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Abstract—New families of unimodular sequences of length p = 3f+1 with zero autocorrelation
are described, p being a prime. The construction is based on employing Gauss periods. It is
shown that in this case elements of the sequences are algebraic numbers defined by irreducible
polynomials over Z of degree 12 (for the first family) and 6 (for the second family). In turn,
these polynomials are factorized in some extension of the field Q into polynomials of degree,
respectively, 4 and 2, which are written explicitly. For p = 13, using the exhaustive search
method, full classification of unimodular sequences with zero autocorrelation is given.

1. INTRODUCTION

Let x = (x0, x1, . . . , xn−1) be a nonzero complex-valued sequence of length n.

Definition 1. A sequence is called delta-correlated (has zero autocorrelation) if it is orthogonal
to all of its cyclic shifts:

Rx(k) =
n−1∑
i=0

xix
∗
(i+k) mod p = 0, k = 1, 2, . . . , n− 1. (1)

Here, x∗ means complex conjugation.

Let ζ be a primitive nth root of unity, i.e., ζn = 1, ζi 6= 1, 0 < i < n.

Definition 2. The unitary matrix

W =
1√
n

[
ζij
]
, i, j = 0, 1, . . . , n − 1,

is called the matrix of a (direct) nth-order discrete Fourier transform.

Definition 3. The vector
y = (y0, y1, . . . , yn−1) = xW

is called the Fourier image of vector x.

The inverse Fourier transform is defined by the matrix

WH =
1√
n

[
ζ−ij

]
, i, j = 0, 1, . . . , n − 1.

Theorem 1 [1]. A sequence x is delta-correlated if and only if all components of its Fourier
image are of the same magnitude:

|yj|2 =

n−1∑
i=0
|xi|2

n
, j = 0, 1, . . . , n− 1.

Theorem 1 yields a classification of the whole class of delta-correlated sequences and a method
of constructing them: one takes a vector y with components of the same magnitude and applies
the inverse Fourier transform.
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Definition 4. A sequence x = (x0, x1, . . . , xn−1) is called phase-modulated, or unimodular,
if all elements of the sequence equal 1 in magnitude, i.e., lie on the unit circle.

Let x be a unimodular delta-correlated sequence. Then the following transformations of x give
new unimodular delta-correlated sequences x′ = (x′0, x

′
1, . . . , x

′
n−1) (see [1]):

x′ = ax, |a| = 1;
x′ = {x′i}, x′i := x(i+1) mod n, i = 0, 1, . . . , n − 1;

x′ = {x′i}, x′i := x(di) mod n, i = 0, 1, . . . , n− 1, gcd(d, n) = 1;

x′ = {x′i}, x′i := x∗i , i = 0, 1, . . . , n − 1;

x′ = {x′i}, x′i := xiζ
is, i = 0, 1, . . . , n − 1, s = 0, 1, . . . , n− 1;

x′ = xW .

These transformations generate a group, and we can introduce the equivalence relation with
respect to this group.

Delta-correlated sequences x and x′ are equivalent, x ∼ x′, if and only if one of them can be
obtained from the other by a series of these transformations.

Thus, all unimodular delta-correlated sequences are split into equivalence classes.
Below, we only consider the case where n = p, p being a prime.
For the case of unimodular delta-correlated sequences of prime length, it is known that there

are finitely many equivalence classes (see [1, 2]).
The problem arises to describe all equivalence classes and propose methods for constructing

unimodular delta-correlated sequences.
For p = 2, 3, and 5, there is exactly one equivalence class.
For any prime p ≥ 7, methods are known to construct two equivalence classes for p ≡ 1 (mod 4)

and one equivalence class for p ≡ 3 (mod 4) (see Section 5).
As far as we know, there is no information on any other equivalence classes in the literature.
In the present paper, we propose a method for constructing equivalence classes based on using

Gauss periods. In details, we consider the case where the length of the sequence is p = 3f + 1.
For the particular case p = 13, using exhaustive search, we obtain full classification, i.e., all

equivalence classes are found.

2. REDUCTION TO A SYSTEM OF ALGEBRAIC EQUATIONS

In the sequel, as a representative of a class, we consider a sequence with 1 in the first position
(x0 = 1); in any class, such representatives exist.

To determine equivalence classes, we have to find all unimodular solutions of system (1) with
x0 = 1 and then select nonequivalent solutions.

