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Abstract—F -metrics are metrics based on projective sets. In this paper, construction of
optimal codes for a special F -metric associated with a generalized Vandermonde matrix is
given. Encoding and fast decoding algorithms are described. A public-key cryptosystem is
considered as an example of a possible application of codes constructed.

1. INTRODUCTION

In algebraic coding theory, numerous works are devoted to codes in the Hamming metric, as well
as in the rank metric. Other metrics, for instance, the F-metrics suggested in [2–5], are not
examined closely; see, e.g., [6, 7], etc. Nevertheless, these metrics can provide new possibilities for
both correcting special types of errors and applications in other fields, for example, in cryptography.

In this paper, we consider a class of F-metrics associated with generalized Vandermonde matri-
ces. For this class, it is possible to develop an interesting theory.

The paper is organized as follows. General properties of F-metrics are described in Section 2
(based on [2]). An F-metric associated with a generalized Vandermonde matrix is introduced in
Section 3. Properties of codes in this metric and a fast decoding algorithm are presented. Possible
application of such codes to public-key cryptography is described in Section 4. Lemmas whose
proofs involve cumbersome computations are postponed to the Appendix.

2. F-METRICS

2.1. General Properties

All the definitions and statements for F-metrics in this section, except for Lemma 1, are borrowed
from [2].

Let Ω be an n-dimensional vector space Fnq over a finite field Fq = GF (q).
By the span 〈X〉 of a subset X ⊂ Ω, we call the minimum linear subspace FX ⊆ Ω containing X.

Let F := {F1, F2, . . . , FN} be any family of subsets Fi ⊂ Ω such that
〈
N⋃
i=1

Fq

〉
= Ω.

Definition 1. The F-norm (F-weight), NF , of a vector x ∈ Ω is the cardinality of the smallest

subset I of the set {1, 2, . . . , N} such that x belongs to
〈⋃
i∈I

Fi

〉
.

Definition 2. The F-distance between vectors x and y is the norm of their difference, i.e.,
dF (x,y) = NF (x− y).

1 Some results of the article were presented in [1].
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The F-norm has the following obvious properties:

1. NF(x) = 0⇐⇒ x = 0;
2. NF(αx) = NF(x), ∀α ∈ Fq\{0}, ∀x ∈ Ω;
3. NF(x+ y) ≤ NF (x) +NF (y), ∀x,y ∈ Ω.

Thus, the F-norm is a proper metric on the space Ω. Since F-norms with respect to families
{F1, F2, . . . , FN} and {

〈
F1
〉
,
〈
F2
〉
, . . . ,

〈
FN
〉
} coincide,〈⋃

i∈I
Fi

〉
=
〈⋃
i∈I
〈Fi〉

〉
,

we may confine our consideration to families of linear subspaces only. Moreover, if Fi ⊂ Fj for
distinct i and j, then elimination of Fi from the family does not change the norm.

Example 1. Let N = n, Ω = Fnq , and F := {E1,E2, . . . ,En}, where Ei is a standard basis
in Fnq . Then the F-norm is the Hamming norm: NF(x) = dH(x), ∀x ∈ Fnq .

If F := {f1,f2, . . . ,fn}, where the vectors fi form a basis in Fnq , then this metric is equivalent
to the Hamming metric.

Example 2. Let Ω = Fm×`q be the linear space of m× ` matrices over Fq. Let R denote the set
of rank-1 matrices:

R =
{
M : rankM = 1, M ∈ Fm×`q

}
.

Since any matrix of rank r can be represented as a sum of r matrices of rank 1 and any sum of
rank-1 matrices is a matrix of rank not greater than r, we have NR(A) = rankA, ∀A ∈ Fm×`r .
Therefore, we get the rank metric [8].

Definition 3. Any subset C ∈ Ω is called a code.

Definition 4. The F-distance of a code C ⊂ Ω is the integer

dF (C) := min{dF (x,y) | x,y ∈ C, x 6= y}.

Definition 5. If all elements of a family F := {F1, F2, . . . , FN} are vectors, then the metric
generated by the family is called a projective F-metric. In this case, we will denote elements of the
family by fi, i.e., F := {f1,f2, . . . ,fN}.

In the sequel, speaking about F-metrics, we consider projective F-metrics only.

