
Machine Learning, 44, 245–271, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Parameter Estimation in Stochastic Logic Programs

JAMES CUSSENS jc@cs.york.ac.uk
Department of Computer Science, University of York, Heslington, York YO10 5DD, UK

Editors: Peter Flach and Sašo Džeroski

Abstract. Stochastic logic programs (SLPs) are logic programs with parameterised clauses which define a log-
linear distribution over refutations of goals. The log-linear distribution provides, by marginalisation, a distribution
over variable bindings, allowing SLPs to compactly represent quite complex distributions.

We analyse the fundamental statistical properties of SLPs addressing issues concerning infinite derivations,
‘unnormalised’ SLPs and impure SLPs. After detailing existing approaches to parameter estimation for log-linear
models and their application to SLPs, we present a new algorithm called failure-adjusted maximisation (FAM).
FAM is an instance of the EM algorithm that applies specifically to normalised SLPs and provides a closed-form
for computing parameter updates within an iterative maximisation approach. We empirically show that FAM works
on some small examples and discuss methods for applying it to bigger problems.

Keywords: logic programming, parameter estimation, EM algorithm

1. Introduction

There is currently considerable interest amongst the AI community in developing
probabilistic knowledge representations that extend existing approaches to incorporate do-
main knowledge and/or relational data (Ngo & Haddaway, 1997; Koller & Pfeffer, 1997;
Koller & Pfeffer, 1998; Kersting & De Raedt, 2000; Muggleton, 2000; Cussens, 2000).

One approach to this problem is to integrate probabilistic and ‘logical’ methods: an idea
that has a long history dating back to Boole (1854) and which is extensively discussed in
Cussens (1999a). A common idea is to use a set of formulae in first-order logic (a first-
order theory) to encode domain knowledge. Such a theory can describe relations between
objects. Probability can then be ‘added’ so that the probability with which an object has
some attribute depends on the attributes which related objects have (Friedman et al., 1999)
or, more generally, so that probabilities depend on what is entailed by the logically-encoded
domain knowledge (Ngo & Haddaway, 1997).

As well as arguing that these more complex models are required to adequately repre-
sent complex probabilistic knowledge, workers have addressed the question of algorithms
for inference in, and learning of, such statistical-logical models. This paper focuses ex-
clusively on the parameter learning problem for a particular choice of statistical-logical
model: stochastic logic programs (SLPs) (Muggleton, 1996; Cussens, 1999b; Muggleton,
2000; Cussens, 2000).

Muggleton (1996) explicitly introduced SLPs as generalisations of hidden Markov models
(HMMs) and stochastic context-free grammars (SCFGs). Statistical approaches, often using

246 J. CUSSENS

HMMs and SCFGs, have revolutionised computational linguistics (Charniak, 1993). More
recently, there has been work using Maximum Entropy methods applied to non-context-free
models (Abney, 1997; Riezler, 1998). SLPs fall into this non-context-free category, and can
be seen as a special case of Riezler’s probabilistic constraint logic programs (Riezler, 1998)
which Riezler uses to represent constraint grammars.

However, SLPs are applicable to more than computational linguistics. Muggleton (1996)
argued that SLPs can be used within inductive logic programming (ILP). ILP is machine
learning within a logical framework where logic programs are induced from data and
domain knowledge and where there already exists valuable work involving probabilistic
methods (Pompe & Kononenko, 1995; Muggleton, 1996; Pompe & Kononenko, 1997;
Flach & Lachiche, 1999). Most notable is Dehaspe (1997) where, in work related to the
current paper, Dehaspe combines maximum entropy and ILP methods in the MACCENT
algorithm. The connections and contrasts between Dehaspe’s log-linear models with clausal
constraints and SLPs can be found in Cussens (1999b). Despite this existing work, it is fair
to say that probabilistic methods in ILP require considerable development if ILP is to
realise its potential for statistical relational learning. From a statistical point of view most
ILP is lop-sided, focussing exclusively on the structure of the model (i.e. the induced logic
program) at the expensive of parameter learning. This clearly must be remedied if ILP is to
become better at inducing models that represent uncertainty.

This paper is lop-sided in the opposite direction, focusing exclusively on a parametric
statistical analysis of SLPs, so that a large number of topics examined in related work are
expressly left out. Most noticeably, the current paper does not examine structure learning
as Dehaspe did. Also there is no attempt to connect the semantics of SLPs to that of logic
programs as in Muggleton (2000). There is also little on the connections between SLPs and
related approaches, which are discussed in Cussens (1999a, 1999b).

The paper is organised as follows. Section 2 is devoted entirely to defining terminology.
Section 3 introduces SLPs and the probability distributions they define. A number of dif-
ferent types of SLPs are examined, and the relationships between SLPs and three existing
probabilistic models are given. The core of the paper is Section 4, which concerns parameter
estimation for SLPs. Conclusions and pointers to further work are in Section 5.

2. Logic programming definitions

For convenience, here is a brief overview of the more important logic programming concepts.
For more details, the reader can consult any standard textbook on logic programming (e.g.,
Lloyd, 1987). Definite (logic) programs consist of a set of definite clauses, where each
definite clause is a disjunctive first-order formula such as p(X, Y) ∨ ¬q(X, Z) ∨ ¬r(Z)

which we will write as p(X, Y) ← q(X, Z), r(Z). All variables are implicitly universally
quantified. We will denote variables by names starting with upper-case letters and use lower-
case letters for predicate and function symbols. A literal is an atomic formula (briefly atom)
or the negation of an atom. Definite clauses consist of exactly one positive literal (p(X, Y)

in our example) and zero or more negative literals (such as q(X, Z) and r(Z)). The positive
literal is the head of the clause and the negative literals are the body. If C is a clause, C+

denotes the head of C and C− the body.

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 247

A goal or query is of the form ← A1, . . . , AM , where A1, . . . , AM are all atoms. If
M = 0 then we have the empty goal denoted by ✷. It is also convenient to introduce an
extra goal fail. A substitution such as θ = {X/ f (a, W), Y/Z} is a mapping from variables
to first-order terms. A substitution θ unifies two atoms A1 and A2 if A1θ (θ applied to A1)
is identical to A2θ . A computation rule is a function from goals to atoms such that the value
of the function for a goal is an atom, called the selected atom, in that goal. (With Prolog the
selected atom is always the leftmost atom of a goal.) Resolution is an inference rule that takes
an atom A selected from a goal ← A1, . . . , A, . . . , AM , unifies A with the head C+ of an
input clause C = C+ ← C− using a substitution θ and returns (← A1, . . . , C−, . . . , AM)θ

as a new goal. Note that C− may be empty.
An SLD-derivation of a goal G0 using a logic program P via a computation rule Sel is a

(finite or infinite) sequence of goals with the following properties.

– The initial goal in the sequence is G0

– If G j = ✷ or G j = fail then the sequence terminates at G j .
– If G j �= ✷ and G j �= fail, then G j+1 is produced from G j using resolution as follows:

• Let A j be the atom of the non-empty goal G j selected using Sel.
• Let C j be any clause in P such that C+

j and A j have the same predicate symbol. (C j

will have its variables renamed so that C j and G j have no variables in common.)
• Let θ j be the most general unifier of A j and C+

j if one exists, otherwise it is undefined.

If θ j is undefined then G j+1 = fail. Otherwise, G j+1 is the result of replacing A j by
C−

j in G j and then applying θ j to the result. Note that this may mean that G j+1 = ✷ (is
empty).

We will abbreviate SLD-derivation to derivation. Clearly, all finite derivations consist of
a finite number of goals followed by either fail or ✷. Since the computation rule is fixed
and the initial goal is given, an SLD-derivation is completely determined (up to renaming
of variables) by the sequence of clauses it uses (C0, C1, C2, . . .) and where appropriate we
will denote a derivation by this clause sequence.

The SLD-tree for a goal G0 is a tree of goals, with G0 as root node, and such that the
children of any goal G are all the goals which can be produced by one resolution step
from G and a choice of clause. (✷ and fail have no children.) An SLD-refutation is a
finite SLD-derivation ending in the empty goal ✷. We will sometimes refer to an SLD-
refutation as a successful derivation and will also abbreviate it to refutation. Branches of
the SLD-tree ending in the empty goal are success branches corresponding to refutations
(successful derivations). A computed answer for a goal G0 is a substitution for the variables
in G0 produced by an SLD-refutation of G0. The substitution is found by composing the
θ j produced during the refutation and then restricting to just those variables in G0.

