
Wireless Networks 5 (1999) 137–147 137

Broadcast scheduling for information distribution ∗

Chi-Jiun Su a,∗∗, Leandros Tassiulas b,∗∗∗ and Vassilis J. Tsotras c,∗∗∗∗

a Department of Electrical Engineering, Polytechnic University, Brooklyn, NY 11201, USA
b Department of Electrical Engineering, University of Maryland, College Park, MD 20742, USA

c Department of Computer Science, University of California, Riverside, CA 92521, USA

Broadcast data delivery is encountered in many applications where there is a need to disseminate information to a large user community
in a wireless asymmetric communication environment. In this paper, we consider the problem of scheduling the data broadcast such that
average response time experienced by the users is low. In a push-based system, where the users cannot place requests directly to the
server and the broadcast schedule should be determined based solely on the access probabilities, we formulate a deterministic dynamic
optimization problem, the solution of which provides the optimal broadcast schedule. Properties of the optimal solution are obtained
and then we propose a suboptimal dynamic policy which achieves average response time close to the lower bound. The policy has low
complexity, it is adaptive to changing access statistics, and is easily generalizable to multiple broadcast channels. In a pull-based system
where the users may place requests about information items directly to the server, the scheduling can be based on the number of pending
requests for each item. Suboptimal policies with good performance are obtained in this case as well. Finally, it is demonstrated by a
numerical study that as the request generation rate increases, the achievable performance of the pull- and push-based systems becomes
almost identical.

1. Introduction

Broadcast data delivery is rapidly becoming the method
of choice for disseminating information to a massive user
population in many new application areas where client-
to-server communication is limited. This is due to com-
munication asymmetry – physical asymmetry and/or infor-
mation flow asymmetry – inherent in these applications.
The main advantage of broadcast delivery is its scalabil-
ity: it is independent of the number of users the system is
serving. Some examples of the applications in which data
broadcasting plays an important role are traffic informa-
tion systems [18], information dispersal systems for volatile
time-sensitive information such as stock prices and weather
information [16], and news distribution systems [11]. In
[12,13], data broadcasting is also considered as an efficient
way, in terms of energy and bandwidth, for the distribu-
tion of information to a large number of users in a wireless
communication environment.

In a broadcast data delivery system, depicted in figure 1,
a server is continuously and repeatedly broadcasting data
to a user community. There are two basic architectures
for a broadcast delivery system: push-based broadcast de-
livery in which users cannot inform the server about what

∗ Part of this paper was presented in INFOCOM ’97, Kobe, Japan.
∗∗ C.-J. Su is currently with Institute for Systems Research, University

of Maryland, College Park, on leave from Polytechnic University.
∗∗∗ This research was supported in part by an NSF CAREER award

NCR-9502614, by the AFOSR under grant 95-1-0061 and by an
ONR YOUNG INVESTIGATOR award N000149710735.

∗∗∗∗ The work of V.J. Tsotras was performed while the author was with
Polytechnic University, Brooklyn, and it was partially supported un-
der ARPA Contract No. DAAH01-94-C-R116, by NSF under grants
No. IRI-9111271 and IRI-9509527, and by the New York State Sci-
ence and Technology Foundation as part of its Center for Advanced
Technology program.

they actually need due to the lack of, or, limited uplink
communication channel from the users to the server and
pull-based broadcast delivery in which there is an uplink
channel available through which a user can request from
the server what it is waiting for.

Information broadcast by the server is organized into
units called pages. Time on the broadcast channel is di-
vided into slots of same size that is equal to the time to
broadcast a page. When a user needs a certain page, it
waits until the desired page appears on the broadcast and
captures it for use. Hence, there is some latency from the
time the need of a page arises until the time the page is
actually broadcast by the server. This latency depends on
the broadcast schedule. For a push-based system, due to
the limitation imposed by the asymmetric communication
channel, the server may know only the past access pattern
of the users or an estimate of the user’s access probabil-
ity. The server relies on this information and broadcasts the
pages according to a schedule that results in low latency for
the user’s requests. For the pull-based system, the server
knows the exact number of pending requests for each page
at each slot and can make use of the page request backlog

Figure 1. A broadcast data delivery system in a wireless communication
environment.

 J.C. Baltzer AG, Science Publishers



138 C.-J. Su et al. / Broadcast scheduling

information to decide which page to broadcast at each slot
so as to minimize the response time experienced by a user.

Two major issues arise in a broadcast delivery system:
(a) the organization of the data in a broadcast schedule so
as to minimize the average response time [1,2,5,6,8–10,14,
19,21], and (b) the user’s memory management in order to
reduce the mismatch between the broadcast schedule and
user’s access pattern [1,3,4,20,22]. We addressed the latter
problem in [20] where the optimal memory management
policy was identified. Here, we concentrate on the first
problem, i.e., how to design broadcast schedules in order
to minimize the average response time of user’s requests
for both push-based and pull-based systems.

The problem of schedule design for broadcast infor-
mation distribution systems has been studied in the past
[5,6,9,10,21]. The motivation for that work was tele-
text systems. In [5,6], Ammar and Wong, using a sto-
chastic Markov Decision Process (MDP) formulation, con-
cluded that the optimal schedule for a push-based broad-
cast system will be periodic. They also proposed a method
for designing periodic schedules with near optimal perfor-
mance. In [9], the pull-based system was studied and sev-
eral scheduling policies were evaluated.