Note that, for unimodular sequences, we have

x∗i =
1
xi

;

therefore, system (1) can be rewritten as the system of equations

p−1∑
i=0

xi
x(i+k) mod p

= 0, k = 1, 2, . . . , p− 1. (2)
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If we multiply each equation in (2) by the product
p−1∏
i=0

xi, we get the system of algebraic equations

p−1∑
i=0

xi
j=p−1∏
j=0

j 6=(i+k) mod p

xj

 = 0, k = 1, 2, . . . , p− 1. (3)

The polynomial ideal defined by this system is a union of irreducible components. For prime p,
the dimension of each component is zero [2]. In other words, there are finitely many equivalence
classes.

Unimodular solutions (|xi| = 1, ∀i) of this system form a unimodular delta-correlated sequence.
Generally, all components of a solution of system (3) can be found by methods of exclusion

theory [3–5]. In one of its possible versions, the Gröbner basis of the polynomial ideal generated
by system (3) is used.

Then, for this system, the last polynomial in the Gröbner basis (with respect to the lexicographic
order) is a polynomial in one variable, the previous polynomial is (or polynomials are) in two
variables, etc.

In this case, solving system (3) reduces to finding the roots of a one-variable polynomial with
integer coefficients; hence, all roots are algebraic numbers.

When we find a unimodular root (if it exists), we pass to the previous equation and substitute
the value found. Thus, we obtain an equation with algebraic coefficients. If it has a unimodular
root, we again pass to the previous step, etc. If we find a unimodular root at each step, the sequence
obtained is precisely a unimodular delta-correlated sequence.

Remark. All xi, i = 1, . . . , p− 1, are algebraic numbers.

In the general case, eliminating variables is very difficult. For instance, for p = 13, at the last
step we obtain a polynomial of degree of the order of 2212

. Sometimes, the problem is greatly
simplified if one considers sequences of a special form. We suggest sequences composed of several
groups of equal numbers. The set of indices [0, 1, 2, . . . , p− 1] is divided into disjoint subsets, one
of them consisting solely of zero. Coordinates with indices from the same subset are assumed to
be equal. As such subsets, we suggest to use Gauss cyclotomic classes.

3. GAUSS CYCLOTOMIC CLASSES AND GAUSS PERIODS

Let a prime p be represented as p− 1 = ef and let g be a primitive element modulo p.
The set of indices [0, 1, 2, . . . , p− 1] is divided into the Gauss cyclotomic classes as follows: the

zero cyclotomic class
0 = {0}

and cyclotomic classes

Gi =
{
ge+i, g2e+i, . . . , gef+i = gi

}
, i = 0, 1, . . . , e− 1.

Define the algebraic numbers η0, η1, . . . , ηe−1, called the Gauss f -periods [3, 6]:

ηi =
∑
s∈Gi

ζs =
f∑
k=1

ζg
ek+i

, i = 0, 1, . . . , e− 1. (4)

Let us state some necessary properties of the Gauss periods:
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1. The sequence (η0, η1, . . . , ηe−1) has the same periodic autocorrelation coefficients:

e−1∑
j=0

ηjη
∗
(j+s) mod e =

{
p− f, s = 0;
−f, s = 1, 2, . . . , p− 1.

(5)

2. If f is even, the product ηsη(s+j) mod e, s = 0, 1, . . . , e−1, j = 0, 1, . . . , e−1, can be represented
in the form

ηsη(s+j) mod e = cj + a0,jηs + a1,jηs+1 + . . .+ ae−1,jη(s+e−1) mod e, (6)

where cj = 0 and a0,j + a1,j + . . .+ ae−1,j = f for all j except for j = 0. In the latter case, c0 = f
and a0,0 + a1,0 + . . . + ae−1,0 = f − 1.

4. SEQUENCES BASED ON GAUSS PERIODS

As new variables, we take e numbers z0, z1, . . . , ze−1 of magnitude 1. We will construct sequences
x = (x0, x1, . . . , xn−1) as follows: define their coordinates to be

x0 = 1,
xj = zs, j ∈ Gs, s = 0, 1, . . . , e− 1.

(7)

In this case, we obtain only e different equations in system (2) in e unknowns zs. Different
equations are, for instance, those in rows 1, g, g2 mod p, . . . , ge−1 mod p of system (2). Any other
equation coincides with one of them.