We will often use Prolog notation, where p(X, Y) ← q(X, Z), r(Z) is represented thus
p(X,Y):-q(X,Z), r(Z). and ← q(X, a) is represented thus :- q(X,a). We will use
the symbol x to represent an SLD-derivation and r to represent an SLD-refutation. R(G)

denotes the set of all refutations of G; R(G) can be empty, finite or infinite. D(G) denotes
the set of all derivations of G.

248 J. CUSSENS

3. Stochastic logic programs

Kameya and Sato (2000) note that “there are two different basic attitudes towards the use of
probability in logic or logic programming”. These are the constraint approach where the
probability that a logical formula is true is constrained to lie in some region and the distribu-
tion approach where a specific probability distribution is defined which gives the probability
that each logical formula is true. However, it is common to both strands that the probabil-
ity distributions in question are defined over ‘possible worlds’ (first-order models) which
(by marginalisation) give for each closed logical formula the probability that it is true. For
example, in Poole (1997) “Possible worlds are built by choosing propositions from sets of
independent choice alternatives”.

It is important to understand that SLPs do not define distributions of this nature. An SLP
S with parameters λ together with a goal G defines up to three different related distributions:
ψ(λ,S,G), f(λ,S,G) and p(λ,S,G), defined over derivations, refutations and atoms, respectively.
None of these necessarily define a distribution over possible worlds, although it may be
possible to encode such a distribution using an SLP. In particular, as shown in Section 3.1.3,
p(λ,S,G) defines a distribution over atoms, not over the truth values of atoms.

Definition 1. A stochastic logic program (SLP) S is a definite logic program where some
of the clauses are parameterised with non-negative numbers. A pure SLP is an SLP where
all clauses have parameters, as opposed to an impure SLP where not all clauses have param-
eters. A normalised SLP is one where parameters for clauses whose heads share the same
predicate symbol sum to one. If this is not the case, then we have an unnormalised SLP.

Figure 1 shows S0, a very simple example of a pure normalised SLP. Note that the first
clause in S0, although syntactically legal, would not be found in a real logic program, since
it is logically equivalent to the simpler clause s(X) ← p(X). However, the distributions
defined by SLPs depend on the syntactic structure of the underlying logic program so that
replacing 0.4 : s(X) ← p(X), p(X) by 0.4 : s(X) ← p(X) would change the probability
distributions defined by S0.

This section provides formal definitions for SLPs, starting with pure normalised SLPs in
Section 3.1 and then moving on to consider unnormalised and impure SLPs in Sections 3.2
and 3.3 respectively. In Section 3.4, SLPs are related to Bayesian nets, Markov nets and
stochastic context-free grammars.

3.1. Pure normalised SLPs

3.1.1. Defining distributions over derivations. We begin by describing pure normalised
SLPs since these have a particularly simple characterisation in terms of Markov chains. In

Figure 1. S0: A simple pure, normalised SLP.

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 249

the definition of SLD-derivation given in Section 2, C j the j th clause in a derivation can
be any clause such that the predicate symbol of C+

j matches that of A j , the j th selected
atom. Recall that, assuming a fixed computation rule and a given initial goal, a derivation
is determined by its choice of clauses. It follows that there is only room for probability in
the choice of clause. In a pure normalised SLP each choice for C j has a parameter attached
and the parameters sum to one, so they can therefore be interpreted as probabilities.

Pure normalised SLPs are defined such that each parameter l(Ci) denotes the probability
that Ci is the next clause used in a derivation given that C+

i has the correct predicate symbol.
Abbreviate l(Ci) to li and write λi = log li where log denotes natural logarithm. In this
paper both λi and li are used to describe SLP parameters.

The clause parameters thus define transition probabilities between goals. We will now
define these transition probabilities formally. To do so consider the set {Gκ}κ of all possible
goals and define pκ,κ ′ the probability of moving from Gκ to Gκ ′ . Together with aκ the
probability of beginning with Gκ , there is enough to define the Markov chain defined by a
pure normalised SLP and an initial goal. The set {Gκ}κ can be all goals in some particular
first-order language, but typically only those appearing in the SLD-tree of the initial goal
G0 are of interest. (Readers unfamiliar with Markov chains are recommended (Feller, 1950)
as an introduction.)

Definition 2. Let S be a pure normalised SLP and let G0 be a goal. S and G0 define a
Markov chain where the states of the Markov chain are goals Gκ and where aκ = 1 if
Gκ = G0 and aκ = 0 otherwise

pκκ ′ =




li if Gκ ′ is a child of Gκ produced by using clause Ci

1 if Gκ = Gκ ′ = ✷

1 if Gκ = Gκ ′ = fail

0 otherwise

✷ and fail are absorbing states of the Markov chain—once they are reached the chain
remains stuck there forever. We are therefore mapping finite derivations to infinite realisa-
tions of the Markov chain where only a finite initial sequence of states are not ✷ or fail.
This is common in the application of Markov chains since it means we can conveniently
situate all sequences in the single sample space of infinite sequences. (We will nonetheless
continue to refer to finite derivations whenever this is more intuitive.)

Since the aκ and pκκ ′ define a Markov chain it follows immediately that, for any n, we
have a probability distribution over all sequences of goals of length n and also a probability
distribution over all infinite sequences of goals. However, it is clear from the definitions
of aκ and pκκ ′ that any sequence of goals that does not correspond to an SLD-derivation
starting with G0 has probability zero. It follows that our Markov chain defines a probability
distribution over SLD-derivations starting with G0.

For any SLD-derivation starting with G0, it is not difficult to see that the probability
of that derivation, as defined by the Markov chain, is

∏n
i=1 lνi

i where νi is the number
of times the clause Ci is used in that derivation. We now state this formally, by defining a
distribution ψ(λ,S,G)(x) over D(G), the set of all SLD-derivations which begin with the goal

250 J. CUSSENS

G and which use a pure normalised SLP S with parameters λ. D(G) contains (i) infinite
derivations, (ii) finite derivations ending in ✷ (refutations of G) and (iii) finite derivations
ending in fail. Definition 3 (and later Definition 4) is an adaptation of a definition found
in Riezler (1998).

Definition 3. Let G be a goal, and S be a pure normalised SLP. S defines a probability
distribution ψ(λ,S,G)(x) on the set D(G) (the set of derivations starting with G using S) s.t.
for all x ∈ D(G):

ψ(λ,S,G)(x) = eλ·ν(x) =
n∏

i=1

lνi (x)
i

λ = (λ1, . . . , λn) ∈ IRn is a vector of log-parameters where λi is the log of li , the parameter
attached to the i th parameterised clause,

ν = (ν1, . . . , νn) is a vector of clause counts s.t. for each νi : D(G) → IN ∪ {∞}, νi (x) is
the number of times the i th parameterised clause is used as an input clause in derivation
x ,

λ · ν(x) is a weighted count s.t. λ · ν(x) = ∑n
i=1 λiνi (x),

Usually it will be clear which SLP and goal is being used to define the distribution, so we
will often abbreviate ψ(λ,S,G)(x) to ψλ(x).

3.1.2. Defining distributions over refutations. Our main focus of interest is not ψ(λ,S,G)(x)

but the conditional distribution ψ(λ,S,G)(x | x ∈ R(G)), the distribution over derivations
given that each is a refutation. We will denote this distribution by f(λ,S,G):

f(λ,S,G)(x)
def= ψ(λ,S,G)(x | x ∈ R(G))

Let

Z(λ,S,G)
def=

∑
x∈R(G)

ψ(λ,S,G)(x) = ψ(λ,S,G)(R(G))

then

f(λ,S,G)(x) =
{

Z−1
(λ,S,G)ψ(λ,S,G)(x) if x ∈ R(G)

0 if x ∈ D(G)\R(G)

f(λ,S,G)(x) is a log-linear model over refutations, defined for goals where Z(λ,S,G) > 0. To
see this, consider Definition 4, where f(λ,S,G) is defined without reference to ψ(λ,S,G). The
only slight alteration to a standard log-linear model is that it is extended so that derivations
which are not refutations have probability zero, rather than being undefined.

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 251

Figure 2. Annotated SLD-tree for S0.