In this paper, we formulate the scheduling problem in
a push-based system as a deterministic MDP. Dynamic
scheduling policies are considered where the scheduling
decision at a slot is based on the elapsed time since the
last transmission of each page. Properties of the optimal
policy are identified. Furthermore, a class of policies is
identified which has near optimal performance, of the same
level or slightly better than the periodic scheduling policies
proposed in [6]. Our policies have the advantage of be-
ing simple to implement in a real time fashion, adaptive to
changes in the access statistics, and readily generalizable
to systems with multiple parallel broadcast channels. In a
pull-based system, the problem is formulated as a stochas-
tic MDP. Properties of the optimal policy are identified and
variations of the real-time scheduling schemes considered
for the push-based system are evaluated and compared with
previous results. Comparing the performance of push-based
and pull-based systems, we observed that in certain cases
and for sufficiently large request generation rates, the per-
formance of the two systems is at about the same levels.
That is, the availability of a feedback channel for request
placement capability does not improve the performance sig-
nificantly at heavy load.

The paper is organized as follows. The problem is for-
mulated in section 2. In section 3, the push-based system is
studied. The pull-based system is investigated in section 4.
Finally, generalization of our results for a multi-channel
system is given in section 5.

2. The broadcast model

Slot n is the interval [n,n + 1). At each slot n, one
page is broadcast in the channel and it is denoted by un,

Figure 2. Illustration of li(t) and wi(n) for a sequence of page i broad-
casts.

Figure 3. The evolution of page i request backlog up to time t is depicted.
At the end of each page i broadcast, all pending requests except those that
are generated during the page i transmission are granted. The delay up to
time t, di(tj , t), of page i request generated at time tj is also depicted.

un ∈ {1, . . . ,M}, where M is the total number of possi-
ble pages. (The results easily generalize to the case of J
parallel broadcast channels as it is discussed in section 5.)

Requests for pages are generated by the users. A request
for page i generated at time t will be satisfied at the next
slot after t at which page i will be broadcast. Let li(t)
denote the number of slots from the end of slot n, where
t ∈ [n,n + 1), until the end of the next slot after n at
which the page is broadcast as shown in figure 2. Note
that the latency of the request is equal to li(t) + (n+ 1− t).
Since the residual time n + 1 − t from the generation of
the request until the end of the slot is independent of the
broadcast schedule, we will ignore it in the following and
we will use li(t) as the measure of the latency that will be
experienced by a page i request generated at t.

Let di(k, t) be the delay, that has been experienced by a
page i request generated at time k, k 6 t, until time t:

di(k, t) = min
(
li(k), t− k′

)
,

where k ∈ [k′ − 1, k′). Denote the sequence of times at
which page i requests are generated as tin, n = 1, 2, . . . ,
for each page i = 1, . . . ,M . The aggregate delay, Di(t),
of all page i requests up to time t, is

Di(t) =
∑
tin6t

di
(
tin, t

)
.

Without loss of generality we assume in the rest of the
paper that t is an integer. Let Xi(n) be the total number
of pending requests for page i at the beginning of slot n.
The aggregate delay experienced by all page i requests up
to time t is related to the page i request backlog as follows:

Di(t) =
t−1∑
s=0

Xi(s). (2.1)

The above formula is essentially Little’s law for our sys-
tem and its validity can be easily verified by figure 3 which
shows a sample path of the evolution of page i request gen-
eration. The request generation instants correspond to the



C.-J. Su et al. / Broadcast scheduling 139

jumps of the curve which are of magnitude 1. The aggre-
gate delay of page i requests up to time t equals the total
shaded area under the curve in the figure. Note that all
the page i requests generated during a page i broadcast are
assumed to have to wait until the next page i transmission.

Consider the aggregate stream of page requests gener-
ated by the whole user population. In the finite user popula-
tion case, the rate of page request generation is affected by
the number of users who are waiting for a page broadcast
by the server. Since they will not generate a new page re-
quest while they are waiting, the rate of request generation
will drop as the number of pending requests increases. If
the user population though is large enough and an individ-
ual user request generation rate is appropriately normalized
such that the aggregate rate is equal to λ, then we may
assume that the aggregate page request generation rate re-
mains constant and independent of the number of pending
requests while the process of request generation is station-
ary.

A request is for page i with probability bi, i = 1, . . . ,M ,
where

∑M
i=1 bi = 1. Hence, requests for page i are gener-

ated according to a stationary process with rate λi = biλ.
Let Ai(n) be the total number of requests for page i gener-
ated during slot n. The request backlog for page i evolves
as follows:

Xi(n+ 1) =

{
Ai(n), if un = i,
Xi(n) +Ai(n), otherwise.

(2.2)

The push-based and pull-based systems are considered sep-
arately next.

3. The push-based broadcast system

When the server is not aware about the user’s requests,
the broadcast schedule is designed based only on the dis-
tribution of page requests, that is, bi, i = 1, . . . ,M . De-
signing the broadcast schedule to minimize delay is a static
optimization problem that can be solved off-line. In [5], a
schedule design method was proposed that results in sched-
ules with good performance. Here, we formulate the sched-
ule design as a deterministic dynamic optimization problem.
The solution to the dynamic problem leads to computation-
ally simple on-line scheduling policies.

Let wi(n) be the elapsed time from the beginning of the
last transmission of page i before n until the beginning of
slot n, as illustrated in figure 2. The evolution of wi(n)
can be given as follows:

wi(n+ 1) =

{
1, if un = i,
wi(n) + 1, otherwise.

Assume that wi(0) = 1 for i = 1, . . . ,M without loss of
generality. Hence, w(n), n = 0, 1, . . . , is a deterministic
MDP controlled by un.

Figure 4. The expected backlog is depicted as a function of time from
time 0 to time t. At the end of each page i broadcast, there is some
remaining page i request backlog (shaded portion under the curve) which

accounts for the requests generated during the page i transmission.

By taking expectations on both sides of equation (2.1),
the expected aggregate delay of page i requests up to time
t is

Di(t) =
t∑
s=1

Xi(s),

where a variable with a bar on top represents the expected
value of the variable.