It is not too difficult to write the resulting system for any particular p, but the general form
strongly depends on the structure of Gauss cyclotomic classes. We will obtain another system in
an explicit form, which will be equivalent to (2).

Let us find the Fourier image of a sequence x from (7):

y0 =
1
√
p

p−1∑
s=0

xs =
1
√
p

(1 + fz0 + fz1 + . . . + fze−1),

yj =
1
√
p

p−1∑
s=0

xsζ
sj =

1
√
p

1 +

∑
s∈G0

ζsj

 z0 +

∑
s∈G1

ζsj

 z1 + . . .+

 ∑
s∈Ge−1

ζsj

 ze−1

 ,
where j = 1, 2, . . . , p− 1.

Taking definition (4) into account, one easily sees that

y0, yg, . . . , yge−1 mod p

are different Fourier components, and the coefficients of unknowns zs are the Gauss periods (4):

√
p y0 = 1 + fz0 + fz1 + fz2 + . . . + fze−1,√
p yg = 1 + η0z0 + η1z1 + η2z2 + . . .+ ηe−1ze−1,√
p yg2 mod p = 1 + η1z0 + η2z1 + η3z2 + . . . + η0ze−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .√
p yge−1 mod p = 1+ ηe−1z0 + η0z1 + η1z2 + . . .+ ηe−2ze−1.

Since all y and z are of magnitude 1 by the condition and since z∗ = 1/z, after passing to
squared magnitudes on either sides of the equations, using relation (5), and making algebraic
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transformations, for an even f we get

ψ =
e−1∑
s=0

(
zs +

1
zs

)
+

∑
0≤s<m≤e−1

f

(
zs
zm

+
zm
zs

)
+ e(f − 1) = 0,

ϕk =
e−1∑
s=0

ηs+k

(
zs +

1
zs

)
+

∑
0≤s<m≤e−1

ηs+kηs+m

(
zs
zm

+
zm
zs

)
− (f − 1) = 0, (8)

k = 0, 1, . . . , e− 1.

In fact, the equation ψ = 0 can be omitted since it is a linear combination of the others.
Similarly, we can obtain a system for odd f .
System (8) can further be simplified if we replace the products ηs+kηm+k using relations (6).
After eliminating variables, a solution is obtained in the form of a product of irreducible poly-

nomials over Q(η0). Of these polynomials, we may discard those without roots of magnitude 1.

5. KNOWN SEQUENCES

All sequences of prime length known to the authors can be described using Gauss periods.

5.1. Case e = 2

In this case, two equivalence classes are known if p ≡ 1 (mod 4) and one equivalence class if
p ≡ 3 (mod 4) (see, e.g., [1, 7]).

In terms of the Gauss periods, the set G0 precisely consists of quadratic residues modulo p
and G1 consists of quadratic nonresidues.

5.1.1. Case p ≡ 1 (mod 4). In this case, we have

e = 2, f = (p − 1)/2 even,

η0 =
∑
i∈G0

ζi = (
√
p− 1)/2,

η1 =
∑
i∈G1

ζi = (−√p− 1)/2.

System (8) has the following form:

ψ =
(
z0 +

1
z0

)
+
(
z1 +

1
z1

)
+ f

(
z0

z1
+
z1

z0

)
+ e(f − 1) = 0,

ϕ0 = η0

(
z0 +

1
z0

)
+ η1

(
z1 +

1
z1

)
+ η0η1

(
z0

z1
+
z1

z0

)
− (f − 1) = 0,

ϕ1 = η1

(
z0 +

1
z0

)
+ η0

(
z1 +

1
z1

)
+ η0η1

(
z0

z1
+
z1

z0

)
− (f − 1) = 0.

Eliminating the variable z1 leads to the following relations:
1. z1 = z0. In this case, z0 is a root of the irreducible polynomial over Z

g(x) = x2 + (2f − 1)x+ 1.

This polynomial has no unimodular roots and should be discarded.
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2. z1 =
1
z0

. In this case, z0 is a root of the irreducible polynomial over Z

g(x) =
f

2
x4 + x3 + (f − 1)x2 + x+

f

2
. (9)

In turn, in the extended field Q(η0), this polynomial is factorized into the product of polynomials
of degree two:

g(x) = (η0x
2 − x+ η0)(η1x

2 − x+ η1).