Definition 4. Let G be a goal such that Z(λ,S,G) > 0, and S be a pure normalised SLP. S
defines a log-linear probability distribution f(λ,S,G)(r) on the set R(G) (the set of refutations
of G using S) s.t. for all r ∈ R(G):

f(λ,S,G)(r) = Z−1
(λ,S,G)e

λ·ν(r) = Z−1
(λ,S,G)

n∏
i=1

lνi (r)
i

Z(λ,S,G) = ∑
r∈R(G) eλ·ν(r) is a normalizing constant, λ, ν and λ · ν(r) are defined as in

Definition 3.
We extend the normal log-linear definition so that f(λ,S,G)(x) = 0, if x ∈ D(G)\R(G).

f(λ,S,G)(x) is thus a distribution over the whole of D(G).

The distributions ψλ and fλ are more easily understood by referring to the SLD-tree which
underlies them. By way of example, figure 2 shows an annotated SLD-tree for refutations
of the goal ← s(X) using S0. There are 6 derivations, of which 4 are successful and 2 are
failures. The branches of the tree are labelled with (i) the unification effected by choosing
clauses and (ii) the parameters attached to these clauses. Since S0 is pure and normalised ψλ

is a probability distribution over derivations, and the tree shows how the probability mass of
one is divided up as we move down the tree. To find ψλ(x) for any derivation x we multiply
the parameters on the branches corresponding to that derivation. Both failure derivations
have probability 0.084, so Z(λ,S0,←s(X)) = 1 − 2 × 0.084 = 0.832. So, for example, if the
leftmost refutation is r1, then f(λ,S0,←s(X))(r1) = (0.4 × 0.3 × 0.3)/0.832 ≈ 0.043 (The
tree assumes that the variable in the two s/2 clauses is renamed to X ′ and X ′′.)

3.1.3. Defining distributions over atoms. fλ defines a distribution over atoms via marginal-
isation. First define the yield of a refutation and the proofs of an atom.

252 J. CUSSENS

Definition 5. The yield Y (r) of a refutation r of unit goal G = ← A is Aθ where θ is
the computed answer for G using r . The set of proofs for an atom yk is the set X (yk) =
{r |Y (r) = yk}. Note that X (Y (r)) is the set of all refutations that yield the same atom as r .

We only define yields with respect to unit goals. This is just a convenience, since given
a non-unit goal ← G1, . . . , G M , we can always add the clause A′ ← G1, . . . , G M , where
A′ contains all the variables of G1, . . . , G M , and then consider yields of ← A′. Note that
from a logical perspective a refutation of ← A with computed answer θ amounts to a proof
of Aθ , so this choice of terminology is natural.

We now define a distribution p(λ,S,G) over atoms in terms of their proofs.

p(λ,S,G)(yk)
def=

∑
r∈X (yk)

f(λ,S,G)(r) = Z−1
(λ,S,G)

∑
r∈X (yk)

eλ·ν(r) (1)

If G has t variables, then p(λ,S,G)(yk) defines a t-dimensional distribution over variable
bindings for these t variables. Note that we allow non-ground bindings unlike in (Muggleton,
1996; Cussens, 1999b; Mugleton, 2000). We will see in Section 3.4 how we can use these
t-dimensional distributions to encode probabilistic models using other formalisms into
SLPs. Returning to our example SLP S0 we find that it defines a distribution over the
sample space {s(a), s(b)}, where

p(λ,S0,←s(X))(s(a)) = (0.4 × 0.3 × 0.3 + 0.6 × 0.2)/0.832 = 0.1875

and

p(λ,S0,←s(X))(s(b)) = (0.4 × 0.7 × 0.7 + 0.6 × 0.8)/0.832 = 0.8125

It follows from the definition in (1) that we can express p(λ,S,G)(yk) as a ratio of Z -values:

p(λ,S,G)(yk) = Z(λ,S,←yk)

Z(λ,S,G)

Z -values can be expressed recursively. Let Z(λ,S,✷) = 1, Z(λ,S,fail) = 0 and for all other
goals Gκ

Z(λ,S,Gκ) =
∑
Gκ′

pκκ ′ Z(λ,S,Gκ′)

These equations can form the basis of a variable elimination algorithm for computing
p(λ,S,G)(yk) as discussed in Cussens (2000).

3.2. Unnormalised SLP

It is clear from Definition 4 that the parameters λ of an SLP need not be normalised to define
distributions fλ and pλ. The only condition that needs to be added to Definition 4 is that Zλ

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 253

Figure 3. SUNNORM, an unnormalised SLP not equivalent to any normalised SLP.

must be finite. If this condition is met but the parameters are not normalised then we have
an unnormalised SLP. We will see in Section 3.4 that unnormalised SLPs can conveniently
represent Bayesian nets.

If an SLP is normalised then each clause parameter can be interpreted as a probability—
the probability with which that clause is chosen when its head has the appropriate predicate
symbol. This property of normalised SLPs is exploited in the failure-adjusted maximisation
(FAM) algorithm for normalised SLPs presented in Section 4.4. Given that normalised SLPs
have this useful feature, it would be nice if any unnormalised SLP could be reparameterised
to an equivalent normalised SLP with the same underlying logic program. Unfortunately,
this is not the case.

Consider SUNNORM, the unnormalised SLP in figure 3. Clearly, p(a) gets probability 2/3
and p(b) gets probability 1/3, according to p(λ,SUNNORM,←p(X)). Consider parameters l1 and
l2 for C1 and C2 giving the same distribution. It is easy to see that l1 = 2 and l2 can take any
value. In particular, no normalised SLP, with the same clauses as SUNNORM can represent
p(λ,SUNNORM,←p(X)).

The point is that because unnormalised SLPs allow clause parameters to exceed one, the
derivation (C1, C2) can get strictly higher probability than (C2) despite using extra clauses.
This is not possible with normalised SLPs, where a refutation can be seen as a sequence
of probabilistic choices between clauses: as more choices are made the probability is non-
increasing.

A restriction to normalised SLPs is a real restriction. However, it is only because nor-
malised SLPs can be viewed in terms of probabilistic choices that we can apply the FAM
algorithm described in Section 4.4. Another appealing intuitive feature of normalised SLPs
is that we can view refutations as arguments for a particular yielded atom where the more
steps there are in the argument, the weaker it becomes.

3.3. Impure SLPs

Consider SIMPURE, the impure SLP in figure 4. Informally, we want SIMPURE to say that
James has had papers accepted for both MLJ and UAI, and because of this the atoms
james(vhappy), james(happy), james(ok) and james(unhappy) have the probabi-
lities given by the parameters. So we want p(λ,SIMPURE,← james(X)) to give these 4 probabilities
to the 4 possible yields produced by ← james(X).

Let us attempt to find a pure SLP which defines such a probability on the four yields of ←
james(X). Suppose the paper accepted/1 clauses were parameterised with parameters
l ′1 and l ′2, giving the parameter set λ′. Since we want pλ′(james(vhappy)) = 0.5, and
pλ′(james(happy)) = 0.3, it is easy to see that we must have l ′1 = l ′2. We must also have
pλ′(james(vhappy))/pλ′(james(ok)) = 5, but clearly since l ′1 = l ′2, we have pλ′(james
(vhappy))/pλ′(james(ok)) = 0.5l ′1/(0.1l ′1 + 0.1l ′1) = 5/2. Therefore we can not extend
SIMPURE to a pure SLP defining the same distribution.

254 J. CUSSENS

Figure 4. SIMPURE, an impure SLP.

The desired meaning for unparameterised clauses is to see them as non-probabilistic
domain knowledge acting as constraints. The ability to combine such domain knowledge
with probabilities is the central feature of SLPs (although not unique to SLPs). In pure SLPs
only equational constraints between first-order terms are possible. These are not sufficiently
expressive in many cases as even the tiny linguistic examples in Cussens (2000) show.

On this view, it is enough to know that the paper accepted(X) constraint in the 3rd
james/1 clause is satisfied—we do not care that is ‘satisfied twice’ and we do not want
the fact that there are two refutations of ← paper accepted(X) to affect the distribution,
which must happen if the paper accepted/1 clauses are parameterised.

To effect the desired meaning we just alter Definition 4, so that the possibly many ways
of satisfying our constraints are collapsed to a single element in the probability space.