The pending requests for page i, Xi(s), are accumulated
starting from the beginning of the last page i transmission
before s. Since pages are generated by a stationary process
with rate λi, we have Xi(s) = λiwi(s). The evolution of
the expected request backlog of page i is shown in figure 4.

The expected aggregate delay can be written as

Di(t) =
t∑

n=1

λiwi(n).

The long-term average delay is

Du = lim
T→∞

sup
1
T

T∑
n=1

M∑
i=1

λiwi(n), (3.1)

where the superscript u signifies the dependence on the
transmission schedule. The optimal transmission schedule
is the one that minimizes the long-term average delay in
equation (3.1).

From the MDP theory [7], it follows that the optimal
schedule can be specified in terms of a scheduling policy,
that is, a function u :W → U such that

un = u
(
w(n)

)
,

whereW = NM and U = {1, . . . ,M}. Hence, characteriz-
ing the optimal schedule is equivalent to characterizing the
function u(·). In the following, we show some properties
of the optimal schedule.

3.1. Properties of the optimal policy

In order to study the optimization problem associated
with the long run average cost (3.1), we need to con-
sider first the optimization problem associated with the



140 C.-J. Su et al. / Broadcast scheduling

β-discounted cost. The β-discounted cost associated with
a policy u is defined by

V βu (w)
4
=
∞∑
t=0

βtc
(
w(t),u(t)

)
,

w(0) = w, w ∈ W , 0 < β < 1.

(3.2)

c(w,u) is the cost incurred when the system is in state w
and the action taken (the page broadcast by the server) is
u, u ∈ U , and is given by

c(w,u)
4
=

M∑
i=1

1{i 6= u} wiλi,

where 1{·} is an indicator function.
A scheduling policy, uβ , is said to be β-optimal if it

minimizes (3.2), i.e., if for any other policy u,

V β
uβ

(w) 6 V βu (w), w ∈ W.

It is well known [7] that for the cost structure of our prob-
lem a stationary β-optimal policy exists. The β-optimal
cost is by definition

V β(w) = inf
u
V βu (w), w ∈ W ,

and satisfies the dynamic programming equation which, for
our problem, is

V β(w) =
M∑
i=1

λiwi

+ min
u∈U

{
−λuwu + βV β(w+ 1− wueu)

}
,

where 1 is a vector with all entries equal to one and ei is
a vector with all its elements equal to zero except the ith
element which is one. The β-optimal scheduling policy is

uβ(w) = arg min
u∈U

{
−λuwu + βV β(w+ 1−wueu)

}
. (3.3)

The first property of the β-optimal scheduling policy is
that the priority of a page i to be scheduled for transmission
at a slot n increases with wi(n). The threshold structure
of the optimal policy, as it is expressed in the following
lemma, reflects the above property.

Lemma 3.1. If uβ(w1) = j, then for all w2 such that
w2
l = w1

l , l 6= j, l = 1, . . . ,M , and w2
j > w1

j , we have
uβ(w2) = j.

Proof. According to the assumption uβ(w1) = j and from
(3.3),

−λjw1
j + βV β

(
w1 + 1− w1

jej
)

6 −λkw1
k + βV β

(
w1 + 1− w1

kek
)

for k = 1, . . . ,M. (3.4)

It is enough to show

−λjw2
j + βV β

(
w2 + 1− w2

jej
)

6 −λkw2
k + βV β

(
w2 + 1− w2

kek
)

for k = 1, . . . ,M. (3.5)

Since w1
l = w2

l for l 6= j, l ∈ {1, . . . ,M}, and w1
j 6 w2

j ,
from (3.4) we have

−λjw2
j + βV β

(
w2 + 1− w2

jej
)

6 −λkw2
k + βV β

(
w1 + 1− w1

kek
)

for k = 1, . . . ,M. (3.6)

Note that if the same scheduling decisions are applied to
two systems A and B with initial states w1 + 1−w1

kek and
w2 + 1−w2

kek, respectively, then the instantaneous cost in
system A is less than or equal to that in system B. It can
be easily concluded that

V β
(
w1 + 1− w1

kek
)
6 V β

(
w2 + 1− w2

kek
)
. (3.7)

From (3.6) and (3.7), (3.5) follows. �

The next property is that, among the pages with the same
request generation rates, priority is given to the page with
the largest wi(n).

Lemma 3.2. If λi = λj and wi < wj , then uβ(w) 6= i.

Proof. By contradiction, assume that uβ(w) = i. Then,

−λiwi + βV β(w + 1− wiei)
6 −λjwj + βV β(w + 1− wjej)

for j = 1, . . . ,M. (3.8)

Since λi = λj and wi < wj , from (3.8),

V β(w + 1− wiei) < V β(w+ 1− wjej).

If we apply the same scheduling decisions to two systems
A and B with initial states w+ 1−wjej and w+ 1−wiei,
respectively, except that page i is scheduled to transmit for
system A whenever page j is scheduled for system B and
vice versa, the instantaneous cost in system A is less than
or equal to that in system B. Then it follows that

V β(w+ 1− wjej) 6 V β(w+ 1− wiei).

Therefore, it contradicts the assumption that uβ(w) = i and
the lemma is proved. �

Using standard techniques from the theory of Dynamic
Programming we can extend the results of lemmas 3.1
and 3.2 from the β-discounted cost to the long run average
cost [17]. We state the results for the long run average cost
optimal policies without a proof for the sake of brevity.

Theorem 3.3. If u(w1) = j minimizes the long run average
cost (3.1), then for all w2 such that w2

l = w1
l , l 6= j,

l = 1, . . . ,M , and w2
j > w1

j , we have u(w2) = j as the
optimal solution for (3.1).

Theorem 3.4. If λi = λj and wi < wj , then u(w) = i
does not optimize the long run average cost (3.1).