The roots of the first factor are of the form

z0 = cosA1 + i sinA1, z1 = cosA1 − i sinA1, (10)

where
cosA1 = 1/(2η0) =

1
√
p− 1

.

They generate a delta-correlated sequence x = (x0, . . . , xp−1) from the first equivalence class:

x0 = 1, xi =

{
z0, i ∈ G0,

z1, i ∈ G1.

Similarly, the roots of the second equation are of the form

z0 = cosA2 + i sinA2, z1 = cosA2 − i sinA2, (11)

where
cosA2 = 1/(2η1) = − 1

√
p+ 1

.

They generate a delta-correlated sequence x = (x0, . . . , xp−1) from the second equivalence class.

5.1.2. Case p ≡ 3 (mod 4). In this case, we have

e = 2, f = (p− 1)/2 odd,

η0 =
∑
i∈G0

ζi = (−1 + i
√
p)/2,

η1 =
∑
i∈G1

ζi = (−1− i
√
p)/2.

System (8) has the form

ψ =
(
z0 +

1
z0

)
+
(
z1 +

1
z1

)
+ f

(
z0

z1
+
z1

z0

)
+ e(f − 1) = 0,

ϕ0 = η0z0 + η1
1
z0

+ η1z1 + η0
1
z1

+ η2
0

z0

z1
+ η2

1

z1

z0
− (f − 1) = 0,

ϕ1 = η1z0 + η0
1
z0

+ η0z1 + η1
1
z1

+ η2
1

z0

z1
+ η2

0

z1

z0
− (f − 1) = 0.

Elimination of the variable z1 implies that z0 is a root of the polynomial

g(x) = (x− 1)
(
p+ 1

4
x2 +

p− 1
2

x+
p+ 1

4

)
(∗),
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where (∗) stands for a polynomial with no unimodular roots. One may take z0 = 1. Then z1 is a
root of the polynomial

h(x) =
p+ 1

4
x2 +

p− 1
2

x+
p+ 1

4
,

that is,

z1 = cosA+ i sinA or z1 = cosA− i sinA, cosA = −p− 1
p+ 1

.

The only equivalence class is formed by the delta-correlated sequence x = (x0, . . . , xp−1) with

x0 = 1, xi =

{
z0 = 1, i ∈ G0,

z1 = cosA+ i sinA, i ∈ G1.

5.2. Case e = (p− 1)/2, f = 2

In this case, two equivalence classes are known if p ≡ 1 (mod 4) and one equivalence class if
p ≡ 3 (mod 4) (see, e.g., [7, 8]).

If p ≡ 1 (mod 4), then a representative of the first class is the sequence

xi = ζi
2
, i = 0, 1, . . . , p− 1,

and that of the second class is

xi = ζsi
2
, i = 0, 1, . . . , p− 1,

where s is a quadratic nonresidue modulo p.
If p ≡ 3 (mod 4), then a representative of the only known equivalence class is the sequence

xi = ζi
2
, i = 0, 1, . . . , p− 1.

6. METHOD FOR CONSTRUCTING SEQUENCES FOR e = 3

In this section, we describe a new infinite family of unimodular sequences with zero autocorre-
lation.

Let a prime p have the form p = 3f + 1; i.e., f is even. Let g be a primitive root modulo p.
In this case, the Gauss cyclotomic classes are defined as

0 = {0},
G0 = (g3, g6, g9, . . . , g3f = 1) (mod p),

G1 = (g3+1, g6+1, g9+1, . . . , g3f+1 = g) (mod p),

G2 = (g3+2, g6+2, g9+2, . . . , g3f+2 = g2) (mod p).

The corresponding Gauss f -periods

η0 =
∑
i∈G0

ζi, η1 =
∑
i∈G1

ζi, η2 =
∑
i∈G2

ζi

are real numbers. Moreover, the number

s = η0η1η2

is integer.
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Let us choose the elements of a desired unimodular delta-correlated sequence as follows:

x0 = 1,
xi = z0, i ∈ G0,

xi = z1, i ∈ G1,

xi = z2, i ∈ G2,

|z0| = |z1| = |z2| = 1.