Definition 6. Let S be an SLP (pure or impure). Identify refutations with the sequence of
clauses they use. For any refutation, let red(r) be the clause sequence produced by deleting
all unparameterised clauses. Let � be an equivalence relation on R(G) where r1 � r2 iff
red(r1) = red(r2). Let r be a representative of its equivalence class Eq(r), then

f(λ,S,G)(Eq(r))
def= f(λ,S,G)(r)

f(λ,S,G)(Eq(r)) is well-defined since each member of the equivalence class has exactly the
same parameterised clauses, so f(λ,S,G) is the same for all of them. We write Eq(r) ∈ R(G)

to mean that every refutation in Eq(r) is in R(G).

If, for any r ∈ R(G), all refutations in Eq(r) yield the same atom

p(λ,S,G)(yk)
def=

∑
Eq(r)s.t. r∈X (yk)

f(λ,S,G)(Eq(r))

Definition 6 ensures that impure SLPs are defined to have the desired behaviour discussed
previously. SIMPURE defines the right probabilities, since the two refutations yielding
james(ok) have been collapsed into one equivalence class. Definition 6 agrees with
Definition 4 when the SLP happens to be pure, since then all the equivalence classes contain
a single refutation. Note the restriction concerning yields which means that the SLPSWRONG

in figure 5 does not define a distribution p(λ,SWRONG,←p(X,Y)). This is essentially because there

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 255

Figure 5. SWRONG, an SLP that does not define a distribution p(λ,SWRONG,←p(X,Y)).

is an unquantified choice between the p/2 clauses, which is a real choice because it affects
yields. Note also that Definition 6 ensures that an SLP with no parameterised clauses does
not define a distribution for any goal that can yield more than one atom.

3.4. Relations to some existing probabilistic models

In this section we encode three familiar probabilistic models into SLPs. Considerably more
complex SLPs encoding, for example, distributions over a hypothesis space of logic pro-
grams are used in Cussens (2000).

Figure 6 shows the Asia Bayesian network and an SLP representation of it, where
p(S,λ,←asia(A,T,E,S,L ,B,X,D)) gives the joint distribution represented by the Bayesian net.
The equation

P(A, T, E, S, L , B, X, D)

= P(A)P(S)P(T | A)P(L | S)P(B | S)P(E | T, L)P(D | E, B)P(X | E)

is directly encoded using an impure, unnormalised SLP, with each of the 8 conditional
probability tables defined by a single predicate. Since E is a function of T and L , we only
need 4 unparameterised clauses to encode P(E |T, L) as opposed to the 8 that would be
required if P(E |T, L) were encoded as the other conditional probability distributions are.
It is clear that any Bayesian net with discrete variables can be represented by an SLP in this
manner.

The translation from Bayesian net to SLP is problematic in that the directionality of
Bayesian nets is obscured. In contrast, the mapping between Markov nets and SLPs is

Figure 6. Asia Bayesian net and its encoding as an SLP.

256 J. CUSSENS

Figure 7. Asia Markov net and its encoding as an SLP.

Figure 8. SPALINDROME, an SLP representation of an SCFG.

transparent. Figure 7 shows a Markov net derived from the Asia Bayesian net and its trans-
lation to an impure unnormalised SLP. The structure of the Markov net can be completely
described with a single clause, and the 6 clique potentials each get their own predicate
symbol.

Since SLPs generalise stochastic context-free grammars (SCFGs) it is easy to encode
SCFGs as SLPs. Consider the context-free grammar S → aSa | bSb | aa | bb which
generates palindromes. By placing a probability distribution over the four productions
we have an SCFG which defines a distribution over palindromic strings of as and bs.
SPALINDROME in figure 8 encodes such an SCFG as an SLP where p(λ,SPALINDROME,←s(X,[]))

is the distribution over strings. Hidden Markov models, which are essentially stochastic
regular grammars, can be dealt with similarly.

4. Parameter estimation in SLPs

Our goal is to estimate λ, the true values of the clause parameters of an SLP S whose
underlying logic program is fixed and where we have decided which clauses are to be
parameterised. So the features of the log-linear model are given—we just need to estimate
the parameters. We assume that we have a set of atoms y = (y1, . . . , yN) which have been
generated by S according to the (unknown) distribution p(λ,S,G), where S and G are given.
The data define p̃, the empirical distribution over atoms. p̃(yk) is just the relative frequency
with which the atom yk appears in the data y.

Since SLPs are a special case of loglinear models, we can apply parameter fitting algo-
rithms for general loglinear models to SLPs. Section 4.1 briefly summarises approaches to
parameter estimation for general loglinear models following the presentation given in Della
Pietra et al. (1997). Section 4.2 shows how these general methods apply to SLPs using an
example taken from Abney (1997). Section 4.3 explains how Riezler has extended these
approaches to deal with incomplete data. These sections are included for completeness, and
can be skimmed by those familiar with this work. Section 4.4 contains the main contribution
of the paper: a new method of parameter estimation for pure normalised SLPs.

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 257

4.1. Parameter estimation for loglinear models

In this section we give a brief and informal account of maximum likelihood parameter
estimation for general loglinear models taken from Della Pietra et al. (1997) where a detailed
and formal account of this topic can be found. Della Pietra et al. consider generalised Gibbs
distributions defined over a space � of the form

p(ω) = [Zλ(q0)]
−1e

∑n
i=1 λi νi (ω)q0(ω) = [Zλ(q0)]

−1eλ.ν(ω)q0(ω)

where ν(ω) = (ν1(ω), ν2(ω), . . . , νn(ω)) is a vector of feature values with νi : � → IR,
λ = (λ1, λ2, . . . , λn) is a vector of real-valued parameters and q0 is some ‘initial’ distribution
over �. In Della Pietra et al. (1997) the feature vector is denoted by ‘ f ’, but we will use ν,
since in this paper f represents a distribution.)

Let the empirical distribution p̃(ω) be the relative frequency with which ω ∈ � occurs
in the training data. Let us introduce the notation Prob[rv] to mean the expected value of
a random variable rv according to a distribution Prob. p̃[ν] is then the vector of empirical
mean values of the features. Consider now P(ν, p̃), the set of distributions which agree
with the data as to the expected values of the features:

P(ν, p̃) = {p : p[ν] = p̃[ν]} (2)

It turns out that the MLE estimate for λ is that value of λ which defines a distribution in
P(ν, p̃) which maximises the entropy of p(ω) relative to q0. It is for this reason that loglinear
models are often referred to as maximum entropy (MAXENT) models, particularly in the
computational linguistics literature. It follows that we can do MLE by solving the equations
in (2) and maximising relative entropy. This approach is applied to a small SLP parameter
estimation problem in Section 4.2, but is not feasible for large problems.

As an alternative Della Pietra et al. present an iterative approach called Improved Iterative
Scaling (IIS) which is guaranteed to converge to the MLE. To describe IIS, we need to
introduce some new notation. Let

ν#(ω)
def=

n∑
i

νi (ω)

ν#(ω) can be thought of as something like the total value of all features for ω. If the features
are binary then ν#(ω) is the number of features which are ‘on’ for ω.

We also introduce a notation useful for updating loglinear distributions. Let ◦ be defined
so that, for any parameter vector γ :

(γ ◦ q)(ω) = [Zγ (q)]−1eγ.νq(ω)

It is easy to see that if

q(ω) = [Zγ (q0)]
−1eλ.νq0(ω)

258 J. CUSSENS

then

(γ ◦ q)(ω) = [
Z(λ+γ)(q0)

]−1
e(λ+γ).νq0(ω)

So (γ ◦ q)(ω) is q(ω) with γ added to the parameter vector.

Definition 7 (Improved Iterative Scaling (IIS)).

1. Set q(0) = q0

2. For each i , let γ
(h)
i ∈ [−∞, ∞) be the unique solution of

q(h)
[
νi e

γ
(h)
i ν#

]
= p̃[νi] (3)

3. Set q(h+1) = γ (h) ◦ q(h).
4. Set h ← h + 1 and go to 2 unless q(h) has converged.

Crucially, we can solve (3) for each feature parameter in turn. The value for γ
(h)
i depends

only on the data and on q(h), not on the values γ
(h)
i ′ for i ′ �= i . If ν#(ω) = K for all ω, we

have a closed form solution for γ
(h)
i :

γ
(h)
i = 1

K
log

p̃[νi]

q(h)[νi]

Otherwise it is necessary to solve a polynomial equation for each feature (Della Pietra
et al. 1997). In either case expectations with respect to q(h) must be calculated as well
as the observed frequencies p̃[νi]. In many cases, � will be too complex for an exact
computation of these expectations, so sampling over � will be required to estimate the
required expectations.