C.-J. Su et al. / Broadcast scheduling 141

From theorem 3.4, it follows immediately that if all
pages have the same request generation rate, the page i
with the largest wi(n) will be transmitted at each slot n.

If there are only two pages, then the optimal policy can
be completely characterized based on the threshold prop-
erty expressed in theorem 3.3. Without loss of generality
assume that λ2 > λ1.

Theorem 3.5. The optimal policy, when there are only two
pages, is periodic with a period consisting of one transmis-
sion of page 1 followed by m (m > 1) transmissions of
page 2, where

m = max
(

1, arg min
l∈S

Do(l)
)
.

Do(·) is the mean response time of such a policy and

S =

{⌊√
2λ2

λ1
− 1

⌋
,

⌈√
2λ2

λ1
− 1

⌉}
.

Proof. Note that we can always improve a schedule with
two consecutive transmission of page 1 by cancelling one
of the transmissions and a schedule with different inter-
appearance gaps between the transmissions of page 1 by
selecting the gap with the lowest cost and constructing a
schedule with identical gaps. Therefore, we only need to
consider periodic policies with a period consisting of m
consecutive transmissions of page 2 followed by a single
transmission of page 1.

Mean response time of the periodic schedule with period
m+ 1 is

Davg =
1

(m+ 1)

×
{

1
2
λ1(m+ 1)2 + (m− 1)

1
2
λ2 +

1
2
λ222

}
.

Since Davg is a convex function of m,

arg min
m
Davg =

√
2λ2

λ1
− 1

and the theorem is proved. �

Specifying the exact form of the optimal scheduling pol-
icy appears to be an intractable problem in general. In the
following, we specify a class of scheduling policies that in-
corporate some of the characteristics of the optimal policy
shown above and they turn out to achieve average response
time close to the lower bound.

3.2. Near optimal real time scheduling

There are two quantities related to each page i that affect
the scheduling decision at each slot n. The elapsed time
wi(n) since the last transmission of page i and the rate λi
of request generation for page i. The likelihood of page i
being transmitted at n increases with λi and wi(n). We

consider the policies where the broadcast scheduling is de-
termined based on priority indices of the pages. The index
of page i is the product λγi wi(n), where γ is an exponent
that reflects the relative importance of λi versus wi(n) in
determining the priority. The page scheduled to be broad-
cast at slot n is

un = arg max
i∈{1,...,M}

λγi wi(n). (3.9)

In the rest we refer to the above class of policies as the
priority index policies. Note that when all the pages have
identical request generation rates, the priority index policies
for all γ’s generate uniform periodic schedules which are
optimal in this case.

Certain policies are worth distinguishing among the pri-
ority index policies. For γ = 0, the dependence of the
scheduling decision on the request generation rate vanishes
and the resulting schedule is periodic with each page be-
ing transmitted once in each period. For γ = 1, the index
λiwi(n) of page i is equal to the expected backlog of page
i, Xi(n), and the policy schedules the page with the largest
backlog at each slot n. For γ = 0.5, the index of page i is
λ0.5wi(n) =

√
λiw2

i (n). Note that 1
2λiw

2
i (n) is the aggre-

gate expected delay experienced by page i requests since
the last transmission of page i before slot n. Hence, for
γ = 0.5, the page with the largest Mean Aggregate Delay
(MAD) is selected for transmission.

We performed an extensive numerical study of the per-
formance of the system under the priority index policies
for various values of γ. It turns out that the MAD policy
(γ = 0.5) has the best performance in most cases. Further-
more, the performance of MAD is very close to the lower
bound on the mean response time, that was given in [5].

3.2.1. Performance comparisons among priority index
policies
Comparisons are made for M = 100 to M = 1000

and γ = 0 to 1.0 for the following two cases. In the
first case, user access probabilities are assumed to follow
the zipf distribution version I [23], that is, bi = c/i, i =
1, . . . ,M , where c is a normalizing constant given by c =
(
∑M
j=1 1/j)−1. In the second case, we assume page access

probabilities follow the zipf distribution version II [15],
where bi = (iθ − (i− 1)θ)/Mθ for i = 1, . . . ,M . As θ
decreases, the access pattern becomes increasingly skewed.
The value of θ used in this experiment is log(0.8)/ log(0.2).
Zipf distribution is typically used to model non-uniform
access patterns. The mean response time for the heuristic
policies is also compared to the lower bound for a periodic
broadcast schedule which is obtained in [5] and is given by

1
2

(
M∑
i=1

√
bi

)2

.

According to the results from tables 1 and 2, the MAD
policy (γ = 0.5) yields the best performance which is also
close to the lower bound for both distributions. MAD also
gave the best mean response time among the priority index



142 C.-J. Su et al. / Broadcast scheduling

Table 1
Mean response time in slots for different values of γ using zipf distribu-

tion I (L. B. denotes Lower Bound).

M 1 0.75 0.6 0.5 0.25 0 L. B.

100 48.49 36.61 33.82 33.36 37.60 50.0 33.31
200 97.56 68.92 62.52 61.41 70.42 100.0 61.36
300 145.21 99.75 89.58 87.81 101.72 150.0 87.77
400 193.69 129.72 115.67 113.22 131.65 200.0 113.18
500 244.29 159.06 141.07 137.93 161.15 250.0 137.90
600 295.68 187.86 165.93 162.11 190.65 300.0 162.08
700 343.00 216.37 190.37 185.86 218.91 350.0 185.83
800 389.06 244.60 214.45 209.25 246.71 400.0 209.21
900 437.05 272.26 238.23 232.34 274.10 450.0 232.29
1000 486.86 299.88 261.74 255.15 301.38 500.0 255.13

Table 2
Mean response time in slots for different values of γ using zipf distribu-

tion II.

M 1 0.75 0.6 0.5 0.25 0 L. B.