(12)

Then system (8) reduces to the following system of algebraic equations in three unknowns:

ψ = f

(
z0

z1
+
z1

z0

)
+ f

(
z1

z2
+
z2

z1

)
+ f

(
z2

z0
+
z0

z2

)
+
(
z0 +

1
z0

)
+
(
z1 +

1
z1

)
+
(
z2 +

1
z2

)
+ e(f − 1) = 0,

ϕ0 = η0η1

(
z0

z1
+
z1

z0

)
+ η1η2

(
z1

z2
+
z2

z1

)
+ η2η0

(
z2

z0
+
z0

z2

)
+ η0

(
z0 +

1
z0

)
+ η1

(
z1 +

1
z1

)
+ η2

(
z2 +

1
z2

)
− (f − 1) = 0,

ϕ1 = η1η2

(
z0

z1
+
z1

z0

)
+ η2η0

(
z1

z2
+
z2

z1

)
+ η0η1

(
z2

z0
+
z0

z2

)
+ η1

(
z0 +

1
z0

)
+ η2

(
z1 +

1
z1

)
+ η0

(
z2 +

1
z2

)
− (f − 1) = 0,

ϕ2 = η2η0

(
z0

z1
+
z1

z0

)
+ η0η1

(
z1

z2
+
z2

z1

)
+ η1η2

(
z2

z0
+
z0

z2

)
+ η2

(
z0 +

1
z0

)
+ η0

(
z1 +

1
z1

)
+ η1

(
z2 +

1
z2

)
− (f − 1) = 0,

Elimination theory yields, for each p, two irreducible polynomials over Z of degree, respectively,
12 and 6. Their roots generate the delta-correlated sequence. These polynomials are found explicitly
but their coefficients are expressed through p and f in a too complicated way and are not presented
here.

In turn, further factorization of these polynomials into polynomials of degrees 4 and 2 in the
extended field Q(η0) is possible. Let us present the decompositions.

Polynomials of degree 12 have the following three factors of degree 4:

sz4 −
(
2s− (f + 1)

(
η0 + η2

0

))
z3 +

(
(2f − 1)

(
η0 + η2

0

)
− 3s

)
z2 −

(
2s − (f + 1)

(
η0 + η2

0

))
z + s,

sz4 −
(
2s− (f + 1)

(
η1 + η2

1

))
z3 +

(
(2f − 1)

(
η1 + η2

1

)
− 3s

)
z2 −

(
2s − (f + 1)

(
η1 + η2

1

))
z + s,

sz4 −
(
2s− (f + 1)

(
η2 + η2

2

))
z3 +

(
(2f − 1)

(
η2 + η2

2

)
− 3s

)
z2 −

(
2s − (f + 1)

(
η2 + η2

2

))
z + s.

Each of the polynomials has two conjugate unimodular roots, which are used in the sequel to
construct sequences, and two nonunimodular roots, which we do not need.

Polynomials of degree 6 have the following three factors of degree 2:

Az2 −
(
B − (f − 1)

(
η0 + η2

0

))
z +A,

Az2 −
(
B − (f − 1)

(
η1 + η2

1

))
z +A,

Az2 −
(
B − (f − 1)

(
η2 + η2

2

))
z +A,

where the integer coefficients A and B are defined by the relations

A =
f3 − s
p

, B = 3
f3 − s
p
− f + s.
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Each of the polynomials has two conjugate unimodular roots, which are used in the sequel to
construct sequences.

The first equivalence class is constructed with the help of the roots of polynomials of degree 4.
The second equivalence class is constructed using the roots of polynomials of degree 2. The con-
struction process does not depend on a class.

To compose a unimodular delta-correlated sequence, we have to take as z0, z1, and z2 in (12) one
unimodular root of each of the three polynomials. Some triples of such roots do not form required
sequences. For instance, if a triple (z0, z1, z2) is suitable, then the triples (z1, z2, z0) and (z2, z0, z1)
are also suitable but (z0, z1, z

∗
2) and (z0, z2, z1) are not. It is possible to give a deterministic

algorithm for the choice (z or z∗) and order of roots but, for the case e = 3, it is simpler to choose
one sequence from the eight: as z0, we may take any root; then there are two variants to choose
from, either (z0, z

(∗)
1 , z

(∗)
2 ) or (z0, z

(∗)
2 , z

(∗)
1 ); and then four variants: which of the conjugate roots to

take as z1 and z2.

7. CASE p = 13

In this case, all equivalence classes of unimodular delta-correlated sequences of length 13 are
found. Both the above-described and numerical methods are used. The following results are
obtained.