4.2. Existing approaches to complete-data parameter estimation for SLPs

Suppose we have data y in the form of a set of atoms and we wish to perform maximum
likelihood estimation (MLE) to estimate the parameters for an SLP with known structure.
We will assume for the time being that the data is complete (or unambiguous) in the sense
that, for each atom in the data, there is only one refutation that can yield it. This bijective
mapping between refutations and atoms means that p̃, the empirical distribution over atoms,
determines f̃ , the empirical distribution over refutations. f̃ (r) is the relative frequency with
which refutation r must have occurred to produce the data y.

For each refutation r we have νi (r), the frequency with which clause Ci is used in r .
So from f̃ , a distribution over refutations, we can compute the expected frequency of each
clause Ci according to f̃ . We will denote this expectation by f̃ [νi]. Since the distribution
over refutations is a log-linear model we can apply the results for general log-linear models

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 259

Figure 9. S1: A simple SLP, unambiguous for ← s(X, Y).

and find the MLE estimates for the SLP parameters by equating expectations as in (2). The
MLE estimates are λ̂ where

∀i : f̃ [νi] = fλ̂[νi]

and fλ̂ is the distribution with maximum entropy which meets these constraints.
Let us apply this approach to MLE using S1, the SLP shown in figure 9. S1 is an odd

looking SLP, but we will use it since it has essentially the same structure as the stochastic
attribute-value grammar G2 that is used in Abney (1997).
S1 is unambiguous for ← s(X, Y) and the bijection between the four refutations

← s(X, Y) and the four atoms that they yield is given in detail in Table 1 where each
4-tuple gives the goal, selected atom, input clause and substitution used at each stage in the
refutation. We also record the distributions pλ and fλ in Table 1.

Table 1. The mapping between refutations and atoms and the distributions pλ and fλ.

Atom s(a, p)

Refutation (← s(X, Y), s(X, Y), C1, {Y/p})
((← p(X), p(X)), p(X), C3, {X/a})
(← p(a), p(a), C3, {})
✷

Probability pλ(s(a, p)) = fλ(C1C3C3) = Z−1
λ l1l2

3

Atom s(b, p)

Refutation (← s(X, Y), s(X, Y), C1, {Y/p})
((← p(X), p(X)), p(X), C4, {X/b})
(← p(b), p(b), C4, {})
✷

Probability pλ(s(b, p)) = fλ(C1C4C4) = Z−1
λ l1l2

4

Atom s(a, q)

Refutation (← s(X, Y), s(X, Y), C2, {Y/q})
(← q(X), q(X), C5, {X/a})
✷

Probability pλ(s(a, q)) = fλ(C2C5) = Z−1
λ l2l5

Atom s(b, q)

Refutation (← s(X, Y), s(X, Y), C2, {Y/q})
(← q(X), q(X), C6, {X/b})
✷

Probability pλ(s(b, q)) = fλ(C2C6) = Z−1
λ l2l6

260 J. CUSSENS

Table 2. Empirical distributions of atoms and refutations.

Count 4 2 3 3

Atoms s(a, p) s(b, p) s(a, q) s(b, q)

p̃ = 1/3 1/6 1/4 1/4

Refutations C1C3C3 C1C4C4 C2C5 C2C6

f̃ = 1/3 1/6 1/4 1/4

Suppose our data comprise 12 atoms. Each atom should be seen as the yield of a refutation
sampled from the distribution f(λ,S1,←s(X,Y)). Following Abney, we will assume that the
proportions of atoms (and consequently refutations) in our data are as in Table 2. Now that
we have fλ and f̃ tabulated in Tables 1 and 2 respectively we can compute the expected
values of clause frequencies according to these two distributions. These expectations are
tabulated in Table 3.

By equating the expectations in Table 3 and manipulating the resulting set of 6 polynomi-
als, we find that for λ̂ = (λ̂1, λ̂2, λ̂3, λ̂4, λ̂5, λ̂6) = (log l̂1, log l̂2, log l̂3, log l̂4, log l̂5, log l̂6)

to be a set of MLE parameters we must have:

(l̂3)
2 = 2(l̂4)

2 (4)

l̂2 = 3l̂1(l̂4)
2 (5)

l̂5 = l̂6 = 1/2 (6)

It follows that Z λ̂ = 2l̂2, and by applying (4)–(6) to the expressions in Table 1 we find that
fλ̂ = f̃ and pλ̂ = p̃. (For example pλ̂(s(a, p)) = Z−1

λ̂
l̂1(l̂3)

2 = l̂12(l̂4)
2/2l̂2 = 2

3 l̂2/2l̂2 =
1/3. The other 3 probabilities follow equally easily.)

Since any parameter set satisfying (4)–(6) defines the same distribution fλ̂ they are
obviously all MLE estimates. Our current MLE estimation problem is somewhat atypical
in that there are more parameters (six) than elements in the sample space (four). This is
why we have a spare two degrees of freedom in choosing MLE parameters. It also explains
why we were able to find λ̂ such that fλ̂ = f̃ . Usually in parameter estimation of loglinear

Table 3. Expected frequency of clauses according to fλ and f̃ , where Zλ = l1(l2
3 + l2

4) + l2(l5 + l6).

Clause fλ[νi] f̃ [νi]

C1 Z−1
λ l1(l2

3 + l2
4) 1/2

C2 Z−1
λ l2(l5 + l6) 1/2

C3 Z−1
λ 2(l1l2

3) 2/3

C4 Z−1
λ 2(l1l2

4) 1/3

C5 Z−1
λ l2l5 1/4

C6 Z−1
λ l2l6 1/4

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 261

Table 4. MLE estimates wrt fλ for a normalised SLP.

l̂1 l̂2 l̂3 l̂4 l̂5 l̂6

3+2
√

2
6+2

√
2

3
6+2

√
2

√
2

1+√
2

1
1+√

2
1
2

1
2

models there are many more points in the sample space than parameters and it is not possible
to find λ̂ such that fλ̂ = f̃ . If we throw in the constraint that we are only interested in λ̂

which define a normalised SLP we get the unique values given in Table 4 which are also
given in Abney (1997).

In summary, our approach to this small problem is (i) enumerate the 4 refutations of
← p(X, Y) in S1 (Table 1), (ii) compute their probabilities (Table 1), (iii) count how often
the clauses were used in each refutation, (iv) set up the equations (Table 3) and (v) solve for
λ̂. In real problems such an approach will be infeasible; there will be too many refutations
to enumerate. An even more basic difficulty is that we have to solve a set of simultaneous
polynomial equations—we can not solve for λ̂i point-wise.

A feasible alternative is to use Improved Iterative Scaling (IIS) which was described for
general loglinear models in Section 4.1. Applying IIS to the problem of MLE for SLPs we
have

ν#(r) =
n∑
i

νi (r)

So ν#(r) is the total number of parameterised clauses used in a refutation r . If a particular
parameterised clause is used more than once, then each occurrence contributes to ν#(r). We
can now rewrite the definition of IIS to apply directly to SLPs:

Definition 8 (Improved Iterative Scaling (IIS)). Let λ(0) be the initial set of parameter
estimates. Set h = 0

1. For each parameterised clause Ci , let γ
(h)
i ∈ [−∞, ∞] be the unique solution of

fλ(h)

[
νi e

γ
(h)
i ν#

]
= f̃ [νi]

2. Set λ(h+1) = γ (h) + λ(h).
3. Set h ← h + 1 and go to 2 unless fλ(h) has converged.

If ν# is constant we have:

γi = 1

K
log

f̃ [νi]

fλ[νi]

262 J. CUSSENS

4.3. Riezler’s iterative maximization for incomplete data parameter estimation in SLPs

To use IIS directly we must have the values f̃ [νi]—where f̃ (r) is the relative frequency
with which refutation r has occurred to produce the observed data composed of atoms. But
we are not in a position to calculate these values if the atoms in our data have more than
one refutation that can yield them. If we have incomplete or ambiguous data of this sort IIS
needs adapting to be usable.