100 46.63 27.02 23.63 23.14 28.31 50.0 23.08
200 94.62 53.08 46.19 45.13 55.28 100.0 45.03
300 136.23 78.94 68.57 66.95 81.55 150.0 66.86
400 175.98 105.59 91.01 88.69 108.02 200.0 88.58
500 216.31 130.74 113.23 110.35 134.00 250.0 110.25
600 262.66 156.73 135.43 132.06 160.41 300.0 131.94
700 310.82 183.71 157.65 153.66 186.10 350.0 153.57
800 359.62 207.51 179.84 175.22 211.90 400.0 175.18
900 409.25 233.77 202.00 196.80 237.27 450.0 196.77
1000 459.46 260.59 224.17 218.38 262.52 500.0 218.32

polices for various distributions we have tried (not men-
tioned here) and its performance is consistently close to the
lower bound.

Although the algorithm proposed in [5] also yields a
mean response time close to the lower bound, the MAD pol-
icy has a number of advantages over other existing methods
for designing broadcast schedules. First, it automatically
generates broadcast schedules without requiring to select
the three basic parameters of a periodic schedule – period
length, appearance frequencies and inter-appearance gaps
of each page in one period. Second, the MAD policy does
not need to perform any precomputation before the broad-
cast. It selects the page to transmit at each slot during the
broadcast according to the given user’s access probabilities.
Thus, the policy can adapt the schedules as the user access
pattern changes. Third, as it is shown in section 5, it can
be generalized easily for multi-channel systems.

Moreover, the MAD policy is easy to implement; it only
needs to keep M values of wi(n) at each slot n in addition
to the access probabilities and the only operations required
to perform at each slot n are to update the values of wi(n)
and to determine the page with the largest expected aggre-
gate delay of the current request backlog. Therefore, both
the computational complexity and the storage requirement
of the MAD policy is just O(M ). On the other hand, the
approach in [5] is an off-line algorithm which has to con-
struct the whole schedule and store it before the broadcast.
This may require a considerable storage when the period
of a schedule is large, which is usually the case when there

are a large number of pages and page access probabilities
are non-uniform. Furthermore, it is easy to show that the
MAD policy generates schedules that are periodic.

4. The pull-based broadcast system

When there is an uplink channel available for the users to
submit page requests, the server knows the exact number of
pending requests for each page at each slot and it can make
the scheduling decision based on that information. The
request backlog vector X(n) evolves according to equation
(2.2) as well. The scheduling decision un at slot n may
depend on the backlog evolution up to slot n. The optimal
scheduling policy is the one that minimizes

lim
T→∞

sup
1
T

T−1∑
n=0

M∑
i=1

Xi(n). (4.1)

The MDP theory suggests that the optimal scheduling
policy can be specified in terms of a function u: X →
{0, 1, . . . ,M} such that

un = u
(
X(n)

)
,

where X = ZM+ .
The transition probability of the state process is given

by

PXY (u) =

{
pA′ , if Y = X +A′ −Xueu,
0, otherwise,

where pA′ is the probability that each element A′i, i =
1, . . . ,M , of the vector A′ is equal to the number of page i
requests generated in one slot. The cost incurred when the
system is in state X and the action taken is u, u ∈ U , is

c (X ,u)
4
=

M∑
i=1

1{i 6= u} Xi.

The β-discounted cost associated with a policy u ∈ U
can be defined in the similar way as in section 3 and the
β-optimal cost associated with scheduling policies satisfies
the following dynamic programming equation:

V β(X) = min
u∈U

{
c(X ,u)

+ β
∑

A′∈ZM+

pA′V
β
(
X +A′ −Xueu

)}
.

The β-optimal scheduling policy is given by

uβ = arg min
u∈U

{
c(X ,u)

+ β
∑

A′∈ZM+

pA′V
β
(
X +A′ −Xueu

)}
. (4.2)

The β-optimal scheduling policy exhibits properties sim-
ilar to those of the push-based system. The first property is
that the priority of page i to be scheduled for transmission



C.-J. Su et al. / Broadcast scheduling 143

at slot n increases with Xi(n) and it is expressed in the
following lemma.

Lemma 4.1. If uβ(X1) = j, then for all X2 such that
X2
l = X1

l , l 6= j, l = 1, . . . ,M , and X2
j > X1

j , we have
uβ(X2) = j.

Proof. Since we have assumed that uβ(X1) = j and from
(4.2),

−X1
j + β

∑
A′∈ZM+

pA′V
β
(
X1 +A′ −X1

j ej
)

6 −X1
k + β

∑
A′∈ZM+

pA′V
β
(
X1 +A′ −X1

kek
)

for k = 1, . . . ,M. (4.3)

To prove the lemma, we only need to show that

−X2
j + β

∑
A′∈ZM+

pA′V
β
(
X2 +A′ −X2

j ej
)

6 −X2
k + β

∑
A′∈ZM+

pA′V
β
(
X2 +A′ −X2

kek
)

for k = 1, . . . ,M. (4.4)

Since X2
l = X1

l for l 6= j, l = 1, . . . ,M , and X2
j > X1

j ,
from (4.3) we have

−X2
j + β

∑
A′∈ZM+

pA′V
β
(
X2 +A′ −X2

j ej
)

6 −X2
k + β

∑
A′∈ZM+

pA′V
β
(
X1 +A′ −X1

kek
)

for k = 1, . . . ,M. (4.5)

If the same scheduling decisions are applied to two systems
A and B with initial states X1 +A′−X1

kek and X2 +A′−
X2
kek, respectively, and the request generation process is

identical for both systems, then since X1 + A′ −X1
kek 6

X2 +A′ −X2
kek in element-wise sense, it follows that the

β-discounted cost in system A is less than or equal to that
in system B,

V β
(
X1 + A′ −X1

kek
)
6 V β

(
X2 +A′ −X2

kek
)

∀A′ ∈ ZM+ . (4.6)

From (4.5) and (4.6), (4.4) follows. �

Another property of the β-optimal scheduling policy is
that among the pages with the same request generation rate,
priority for transmission is given to the page with the largest
backlog.