7.1. Case e = 2

Previously known sequences of the form

x = {1, z0, z1, z0, z0, z1, z1, z1, z1, z0, z0, z1, z0},

belong to two equivalence classes, both consisting of 338 solutions. The solutions are defined by
the roots of the polynomial (see (9))

g(x) = 3x4 + x3 + 5x2 + x+ 3.

The sequence that defines the first class (see (10)) is

z0 = exp(i 4.931261595868),
z1 = exp(i 1.351923711311).

The sequence that defines the second class (see (11)) is

z0 = exp(i 4.318485428757),
z1 = exp(i 1.964699878422).

7.2. Case e = 3

There are two equivalence classes, consisting of 1014 solutions of the form

x = {1, z0, z1, z1, z2, z0, z2, z2, z0, z2, z1, z1, z0}.

The solutions are defined by the roots of the polynomials

g3,1(x) = x12 + 14x11 − 12x10 − 38x9 + x8 − 25x7 − 51x6 − 25x5 + x4 − 38x3 − 12x2 + 14x+ 1,

g3,2(x) = 25x6 + 45x5 + 63x4 + 59x3 + 63x2 + 45x + 25.
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The sequence that defines the first class is

z0 = exp(i 4.961837311319),
z1 = exp(i 3.829123080261),
z2 = exp(i 0.887313301823).

The sequence that defines the second class is

z0 = exp(i 2.520358681774),
z1 = exp(i 4.209262236495),
z2 = exp(i 1.164371390059).

7.3. Case e = 4

There are two equivalence classes, consisting of 1352 solutions of the form

x = {1, z0, z1, z0, z2, z1, z1, z3, z3, z0, z2, z3, z2}.

The solutions are defined by the roots of the polynomial

g4,1(x) = 1839267x48 + 14319504x47 + 134248644x46 + 155077527x45

− 1190920748x44 − 5275988402x43 − 8760573556x42 + 3926331880x41

+ 58467147254x40 + 167525956116x39 + 339395597762x38 + 581186642764x37

+ 663905335340x36 + 1026847512558x35 + 1910401463504x34 − 93533381127x33

− 2228273627848x32 − 1341693048892x31 + 270433926621x30 − 3520114694036x29

− 2499519303004x28 + 939973661496x27 + 2445009600764x26 + 1502961402072x25

+ 1781778818664x24 + 1502961402072x23 + 2445009600764x22 + 939973661496x21

− 2499519303004x20 − 3520114694036x19 + 270433926621x18 − 1341693048892x17

− 2228273627848x16 − 93533381127x15 + 1910401463504x14 + 1026847512558x13

+ 663905335340x12 + 581186642764x11 + 339395597762x10 + 167525956116x9

+ 58467147254x8 + 3926331880x7 − 8760573556x6 − 5275988402x5

− 1190920748x4 + 155077527x3 + 134248644x2 + 14319504x + 1839267.

The sequence that defines the first class is

z0 = exp(i 0.828308747773),
z1 = exp(i 2.309890279894),
z2 = exp(i 4.511268307248),
z3 = exp(i 6.191224200386).

The sequence that defines the second class is

z0 = exp(i 5.227849017149),
z1 = exp(i 2.854075020893),
z2 = exp(i 1.198259222271),
z3 = exp(i 6.026082413871).
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7.4. Case e = 6

In this case, there are:
1. Two previously known classes, both consisting of 78 solutions. The solutions are defined by

the roots of the polynomial

g6,1(x) = x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1.

Representatives of the equivalence classes are

x = {ζi2}, x = {ζ2i2}.

2. A class consisting of 1014 solutions. The solutions are defined by the roots of the polynomial

g6,2(x) = x12 + x11 − 12x10 − 12x9 + 14x8 + x7 + x6 + x5 + 14x4 − 12x3 − 12x2 + x+ 1.

The sequence that defines the class is

x = {1, z0, z1, z4, z2, z3, z5, z5, z3, z2, z4, z1, z0},

z0 = exp(i 0.276669071806850), z3 = z∗0 = exp(−i 0.276669071806850)
z1 = exp(−i 1.220721809284420), z4 = z∗1 = exp(i 1.220721809284420),
z2 = exp(i 2.283062308094460), z5 = z∗2 = exp(−i 2.283062308094460).