Riezler (1998) shows how the complete data approach can be adapted for incomplete data.
Essentially we replace the unknown actual relative frequency (f̃ (r)) with which refutation
r has occurred, with fλ(r | y) the known probability of r occurring according to our current
parameter estimates, conditional on y, the observed data. We have

fλ(r | y) = p̃(Y (r)) fλ(r | X (Y (r)))

fλ(r |y) is the probability that an atom, randomly chosen from the data, was generated with
refutation r . In the complete data case, X (Y (r)) = r , so that fλ(r | y) does not depend on
λ and fλ(r |y) = f̃ (r) which is known. With ambiguous data, we have to divide up (using
fλ) the empirical probability for an atom yk = Y (r) between the various rs that might
have generated it. Let us extend our notation for expectations so that fλ[νi | y] denotes the
expected value of νi according to the distribution fλ(r | y). fλ[νi | y] is hence the expected
number of times the parameterised clause Ci was used to generate an atom randomly chosen
from the data. Riezler shows that we can iteratively improve parameter estimates by adapting
Improved Iterative Scaling to cope with incomplete data. We just replace f̃ (r) in IIS with
fλ(r | y) giving us the Iterative Maximization (IM) algorithm.

Definition 9 (Iterative Maximization (IM)). Let λ(0) be our initial set of parameter esti-
mates. Set h = 0

1. For each parameterised clause Ci , let γ
(h)
i ∈ [−∞, ∞] be the unique solution of

fλ(h)

[
νi e

γ
(h)
i ν#

]
= fλ(h) [νi | y]

2. Set λ(h+1) = γ (h) + λ(h).
3. Set h ← h + 1 and go to 1 unless fλ(h) has converged.

If ν#(r) = K for all r , we have a closed form solution:

γ
(h)
i = 1

K
log

fλ(h) [νi | y]

fλ(h) [νi]

Let us apply IM to learning the parameters of S2 in figure 10 using the data set de-
scribed in Table 5. S2 is just S0 with unknown parameters. Note that both s(a) and s(b) are
ambiguous—both could have been generated in two ways.

We begin by computing fλ(r | y), fλ(r), fλ[νi | y] and fλ[νi] as functions of λ; the results
are in Tables 6 and 7.

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 263

Table 5. Empirical distribution of atoms (incomplete data).

Atom s(a) s(b)

Count 7 5

p̃ = 7/12 5/12

Table 6. Probability distributions for iterative maximization, where Zλ = l1(l2
3 + l2

4) + l2(l5 + l6).

r fλ(r | y) fλ(r)

(C1, C3, C3)
7
12

l1l2
3

l1l2
3+l2l5

Z−1
λ l1l2

3

(C2, C5)
7
12

l2l5
l1l2

3+l2l5
Z−1

λ l2l5

(C1, C4, C4)
5
12

l1l2
4

l1l2
4+l2l6

Z−1
λ l1l2

4

(C2, C6)
5
12

l2l6
l1l2

4+l2l6
Z−1

λ l2l6

Table 7. Expectations for iterative maximization.

Clause fλ[νi | y] fλ[νi]

C1
7

12
l1l2

3
l1l2

3+l2l5
+ 5

12
l1l2

4
l1l2

4+l2l6
Z−1

λ (l1l2
3 + l1l2

4)

C2
7

12
l2l5

l1l2
3+l2l5

+ 5
12

l2l6
l1l2

4+l2l6
Z−1

λ (l2l5 + l2l6)

C3 2 7
12

l1l2
3

l1l2
3+l2l5

2Z−1
λ l1l2

3

C4 2 5
12

l1l2
4

l1l2
4+l2l6

2Z−1
λ l1l2

4

C5
7
12

l2l5
l1l2

3+l2l5
Z−1

λ l2l5

C6
5
12

l2l6
l1l2

4+l2l6
Z−1

λ l2l6

Fortunately, all refutations involving C1 use 3 parameterised clauses, similarly for refu-
tations involving C3 and C4. For C2, C5 and C6 the number of parameterised clauses used
in refutations is always 2. This allows us to use the closed-form for γ

(h)
i in Eq. (7).

γ
(h)
i = 1

3
log

(
fλ(h) [νi | y]

fλ(h) [νi]

)
, i = 1, 3, 4

γ
(h)
i = 1

2
log

(
fλ(h) [νi | y]

fλ(h) [νi]

)
, i = 2, 5, 6 (7)

Figure 10. S2: A simple SLP.

264 J. CUSSENS

Table 8. Iterative maximization from two different starting points.

C1 C2 C3 C4 C5 C6 log Lλ(y)

(l̂i)0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 −8.3178

· · · · · ·
(l̂i)9 0.5005 0.4996 0.5470 0.4471 0.5722 0.4227 −8.1503

(l̂i)0 5.0000 0.5000 0.4350 0.5000 5.0000 25.0000 −12.3703

· · · · · ·
(l̂i)15 6.5340 0.4524 0.7655 0.3215 11.6720 12.8896 −8.1503

We can use the results contained in Table 7 and Eq. (7) to do Iterative Maximization (IM).
The results of doing IM, with two different starting parameter sets are shown in Table 8. The
final column shows the log-likelihood of the data which is always increasing. We converge
to two different parameter sets which both define the same distribution, showing that, in
general, the parameters of SLPs, like other loglinear models, are not identifiable: different
parameters sets can define the same distribution.

4.4. Failure-adjusted maximisation

In previous sections we have applied general purpose algorithms to parameter estimation
in SLPs. In this section we show how to use the EM algorithm to do MLE parameter
estimation for pure, normalised SLPs. (Familiarity with the EM algorithm is assumed.) We
will call this application of the EM algorithm failure-adjusted maximisation (FAM) because
the algorithm can be seen as an adjustment of the application of EM to context-free models
such as HMMs and SCFGs, where the adjustment is explicitly expressed in terms of failure
derivations.

FAM rests on the observation that a data set of atoms can be viewed as an incomplete data
set derived from a complete data set of derivations which has been truncated to form a set of
refutations and then grouped to give the observed set of atoms. The basic idea is to suppose
that the observed n atoms are generated as follows. An unknown number of derivations
are sampled according to ψλ, then all the derivations that end in failure are thrown away
(the data is truncated) leaving us with a set of refutations. Next all information about the
refutations is thrown away, except the atoms that each of them yield. In other words, all
refutations yielding the same atom are grouped together.

The application of the EM algorithm to grouped truncated data is given in Dempster
et al. (1997) and our presentation of the FAM algorithm specialises that given in Dempster
et al. (1997) to SLPs. The observed data is y = (y1, y2, . . . , yN) a set of atoms, which
we will reformulate into a more convenient form. Let us assume that N0 of the atoms are
unambiguous in the sense that they only have one proof. Let us denote this set of proofs
by x0 = x01, x02, . . . , x0N0 . As for the other (ambiguous) atoms in the data, let there be
t − 1 different ambiguous atoms and let Nk (k = 1, . . . , t − 1) denote the number of times
atom yk appears in y. Writing N = (N0, N1, . . . , Nt−1), we have that the observed data is
y = (N, x0).

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 265

For each k = 1, . . . , t − 1, let xk = (xk1, . . . , xk Nk) denote the unknown proofs corre-
sponding to the Nk observations of atom yk . We could consider (N, x0, x1, . . . , xt−1) the
hidden complete data sampled from fλ and proceed to (attempt to) apply EM. The problem
is (as demonstrated in Section 4.2) that MLE for fλ, whilst easier than for pλ, is still hard.
As Dempster et al. (1997) observe

The drawback of [considering (N, x0, x1, . . . , xt−1) as the complete data] in many stan-
dard examples is that maximum likelihood estimates from a truncated family are not
expressible in closed form, so that the M-step of the EM-algorithm itself requires an
iterative procedure.

We propose therefore a further extension of the complete data [. . .] to include truncated
sample points. We denote by m the number of truncated sample points.

Following Dempster et al. let us suppose that there were m failure derivations which
were truncated. Denote these unknown failure derivations by xt = (xt1, . . . , xtm). Now
the complete data is x = (N, x0, x1, . . . , xt−1, m, xt). This is a set of N + m independent
and identically distributed (iid) derivations. The sampling distribution over such a set of
derivations can be compactly defined by defining ν(x) = (ν1(x), . . . νn(x)) where

νi (x)
def=

t∑
k=0

Nk∑
ι=1

νi (xkι)

So νi (x) is the total number of times clause Ci was used to produce the complete data.
Using ψλ to represent the distribution over iid sequences of derivations, as well as a the
distribution over derivations, we have (as given in Dempster et al. (1997)):

ψλ(x) = N !∏t−1
k=0 Nk!