Lemma 4.2. If λi = λj and Xi < Xj , then uβ(X) 6= i.

Proof. We will give the proof by contradiction. Assume
uβ(X) = i. Then,

−Xi + β
∑

A′∈ZM+

pA′V
β
(
X +A′ −Xiei

)
6 −Xj + β

∑
A′∈ZM+

pA′V
β
(
X +A′ −Xjej

)
for j = 1, . . . ,M. (4.7)

Since Xi < Xj , from (4.7)∑
A′∈ZM+

pA′V
β
(
X +A′ −Xiei

)
<

∑
A′∈ZM+

pA′V
β
(
X +A′ −Xjej

)
.

If we apply the same scheduling decisions to two sys-
tems A and B with initial states X + A′ − Xjej and
X+A′−Xiei, respectively, except that page i is scheduled
to transmit for system A whenever page j is scheduled for
system B and vice versa and both systems have the identi-
cal request generation process, then the β-discounted cost
in system A is less than or equal to that in system B,

V β
(
X+A′−Xjej

)
6 V β

(
X+A′−Xiei

)
∀A′ ∈ ZM+ .

Therefore, it contradicts the assumption that uβ(X) = i and
the lemma is proved. �

The following theorems follow from lemmas 4.1 and 4.2
using standard methods to relate the β-discounted and the
long run average cost problems in [17].

Theorem 4.3. If u(X1) = j minimizes the long run aver-
age cost (4.1), then for all X2 such that X2

l = X1
l , l 6= j,

l = 1, . . . ,M , and X2
j > X1

j , we have u(X2) = j as the
optimal solution for (4.1).

Theorem 4.4. If λi = λj and Xi < Xj , then u(X) = i
does not minimize the long run average cost (4.1).

An immediate consequence of theorem 4.4 is that if all
pages have the same request generation rate, the optimal
policy is to broadcast the page with the largest backlog at
each slot.

For arbitrary request generation rates, the optimal policy
appears to resist a simple characterization. We studied a
class of heuristic scheduling policies which are of the same
flavor as the priority index policies employed in the push-
based system.

They are described as follows:

un = arg max
i∈{1,...,M}

λ−γi Xi(n).

Similar to the push-based system, when all the request gen-
eration rates are equal, the priority index scheduling poli-
cies also produce the optimal schedule for the pull-based
system.



144 C.-J. Su et al. / Broadcast scheduling

Figure 5. Mean response time (in slots) vs. aggregate request generation
rate (requests per slot) for different values of γ using zipf distribution I

for 1000 pages.

Figure 6. Mean response time (in slots) vs. aggregate request generation
rate (requests per slot) for different values of γ using zipf distribution II

for 1000 pages.

A number of heuristic scheduling policies for the push-
based system were proposed in [9]. Two of them are the
Most Request First (MRFL) policy, which selects the page
with the largest number of pending requests and breaks ties
in favor of the lowest probability page, and the Longest
Wait First (LWF) policy, which selects the page for which
the total waiting time of pending requests is the largest. The
MRFL policy corresponds to the priority index policy with
γ = 0. Since, according to the simulation results in [9],
the LWF policy yields significantly better response time
characteristics than other heuristic policies, we compare the
priority index policies to the LWF policy by simulation.
The results for 1000 pages with zipf I and zipf II distribution
are shown in figures 5 and 6, respectively.

For light load, mean response time is insensitive to a
particular scheduling algorithm employed. As the request
generation rates increases, the policy with γ = 0.5 exhibits
the best mean response time (even slightly better than the
LWF policy) for all aggregate request generation rates. The
policy with γ = 0.4 performs close to the LWF policy and
the policy with γ = 1.0 gives the worst performance. Note

Figure 7. Mean response time (in slots) vs. aggregate request generation
rate (in request per slot) for 500 pages with equal generation rates.

that the policy with γ = 0.5 is easier to implement than the
LWF policy since, at each slot, it only needs to keep track
of the request backlog for each page while the LWF policy
has to compute the total waiting time up to the current slot
for each page.

4.1. Performance limits of a pull-based broadcast system

A pull-based system requires the availability of an up-
link channel and has the undesirable property that the uplink
channel may become overloaded under heavy aggregate re-
quest generation rate. Our simulation results show that the
mean response time of a pull-based system approaches that
of a push-based system as the aggregate request generation
rate increases.

Figure 7 shows the simulation results for the case of
equal request generation rates (λi is the same for all pages).
As the aggregate request generation rate increases beyond
20, the mean response time of the pull-based system ap-
proaches half of the total number of pages which happens
to be the mean response time of the optimal schedule for the
push-based system. The intuitive explanation is as follows.
For the case with the same generation rates for all pages,
the optimal schedule for the push-based system is to broad-
cast the page with the largest wi(n) at each slot n while
that for the pull-based system transmits the page with the
largest number of pending requests Xi(n) at each slot n.
The expected value of page i request backlog increases
linearly with both wi(n) and the page i request genera-
tion rate λi. Therefore, as the aggregate request generation
rate increases, the probability that the backlog of page i in
the pull-based system corresponding to the page with the
largest wi(n) in the push-based system is the largest among
the backlogs of all other pages in the pull-based system
increases towards one as well. Hence, the probability that
the page transmitted by both the push-based system and
the pull-based system is the same, approaches one as the
aggregate generation rate increases.