Lemma 1 (generalized Singleton bound). For any linear code C ⊆ Fnq of dimension k, we have
the following inequality:

dF (C) ≤ n− k + 1. (1)

Proof. Let F := {f1,f2, . . . ,fN}. Choose a basis fi1 ,fi2, . . . ,fin in Fnq composed of vectors of
the family F . Consider the metric Fred generated by these vectors only, Fred := {fi1 ,fi2 , . . . ,fin}.
Since this metric is equivalent to the Hamming metric, we have the usual Singleton bound:
dFred

(C) ≤ n − k + 1. Adding extra vectors to Fred can only decrease the F-norm; i.e., dF (C) ≤
dFred

(C). 4
We refer to a code meeting this bound as a code with the maximum F-distance.

2.2. Parent Code

Define the mapping ϕ : FNq → Fnq as ϕ(ei) := fi, i = 1, . . . , N , where {e1,e2, . . . ,eN} is a stan-
dard basis in FNq and {f1,f2, . . . ,fN} are vectors that define the F-metric.
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Definition 6. The parent code is the kernel P := ker(ϕ) ⊂ FNq .

Since the condition x ∈ ker(ϕ) can be expressed as Fx = 0, where F is the matrix whose
columns are coordinates of the vectors ϕ(ei) = fi, i = 1, . . . , N , in the space Fnq , the parent code P
is an [N,N − n] code with parity-check matrix F .

Let w(D) be the weight of a coset D ∈ FNq /P , i.e., the Hamming weight of the coset leader.
Information about the F-weight distribution of Fnq is of great importance in coding theory. The
following lemma allows one to find the Hamming weight distribution and reduce the calculation of
the F-norm to calculation of the Hamming spectrum of cosets of the parent code.

Lemma 2. The F-norm of any vector y ∈ Fnq is equal to the weight of a coset that has y as a
syndrome:

dF (y) = dH(ϕ−1(y)).

It follows from the lemma that the maximum F-norm is equal to the covering radius of the
parent code P :

ρ(P ) := max
{
w(D), D ∈ FNq /P

}
.

3. CODES IN THE VANDERMONDE F-METRIC

3.1. Vandermonde F-Metric

Let us define the Vandermonde F-metric in the following way. As vectors f1,f2, . . . ,fN that
define the F-metric, take columns of a generalized Vandermonde matrix

F =


u1 u2 . . . uN
u1x1 u2x2 . . . uNxN
u1x

2
1 u2x

2
2 . . . uNx

2
N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u1x
n−1
1 u1x

n−1
2 . . . uNx

n−1
N

 , (2)

where n ≤ N , xi ∈ Fq = GF (q) are pairwise distinct, and ui ∈ Fq = GF (q) are nonzero,
i = 1, . . . , N .

The parent code for this F-metric is a generalized Reed–Solomon code (GRS code).

3.2. Codes

Our goal now is to construct a linear code with the maximum F-distance dF = n − k + 1. Let
a linear [n, k] code C be defined by its transposed generator matrix

GT =


g11 g21 . . . gk1

g12 g22 . . . gk2

. . . . . . . . . . . . . . . . . .
g1n g2n . . . gkn

 .
For a set of k information symbols a = (a1, a2, . . . , ak)T , the corresponding code vector is

calculated as g = GTa.
Let GT be as follows:

GT =


v1 v2 . . . vk
v1y1 v2y2 . . . vkyk
v1y

2
1 v2y

2
2 . . . vky

2
k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v1y
n−1
1 v2y

n−1
2 . . . vky

n−1
k

 , (3)
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where vi ∈ Fq are nonzero and yi ∈ Fq = GF (q) are pairwise distinct. Moreover, let us choose yi
to be distinct from any of the xi. In this case, the concatenation of the matrices F and GT is also
a generalized Vandermonde matrix. The code dimension k must satisfy the inequality k + N ≤ q
since the maximum possible number of columns of a generalized Vandermonde matrix over GF (q)
equals q.

Lemma 3. The code C defined by the matrix GT is a code with the maximum F-distance:

dF (C) = n− k + 1. Consequently, the code corrects up to tk =
[
n− k

2

]
F-errors.