(
m + N + 1

m

)
t∏

k=0

Nk∏
ι=1

ψλ(xkι)

= N !∏t−1
k=0 Nk!

(
m + N + 1

m

)
t∏

k=0

Nk∏
ι=1

eλ·ν(xkι)

= N !∏t−1
k=0 Nk!

(
m + N + 1

m

)
eλ·ν(x)

The motivation for completing the data in this way is that MLE for ψλ (as opposed to pλ

or fλ) is extremely easy. In the case of normalised SLPs each derivation is a walk through
the Markov chain, and we can do MLE by just counting how often each clause is used. The
MLE estimate for each clause is just that clause’s frequency divided by the total frequency
for each clause whose head has the same predicate symbol.

By positing lots of missing data, we have made the M-step of EM very easy. We pay a
price for this when we come to the E-step. The E-step, in this case, requires us to compute
the expected values of the sufficient statistics of x according to ψλ(h) (x|y) where λ(h) is
the current parameter estimate. The sufficient statistics of x are the νi (x). So, for each i ,

266 J. CUSSENS

we need ψλ(h) [νi |y], the expected frequency for clause Ci given the observed data and the
current parameter estimate. Any given clause Ci can ‘fire’ when producing either (i) an
unambiguous atom or (ii) an ambiguous atom or (iii) a failure derivation. We will denote
the conditional distribution over derivations given that they yield yk by ψλ(x | yk) and given
that they end with fail by ψλ(x | fail). The expected frequency of a clause is hence made
up of three components. Following Dempster et al. (1997), we have:

ψλ(h) [νi | y] =
N0∑
ι=1

νi (x0ι) +
t−1∑
k=1

Nkψλ(h) [νi | yk] + N
(
Z−1

λ(h) − 1
)
ψλ(h) [νi | fail] (8)

Equation 8 forms the basis of FAM which is defined in Definition 10. Note that as long as
our initial parameters λ(0) are such that Zλ(0) > 0 then Zλ(h) will remain positive, since a zero
value would imply that the data has zero probability and the EM algorithm of which FAM
is an instance always increases the likelihood of the data.

Definition 10 (Failure-adjusted maximisation (FAM)). Let λ(0) be our initial set of param-
eter estimates such that Zλ(0) > 0. Set h = 0

1. For each parameterised clause Ci , compute ψλ(h) [νi | y] using (8)
2. For each parameterised clause Ci let S(h)

i be the sum of the expected counts ψλ(h) [νi ′ | y]
for all the clauses Ci ′ such that C+

i ′ shares the same predicate symbol as C+
i .

3. For each parameterised clause Ci , if S(h)
i = 0 then l(h+1)

i = l(h)
i otherwise

l(h+1)
i = ψλ(h) [νi | y]

S(h)
i

4. Set h ← h + 1 and go to 1 unless λ(h+1) has converged.

The decomposition of ψλ(h) [νi | y] into three parts facilitates a comparison of various pa-
rameter estimation problems of different degrees of difficulty. If there are no ambiguous
atoms and zero probability of failure, then the latter two terms in (8) are zero and ψλ(h) [νi |y]
can be computed by simple counting. This corresponds to parameter estimation for SCFGs
from annotated data. If there are ambiguous atoms but still no possibility of failure then
the computation becomes harder since we have to compute the expectations given in the
second term. This corresponds to parameter estimation for SCFGs from unannotated data.
In the general case we have all three terms to compute. The final term can be thought of
as a measure of the degree of ‘non-context-freeness’. The lack of context-freeness is here
identified with the possibility of failure and is reflected in the name FAM.

4.4.1. Failure-adjusted maximisation for complete data. Consider the data set in Table 2,
and set our initial clause parameters as follows: ∀i : li = 1/2. Since each atom is un-
ambiguous, the second term in Eq. (8) is zero. Also, since our only 2 failure derivations
are (C1, C3, C4) and (C1, C4, C3) ψλ[νi |fail] does not depend on λ. Table 9 tabulates∑12

ι=1 νi (x0ι) and ψλ[νi |fail], where x0ι is the unique derivation which yields the ιth atom

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 267

Table 9. λ-independent expectations.

C1 C2 C3 C4 C5 C6

∑12
ι=1 νi (x0ι) 6 6 8 4 3 3

ψλ[νi | fail] 1 0 1 1 0 0

in the data. Table 10 shows that FAM converges to the correct MLE estimates (given by
Table 4) in 7 iterations. log Lλ(y) denotes the log-likelihood of the data which increases
with every iteration.

4.4.2. Failure-adjusted maximisation for incomplete data. Consider estimating clause
parameters from the incomplete data set in Table 5 using FAM. Both atoms are ambiguous
so the first term in Eq. (8) is zero. Let y1 = p(a) and y2 = p(b), so that N1 = 7 and N2 = 5.
First we tabulate the required expectations as functions of λ in Table 11. Note that as for
complete data the ψλ[νi |fail] happen to be independent of λ. Setting all our initial clause
parameters to 0.5, and running FAM, we converge to the MLEs in 3 iterations as shown in
Table 12.

4.4.3. Limitations of failure-adjusted maximisation. FAM is not a general purpose al-
gorithm for log-linear distributions, it is applicable only to normalised SLPs. To see this
consider SUNNORM, the unnormalised SLP in figure 3. Suppose we did not have the

Table 10. Failure-adjusted maximisation for complete data.

C1 C2 C3 C4 C5 C6 log Lλ(y)

l0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 −17.3422

· · · · · ·
l7 0.6602 0.3398 0.5858 0.4142 0.5000 0.5000 −16.2957

Table 11. Expectations for failure-adjusted maximisation (incomplete data).

Clause ψλ[νi |y1] ψλ[νi |y2] ψλ[νi |fail]

C1
l1l2

3
l1l2

3 + l2l5

l1l2
4

l1l2
4 + l2l6

1

C2
l2l5

l1l2
3 + l2l5

l2l6
l1l2

4 + l2l6
0

C3 2
l1l2

3
l1l2

3 + l2l5
0 1

C4 0 2
l1l2

4
l1l2

4 + l2l6
1

C5
l2l5

l1l2
3 + l2l5

0 0

C6 0 l2l6
l1l2

4 + l2l6
0

268 J. CUSSENS

Table 12. Failure-adjusted maximisation for incomplete data.

C1 C2 C3 C4 C5 C6 log Lλ(y)

l0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 −8.3178

l1 0.5000 0.5000 0.5417 0.4583 0.5833 0.4167 −8.1503

l2 0.5000 0.5000 0.5418 0.4582 0.5835 0.4165 −8.1503

parameters 2 and 1, and had to estimate them using MLE from a dataset consisting of
2 p(a) atoms and 1 p(b) atom. If l1 is the parameter for the first clause, then we get the
following likelihood for the data y:

L(y) = l1l2

l1l2 + l2
× l1l2

l1l2 + l2
× l2

l1l2 + l2
= l2

1

(l1 + 1)3

which is maximised at l1 = 2 and an arbitrary value of l2. Running IM and working to
4 decimal places, we do get convergence to l1 = 2, after 89 iterations. The value for
l2 grows with every iteration of IM reaching ≈ 4.5 × 1019 by the 89th iteration. Be-
cause FAM is constrained to produce normalised SLPs, it can not converge to a value
of l1 = 2. The MLE for a normalised SLP is to have l1 = 1 − ε, where ε > 0 is
as small as possible, so strictly speaking there is no MLE. We see this when running
FAM on this data: the value for l1 crawls towards 1, reaching 0.9990 after 6000 itera-
tions.

4.5. Using FAM

The practicality of the FAM algorithm, like other instances of the EM algorithm, depends on
the ability to compute or accurately estimate the required expectations. The work in Kameya
and Sato (2000) on applying EM to models described in the PRISM (programming in statis-
tical modelling) language addresses the problem by using tabulation to increase efficiency.
Tabular approaches can take advantage of the shared common structure of different refuta-
tions and avoid repeated computations. The naive approach in this paper of just enumerating
refutations does not. PRISM models define distributions where every ground atom repre-
sents a binary random variable with possible values true and false. SLPs represent a different
type of distribution, so it is difficult to see how the EM approach in Kameya and Sato (2000)
could be directly applied to SLP parameter estimation. Nonetheless there are interesting
connections and a tabular approach seems the sensible way to compute exact expectations
in SLPs. Done correctly, such an approach would become the forward-backward algorithm
when the SLP was equivalent to an HMM and the inside-outside algorithm when the SLP
was equivalent to a SCFG.