For the case with unequal request generation rates, con-
sider the policy with γ = 0.5 as an example for both pull-
based and push-based systems. From figures 5 and 6, the



C.-J. Su et al. / Broadcast scheduling 145

mean response time of the policy with γ = 0.5 for 1000
pages with zipf distribution I and II for the pull-based sys-
tem are 249.59 and 213.09 slots, respectively, at aggregate
request generation rate 100 requests per slot while the mean
response times for the push-based system for zipf distribu-
tion I and II are 255.12 and 218.36 slots, respectively, from
tables 1 and 2. Hence as the aggregate request generation
rate increases, the mean response time of a pull-based sys-
tem is indeed approaching that of a push-based system for
both zipf distributions I and II.

5. Application to a system with multiple broadcast
channels

Sometimes, since the available bandwidth for the wire-
less broadcast channel is considerably large, the channel has
to be divided into a number of subchannels with smaller
bandwidth due to implementation constraints. Therefore,
there are more than one broadcast channels available and a
number of pages equal to the number of channels is broad-
cast at each slot. Assume that all the users have the ability
to tune in to any of the broadcast channels and retrieve the
corresponding page. By using a small fraction of the band-
width, the server may inform the users about which pages
are being broadcast at which channels at each slot so that
a user will know which channel he should tune in at each
slot. A system with J broadcast channels is depicted in
figure 8.

The problem of designing broadcast schedules for a
push-based system in this case is different from the sin-
gle channel case. At each slot n, the server has to select
J pages to broadcast to the users. The request backlog of
any of the J pages broadcast during slot n vanishes at the
end of slot n.

The existing algorithms for designing broadcast sched-
ules for a push-based system in literature are only intended
for a single-channel system and they cannot be easily ex-
tended for the multichannel case. The MAD policy, how-
ever, can be readily generalized for the multichannel case
as follows.

At slot n select the J pages, for which the quantity
λ0.5
j wj(n) is largest and broadcast them. In the same way,

the MAD policy can be applied to a pull-based system with
multiple channels.

Figure 8. A system with multiple broadcast channels.

Table 3
Mean response time in slots for zipf distribution I.

M No. of channels Lower bound MAD

60 3 7.08 7.10
60 6 3.54 3.57
70 3 8.11 8.13
70 6 4.05 4.07
80 4 6.84 6.86
80 8 3.42 3.44
90 4 7.59 7.61
90 8 3.79 3.83

100 5 6.66 6.68
100 10 3.33 3.35

Table 4
Mean response time in slots for zipf distribution II.

M No. of channels Lower bound MAD

60 3 4.73 4.79
60 6 2.37 2.47
70 3 5.47 5.50
70 6 2.74 2.82
80 4 4.66 4.70
80 8 2.33 2.37
90 4 5.21 5.28
90 8 2.61 2.69

100 5 4.61 4.62
100 10 2.30 2.31

The lower bound on the mean response time for the sin-
gle channel system can be readily generalized for a system
with J broadcast channels to be

1
2J

(
M∑
i=1

√
bi

)2

.

The mean response time of the schedules produced by MAD
policy is compared to the lower bound from M = 60 to
M = 100. For each M , we consider the number of chan-
nels to be approximately 5% and 10% of the total number
of pages. The results are given in tables 3 and 4. The
examples show that, if the number of broadcast channels is
increased twofold, the mean response time decreases nearly
by half. Note that, ideally, we would like to get the mean
response time reduced exactly by half when the number of
channels is doubled. In all the cases we consider, the sched-
ules produced by the MAD policy incur mean response time
close to the lower bound.

6. Conclusion

We considered the problem of scheduling data broad-
casts such that the average response time experienced by
the users is minimized. In a push-based system the prob-
lem was formulated as a deterministic MDP and properties
of the optimal solution were obtained. A class of policies
(the priority index policies) were examined and a subopti-
mal dynamic policy (MAD) that achieves average response
time close to the lower bound was identified. Our policy



146 C.-J. Su et al. / Broadcast scheduling

has low implementation complexity, it is adaptive to chang-
ing access statistics and can be easily generalizable to mul-
tiple broadcast channels. Suboptimal policies with good
performance were also obtained for a pull-based system.
Interestingly enough, the numerical results showed that as
the request rate increases the achievable performance of the
push- and pull-based systems becomes almost identical; we
plan to investigate this further.

Acknowledgements

The authors would like to thank the reviewers for their
thoughtful comments that helped to improve the presenta-
tion of this paper.

References

[1] S. Acharya, R. Alonso, M. Franklin and S. Zdonik, Broadcast
disks: Data management for asymmetric communication environ-
ments, Technical Report CS-94-43, Department of Computer Sci-
ence, Brown University (October 1994).

[2] S. Acharya, M. Franklin and S. Zdonik, Dissemination-based data
delivery using broadcast disks, IEEE Personal Communications 2(6)
(December 1995) 50–60.

[3] S. Acharya, M. Franklin and S. Zdonik, Prefetching from a broadcast
disk, in: Proc. of 12th International Conf. Data Eng., New Orleans,
LA (February 1996).

[4] M.H. Ammar, Response time in a teletext system: An individual
user’s perspective, IEEE Transaction on Communications 35(11)
(November 1987) 1159–1170.

[5] M.H. Ammar and J.W. Wong, The design of teletext broadcast cy-
cles, Performance Evaluation 5(4) (December 1985) 235–242.

[6] M.H. Ammar and J.W. Wong, On the optimality of cyclic transmis-
sion in teletext systems, IEEE Transaction on Communications 35(1)
(January 1987) 68–73.

[7] D.P. Bertsekas, Dynamic Programming: Deterministic and Stochas-
tic Models (Prentice-Hall, Englewood Cliffs, NJ, 1987).

[8] T. Chiueh, Scheduling for broadcast-based file systems, in: Proc. of
the Mobidata Workshop, Rutgers University, NJ (November 1994).