3. Nine equivalence classes consisting of 2028 solutions (polynomials are not presented). Ele-
ments of the sequences that generate the classes are as follows:

Number of
the class z0 z1 z2 z3 z4 z5

1 ei 0.1902604 ei 6.0532874 ei 5.3301520 ei 4.1247946 ei 2.7896177 ei 1.3456171

2 ei 6.2572071 ei 3.1069136 ei 4.3142758 ei 2.5337532 ei 1.6095226 ei 1.5348747

3 ei 1.5145681 ei 5.6230253 ei 1.8186436 ei 4.3012373 ei 1.3507833 ei 5.5295501

4 ei 0.7098655 ei 0.3563601 ei 1.2761141 ei 2.4965890 ei 3.5264757 ei 5.2149488

5 ei 2.8195396 ei 4.7919876 ei 1.2202988 ei 5.7462645 ei 1.3012538 ei 5.4918629

6 ei 0.0360641 ei 0.5036032 ei 1.5060156 ei 2.7899674 ei 4.2286812 ei 5.5467868

7 ei 1.9322243 ei 5.2951804 ei 3.3498223 ei 1.6479544 ei 4.2375937 ei 3.3816830

8 ei 0.0300385 ei 4.8160574 ei 4.3715523 ei 1.1462748 ei 3.2148048 ei 3.9654735

9 ei 3.2573498 ei 1.5620823 ei 4.1066677 ei 3.2922886 ei 1.8740567 ei 5.2812042

7.5. Case e = 12

In this case, there are seven equivalence classes, consisting of 4056 solutions of the form

x = {1, z0, z1, z4, z2, z9, z5, z11, z3, z8, z10, z7, z6}

(polynomials are not presented). Elements of the sequences that generate the classes are as follows:
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Number of z0 z1 z2 z3 z4 z5

the class z6 z7 z8 z9 z10 z11

1 ei 0.3644155 ei 1.8544445 ei 0.2119998 ei 4.9720469 ei 2.6024911 ei 4.9544333

ei 0.6959709 ei 2.9987740 ei 1.0141209 ei 1.6192549 ei 4.6885398 ei 5.7812423

2 ei 5.2994829 ei 5.5349134 ei 4.2517683 ei 3.9078690 ei 2.9651940 ei 0.8406314

ei 5.3280634 ei 3.6895083 ei 1.2821841 ei 0.6130970 ei 5.4055142 ei 0.7926259

3 ei 5.4648352 ei 1.4102819 ei 1.8284688 ei 1.5169011 ei 0.8084470 ei 3.3618472

ei 4.6674996 ei 1.3308366 ei 3.2227988 ei 5.0244945 ei 0.6539394 ei 1.6996524

4 ei 3.1421864 ei 5.8682974 ei 1.1475184 ei 3.1934900 ei 0.8015527 ei 2.5261989

ei 4.9889886 ei 0.2742489 ei 1.3089282 ei 2.6927908 ei 0.2996878 ei 5.9201145

5 ei 6.1299932 ei 4.9103682 ei 4.0871216 ei 5.9363385 ei 0.2631024 ei 1.4894551

ei 5.3933545 ei 4.3714754 ei 3.3750358 ei 3.4959996 ei 2.1537000 ei 4.3802490

6 ei 4.0081830 ei 4.2306731 ei 1.1255238 ei 0.3005833 ei 5.2414217 ei 1.1096142

ei 1.4528517 ei 0.7048406 ei 3.4903468 ei 4.4028238 ei 0.5291664 ei 0.8061093

7 ei 4.5781731 ei 5.0348707 ei 1.1102887 ei 3.6339907 ei 4.6511132 ei 4.3997922

ei 4.7957505 ei 5.6982482 ei 5.8941121 ei 1.0270072 ei 2.0018328 ei 2.8455874

There are no other equivalence classes.

8. CONCLUSIONS

A method to construct sequences with zero autocorrelation is described, which is based on Gauss
periods. For the case p = 3f + 1, explicit formulas defining unimodular delta-correlated sequences
are found.

All equivalence classes for unimodular delta-correlated sequences of lengths p = 3, 5, 7, 13 are
found.

In the cases where full classification of solutions is possible, all equivalence classes are found to
be based on Gauss periods.

Conjecture. Our conjecture is that this is true for any p.

As an example, classification of unimodular δ-correlated sequences of length p = 13 is given.
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