It seems likely that even efficient exact computation of expectations is likely to be infea-
sible for large SLPs. In such cases, a more realistic approach will be based on sampling. We
can easily sample derivations according to ψλ. Failure derivations so sampled contribute to

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 269

estimation of the ψλ[νi | fail] and refutations which yield atoms yk in the dataset contribute
to estimation of the ψλ[νi | yk].

Since FAM is an instance of the EM algorithm, ‘missing’ data is easily handled. Suppose
we were using FAM to estimate the parameters of SPALINDROME in figure 8 and we had the
following atom in our data set; yk = s([X1, a, b, X2, X2, b, a, X1], []) which represents
the observation of a string where some of the elements are unknown. We can just treat
s([X1, a, b, X2, X2, b, a, X1], []) like any other atom, finding its refutations and comput-
ing expectations for FAM, or sampling derivations and counting how many of these happen
to be refutations of s([X1, a, b, X2, X2, b, a, X1], []). More interestingly, we can do ex-
actly the same for s([X1, a, b, X1, X1, b, a, X1], [])—a string where the two unknown
values are somehow known to be the same.

5. Conclusions and future work

There were two central goals of this paper: to detail the fundamental statistical properties of
SLPs and to find a parameter estimation algorithm for pure normalised SLPs. In addressing
the first issue we looked at the properties of unnormalised SLPs and gave a precise definition
of the distribution defined by an impure SLP.

The FAM algorithm is not a general algorithm for log-linear parameter estimation, but an
algorithm for normalised SLPs that takes advantage of a crucial property of such SLPs—the
parameters can be interpreted as probabilities. Unlike the IIS and IM algorithms, we always
have a closed form when computing updates. Although solving the polynomial for IIS and
IM may not be too arduous in many cases it is always more complex than using a closed
form and in some cases will be highly computationally burdensome. IIS and IM of course
have the advantage that they are applicable to all log-linear models.

Although this paper has given the mathematical justification for the FAM algorithm
and showed that it works for two small problems, it is clearly necessary to apply it to
more complex, ‘real’ problems, where we expect sampling approaches to the estimation of
expectations to be important. An analysis of sampling from SLPs, using an example SLP
representing a distribution over logic programs, can be found in Cussens (2000).

ILP has traditionally been biassed towards structure learning at the expense of parameters.
This paper has the complementary deficiency and future work must focus on intertwining
parameter estimation and structure learning. The MACCENT algorithm (Dehaspe, 1997) is
currently the only ILP algorithm that does this, so it is likely to be productive to incorporate
lessons from MACCENT in future work.

Acknowledgments

Many thanks to Stefan Riezler for information on Iterative Maximization and to Stephen
Muggleton for discussions on SLPs. Thanks also to three anonymous referees for many
useful criticisms and corrections. Peter Flach and Sašo Džeroski provided input too. This
work has benefitted from interaction with Taisuke Sato, Luc De Raedt, Luc Dehaspe and
Kristian Kersting. Special thanks to Gill, Jane and Robert for putting up with spoiled
weekends.

270 J. CUSSENS

References

Abney, S. (1997). Stochastic attribute-value grammars. Computational Linguistics, 23:4, 597–618.
Boole, G. (1854). An investigation of the laws of thought, on which are founded the mathematical theories of logic

and probabilities. Mineola, NY: Dover.
Charniak, E. (1993). Statistical Language Learning. MA: Cambridge. MIT Press.
Cussens, J. (1999a). Integrating probabilistic and logical reasoning. Electronic Transactions on Artificial Intelli-

gence, 3(B), 79–103. Selected articles from the machine intelligence 16 workshop.
Cussens, J. (1999b). Loglinear models for first-order probabilistic reasoning. In K. B. Laskey & H. Prade (Eds.),

Proceedings of the fifteenth annual conference on uncertainty in artificial intelligence (UAI-99). Stockholm.
San Francisco, CA: Morgan Kaufmann.

Cussens, J. (2000). Stochastic logic programs: Sampling, inference and applications. In C. Boutilier &
M. Goldszmidt (Eds.), Proceedings of the sixteenth annual conference on uncertainty in artificial intelligence
(UAI-2000). Stanford, CA:Morgan Kaufmann.

Dehaspe, L. (1997). Maximum entropy modeling with clausal constraints. In N. Lavrač & S. Džeroski
(Eds.), Inductive logic programming: Proceedings of the 7th International Workshop (ILP-97). LNAI 1297.
Berlin: Springer.

Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997). Inducing features of random fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19:4, 380–393.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B, 39:1, 1–38.

Feller, W. (1950). An Introduction to probability theory and its applications (Vol. 1) 3rd ed. New York: John Wiley.
Flach, P., & Lachiche, N. (1999). 1BC: A First-Order Bayesian Classifier. In S. Džeroski & P. Flach (Eds.),

Proceedings of the ninth international workshop on inductive logic programming (ILP-99) (Vol. 1634). Lecture
notes in artificial intelligence. Berlin: Springer-Verlag.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational models. In T. Dean
(Ed.), Proceedings of the sixteenth international joint Conference on artificial intelligence (IJCAI’99). San
Francisco, CA: Morgan Kaufmann.

Kameya, Y., & Sato, T. (2000). Efficient EM learning with tabulation for parameterized logic programs. In J. Lloyd,
V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, & P. J. Stuckey (Eds.),
Proceedings of the first international conference on computational logic (CL 2000) (Vol. 1861). LNAI. London.
Berlin: Springer.

Kersting, K., & De Raedt, L. (2000). Bayesian Logic Programs. In J. Cussens & A. Frisch (Eds.), Proceedings of
the work-in-progress Track at the 10th international conference on inductive logic programming.

Koller, D., & Pfeffer, A. (1997). Learning probabilities for noisy first-order rules. In M. Pollack (Ed.), Proceedings
of the fifteenth international joint conference on artificial intelligence (IJCAI-97). Nagoya, Japan. San Francisco,
CA: Morgan Kaufmann.

Koller, D., & Pfeffer, A. (1998). Probabilistic frame-based systems. In J. Mostow & C. Rich (Eds.), Proceedings
of the fifteenth national conference on artificial intelligence (AAAI-98). Madison, Wisconsin. Menlo Park, CA:
AAAI Press.

Lloyd, J. (1987). Foundations of logic programming. 2nd ed. Berlin: Springer.
Muggleton, S. (1996). Stochastic logic programs. In L. de Raedt (Ed.), Advances in inductive logic programming.

Amsterdam: IOS Press.
Muggleton, S. (2000). Semantics and derivation for stochastic logic programs. In R. Dybowski (Ed.), Proceedings

of the UAI-2000 workshop on fusion of domain knowledge with data for decision support.
Ngo, L., & Haddaway, P. (1997). Answering queries from context-sensitive probabilistic knowledge bases. Theo-

retical Computer Science, 171, 147–171.
Pompe, U., & Kononenko, I. (1995). Naive Bayesian classifier within ILP-R. In L. De Raedt (Ed.), Proceedings of

the 5th international workshop on inductive logic programming. Department of Computer Science, Katholieke.
Leuven: Universiteit Leuven.

Pompe, U., & Kononenko, I. (1997). Probabilistic first-order classification. In N. Lavrač & S. Džeroski (Eds.),
Inductive logic programming: Proceedings of the 7th international workshop (ILP-97). Prague. Berlin:
Springer.

PARAMETER ESTIMATION IN STOCHASTIC LOGIC PROGRAMS 271

Poole, D. (1997). The independent choice logic for modelling multiple agents under uncertainty. Artificial Intel-
ligence, 94:1–2, 5–56.

Riezler, S. (1998). Probabilistic constraint logic programming. Ph.D. Thesis, Universität Tübingen. AIMS Report
5(1), 1999, IMS, Universität Stuttgart.

Received May 26, 2000
Revised August 29, 2000
Accepted December 20, 2000
Final manuscript December 20, 2000