[9] H.D. Dykeman, M.H. Ammar and J.W. Wong, Scheduling algorithms
for videotex system under broadcast delivery, in: Proceedings of
ICC ’86 (1986) pp. 1847–1851.

[10] J. Gecsei, The Architecture of Videotex Systems (Prentice-Hall, En-
glewood Cliffs, NJ, 1983).

[11] D.K. Gifford, Polychannel systems for mass digital communication,
Communications of the ACM 33(2) (February 1990) 141–151.

[12] T. Imielinski and B. Badrinath, Mobile wireless computing: Solu-
tions and challenges in data management, Technical Report, Depart-
ment of Computer Science, Rutgers University, NJ (1992).

[13] T. Imielinski, S. Viswanathan and B. Badrinath, Energy efficient
indexing on air, in: Proc. of ACM SIGMOD Conf. (May 1994) pp.
25–36.

[14] R. Jain and J. Werth, Airdisks and airRAID: Modelling and schedul-
ing periodic wireless data broadcast, Dimacs Technical Report 95-11,
Department of Computer Science, Rutger University (May 1995).

[15] D.E. Knuth, The Art of Computer Programming, Vol. 3 (Addison-
Wesley, Reading, MA, 2nd ed., 1981).

[16] B. Oki, M. Pfluegl, A. Siegel and D. Skeen, The information bus
– an architecture for extensible distributed systems, in: Proc. 14th
SOSP (December 1993).

[17] S.M. Ross, Introduction to Stochastic Dynamic Programming (Aca-
demic Press, New York, 1983).

[18] S. Shekhar and D. Liu, Genesis and advanced traveler information
systems ATIS: Killer applications for mobile computing, in: MO-
BIDATA Workshop (1994).

[19] C.-J. Su, L. Tassiulas and V. Tsotras, A new method to design broad-
cast schedules in a wireless communication environment, Technical
Report, Institute for Systems Research, University of Maryland, Col-
lege Park, MD (1996).

[20] L. Tassiulas and C.-J. Su, Optimal memory management strategies
for a mobile user in a broadcast data delivery system, IEEE Jour-
nal of Selected Areas in Communications 15(7), Special Issue on
Networking and Performance Issues of Personal Mobile Communi-
cations (September 1997) 1226–1238.

[21] J.W. Wong, Broadcast delivery, Proceedings of the IEEE 76(12) (De-
cember 1988) 1566–1577.

[22] S. Zdonik, S. Acharya, R. Alonso and M. Franklin, Are ‘Disks in the
air’ just pie in the sky?, in: IEEE Workshop on Mobile Computing
Systems and Applications (December 1994).

[23] G.K. Zipf, Human Behaviour and the Principle of Least Effort
(Addison-Wesley, Reading, MA, 1949).

Chi-Jiun Su received the B.S. degree in com-
munication engineering from the National Chiao
Tung University, Hsinchu, Taiwan, R.O.C., in
1993, and the M.S. and Ph.D. degrees in electrical
engineering from Polytechnic University, Brook-
lyn, NY, in 1996 and 1998, respectively. He was
awarded Special Polytechnic Graduate Fellowship
in 1993 and was a research assistant at the Center
for Advanced Technology in Telecommunications
(CATT) at Polytechnic University. He is currently

visiting the University of Maryland, College Park, as a Faculty Research
Assistant at the Institute for Systems Research. His main research interests
include large scale information dissemination systems, mobile computing,
design and management of wireless communication and high speed net-
works. Dr. Su is a student member of IEEE and a member of Eta Kappa
Nu.
E-mail: cjsu@isr.umd.edu

Leandros Tassiulas was born in 1965, in Katerini,
Greece. He obtained the Diploma in electrical en-
gineering from the Aristotelian University of Thes-
saloniki, Thessaloniki, Greece, in 1987, and the
M.S. and Ph.D. degrees in electrical engineering
from the University of Maryland, College Park, in
1989 and 1991, respectively. From 1991 to 1995
he was an Assistant Professor in the Department
of Electrical Engineering, Polytechnic University,
Brooklyn, NY. In 1995 he joined the Department

of Electrical Engineering, University of Maryland, College Park, where
he is now an Associate Professor. He holds a joint appointment with the
Institute for Systems Research and is a member of the Center for Satellite
and Hybrid Communication Networks, established by NASA. His research
interests are in the field of computer and communication networks with
emphasis on wireless communications and high-speed network architec-
tures and management, in control and optimization of stochastic systems
and in parallel and distributed processing. Dr. Tassiulas received a Na-
tional Science Foundation (NSF) Research Initiation Award in 1992, an
NSF Faculty Early Career Development Award in 1995 and an Office of
Naval Research Young Investigator Award in 1997. He co-authored a
paper that got the INFOCOM ’94 best paper award. Dr. Tassiulas is a
member of IEEE.
E-mail: leandros@isr.umd.edu



C.-J. Su et al. / Broadcast scheduling 147

Vassilis Tsotras received the B.Sc. degree in elec-
trical engineering (1985) from the National Tech-
nical University of Athens, Greece, and the M.Sc.,
M.Phil. and Ph.D. degrees in electrical engineer-
ing from Columbia University, in 1986, 1988 and
1990, respectively. In September 1990 he joined
Polytechnic University, Brooklyn, as an Assistant
Professor, and in 1996 he became a (tenured) As-
sociate Professor of Computer and Information
Science. During summer of 1997 he was on a

sabbatical visit at the Department of Computer Science of the Univer-
sity of California, Los Angeles. He is currently with the Department of
Computer Science at the University of California, Riverside. His research
interests include temporal databases, access methods, data dissemination
and parallel database systems. Dr. Tsotras received a National Science
Foundation (NSF) Research Initiation Award in 1991.
E-mail: tsotras@cs.ucr.edu


