This table is included because the
SCM and TCM coverage metrics are used to drive the
test generation process as described earlier.

Although the relation between our functional cov-
erage metrics and the stuck-at fault coverage is not
clear, an interesting observation can be made. High
stuck-at coverage does not guarantee high functional
coverage. However, we cannot say anything conclu-
sive about high TCM coverage providing high stuck-
at coverage. Furthermore, our metrics are designed to
gauge functional coverage on a software model of the
design where every signal is observable, as opposed to
stuck-at fault coverage which is associated with man-
ufacturing tests designed to be applied on the actual
chip.

Table 5 presents the results on Coverage-Directed
Test Generation for the two microprocessors. Our ob-
jective is to get 100% state coverage, or terminate the
process when a timeout limit of 200000 seconds is
reached. The first column specifies the tool used to

Table 5. Functional Test Generation results.

#Just SA Covg. (%)

Tool Circ. #Vec. Total Succ. Time (s) All Control

FTGEN gl85 57307 2472 1417 200000 53.10 72.98

FTGEN Viper 19813 1856 1373 9867 81.78 94.17

FTGEN∗ Viper 26200 1856 1687 7100 82.82 95.21

obtain the corresponding results. FTGEN is the tool
that utilizes ATPG techniques for justification and map-
ping back, while FTGEN∗ is the tool that utilizes the
approach described in Section 5.3.2. The 3rd column
gives the number of vectors generated, the 4th col-
umn gives the number of times justification was nece-
ssary, the 5th column shows the number justification
was succesfull, the 6th column gives the overall time
required, and the last two columns give the stuck-at
fault coverage that the generated sequences achieve,
for the complete fault list or the control fault list (faults
present in the ECFM). Although stuck-at fault coverage
is not necessarily an accurate measure of the quality of
a functional test sequence, we believe that it is a good
indication of its effectiveness. For the viper the ob-
jective of 100% state coverage was achieved while for
gl85 the process timed out. As can be seen for the viper
FTGEN∗ produces a sequence that achieves better cov-
erage faster. The reason why FTGEN∗ produces better
results on the viper is the fact that we are able to succes-
fully justify more objectives than when using ATPG (in
FTGEN) and that results in less number of vectors be-
ing dropped. Test sequences are quite lengthy, which is
a common characteristic of functional test generation.
However, this approach produces a test sequence with
much better coverage compared to directly applying
ATPG on the circuits. Table 5 gives some indication
that doing the justification at the RT-Level is a good
alternative to other proposed methods [5, 21, 6].

We then utilized the sequence of 5959 vectors on
the viper to monitor for specific event sequences. The
whole process takes 18 mins. We are basically moni-
toring for good behavior and we are using 32 event se-
quences; 27 monitoring instruction decoding, 3 mon-
itoring overflow conditions, 1 monitoring illegal in-
structions. The results are given in Table 6. The
objective of this experiment is to measure how many
user provided event sequences an independently gener-
ated test sequence covers, and augment that sequence
with additional tests that exercise interesting uncovered
behaviors.
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Table 6. Control Event Sequence Coverage results.

31 Event Sequences
monitoring Type Instances

Comparison 335

Boolean 478

Instruction Arithmetic 93

Decoding(#27) Call 45

Memory 54

I/O 87

Illegal instructions(#1) 310

Addition 12

Overflow conditions(#3) Subtraction 11

Left Shifting 2

The Event Sequences used are given in the following:

• Illegal Instructions

INCLUDE TE {!CF && ((IR23&&IR22&&IR21&&IR20)||(IR23&&IR22&&IR21&&
!IR20) || (IR23&&IR22&& !IR21 &&IR20))}

CA {STOP}{[1]}

• Overflow due to Addition

INCLUDE TE {!CF && !IR23 &&IR22 && ! IR21 && IR20)}
CA {OVF}{[5]}

• Overflow due to Subtraction

INCLUDE TE {!CF && !IR23 &&IR22 && IR21 && IR20)}
CA {OVF}{[5]}

• Overflow due to Left Shifting

INCLUDE TE {!CF && IR23 &&IR22 && !IR21 && !IR20 &&MF1 && !MF0)}
CA {OVF}{[5]}

As was mentioned earlier the test sequence utilized
does not test some instances of behavior. We gene-
rated an event sequence which has the setting of reg-
ister B as the triggering event and the raising of the
STOP flag within 2 to 6 cycles as the consequent ac-
tion. Raising of the STOP flag signifies entering of the
HALT state. We utilized the algorithms described in
Section 5.2 for event sequence test generation and gene-
rated a sequence of two instructions that will cause the
STOP flag to be set and the machine to enter the HALT
state immediately after that. The first is a comparison

instruction and the second is an illegal instruction. This
process took 17.1 seconds. We then expanded this se-
quence by justifying the values that needed to be loaded
to registers R and M, the registers used by the compari-
son instruction. This was done in 11 seconds.

We are currently working on applying these tech-
niques to the gl85 microprocessor, as well as the DLX,
a pipelined example.

7. Conclusion

In this paper we have addressed the problem of design
validation by considering two very important issues
associated with it. The first is the issue of functional
coverage. We extended the previously introduced state
and transition coverage metrics with additional metrics
targeting control event sequences. Secondly we pro-
vided two techniques in automatic test generation. The

first aims at generating critical transition tours in the
control state space of the design (ECFM) and the sec-
ond aims at exercising uninstantiated event sequences.
Our future work involves the application of these tech-
niques to larger more complicated examples(with em-
phasis on pipelined designs). Additionally we would
like to be able to develop an iterative framework in our
test generation approach where after some ECFM se-
quences have proven to be unrealizable in the context
of the complete machine, other test sequences would
be generated. Ideally one would like to be able to
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recognize unrealizable ECFM sequences on the fly.
Finally we would also like to investigate the possibil-
ity of automating the process of discovering the event
control sequences that need to be exercised. Currently
we rely on the designer to provide these sequences.
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