Proof. Let g be a code vector obtained as the product of the matrix GT and an arbitrary
vector a = (a1, a2, . . . , ak)T of Hamming weight s 6= 0, i.e., gT = aTG. Then g can be repre-
sented as a linear combination of columns of GT corresponding to the nonzero components of a:
g = aj1gj1 + aj2gj2 + . . . + ajsgjs . Let ` denote the F-weight of g. By the definition of the
F-norm, g can be represented as g = b1fi1 + b2fi2 + . . . + b`fi` , where none of the bi equals zero.
It follows from the equation g = b1fi1 + b2fi2 + . . . + b`fi` = aj1gj1 + aj2gj2 + . . . + ajsgjs that
` + s distinct columns fi1 ,fi2 , . . . ,fi` ,gj1,gj2, . . . ,gjs of the generalized Vandermonde matrix are
linearly dependent. Therefore, `+ s ≥ n+ 1, or

NF (g) ≥ n− s+ 1. (4)

Thus, for the minimum F-distance of the code, we have dF (C) ≥ n − k + 1. Taking into account
the generalized Singleton bound (1), we conclude that dF (C) = n− k + 1. 4

3.3. Fast Decoding

We reduce decoding in the F-metric to decoding GRS codes. In turn, for GRS codes, fast
decoding algorithms exist.

Let c = g + e, where g is a code vector and e is an error. Let t denote the F-weight of the
error. Then e can be represented as a linear combination of the vectors {fi}

e = m1f1 +m2f2 + . . .+mNfN

such that dH(m) = t, where m = (m1,m2, . . . ,mN )T .
Let us show that there exists a fast decoding algorithm if t ≤ tk. Consider the concatenation of

the matrices F and GT :

(
F | GT

)
=


u1 u2 . . . uN
u1x1 u2x2 . . . uNxN
u1x

2
1 u2x

2
2 . . . uNx

2
N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u1x
n−1
1 u2x

n−1
2 . . . uNx

n−1
N

∣∣∣∣∣∣∣∣∣∣∣

v1 v2 . . . vk
v1y1 v2y2 . . . vkyk
v1y

2
1 v2y

2
2 . . . vky

2
k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v1y
n−1
1 v2y

n−1
2 . . . vky

n−1
k



=


u1 u2 . . . uN
u1x1 u2x2 . . . uNxN
u1x

2
1 u2x

2
2 . . . uNx

2
N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u1x
n−1
1 u2x

n−1
2 . . . uNx

n−1
N

∣∣∣∣∣∣∣∣∣∣∣

uN+1 uN+2 . . . uN+k

uN+1xN+1 uN+2xN+2 . . . uN+kxN+k

uN+1x
2
N+1 uN+2x

2
N+2 . . . uN+kx

2
N+k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uN+1x
n−1
N+1 uN+2x

n−1
N+2 . . . uN+kx

n−1
N+k

 , (5)

where we used the notations xN+i = yi and uN+i = vi, i = 1, 2, . . . , k.
Let R denote a nonsingular square matrix of order n formed by the last n columns of matrix (5).

Let us premultiply (5) by R−1 and thus reduce it to the canonical form:

R−1
(
F | GT

)
=
(
F̃ | G̃T

)
=

(
B1 En−k
B2 0

∣∣∣∣∣ 0
Ek

)
, (6)
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where E` is the identity matrix of order ` and the n × (N − n + k) matrix
(
B1
B2

)
is a generalized

Cauchy matrix, whose elements are of the form bij =
αiβj
µi − νj

and can be obtained explicitly (see

Lemma A.1).
Let us premultiply c = g + e by R−1:

R−1 (g + e) = R−1 (g + Fm) = g̃ + F̃m = g̃ + ẽ.

The first n− k components of the vector g̃ = R−1g are zero:

g̃ = (0, 0, . . . , 0, g̃n−k+1, g̃n−k+2, . . . , g̃n)T .

This allows us to find the first n − k components of the vector ẽ = R−1Fm = F̃m. Let us show
that, given these components, it is possible to reconstruct the vector m. To this end, we have to
solve the system of equations F̃m = ẽ:

(
B1 En−k
B2 0

)
m1

m2
...

mN

 =



ẽ1

ẽ2
...

ẽn−k
∗
...
∗


. (7)

Consider the first n− k rows of system (7):


b1,1 b1,2 . . . b1,N+k−n 1 . . . 0
b2,1 b2,2 . . . b2,N+k−n 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bn−k,1 bn−k,2 . . . bn−k,N+k−n 0 . . . 1




m1

m2
...

mN

 =


ẽ1

ẽ2
...

ẽn−k

 . (8)

The matrix H = (B1 | En−k) is the concatenation of the generalized Cauchy matrix and the
identity matrix. The matrix H can be transformed into a generalized Vandermonde matrix
H ′ = (ΨB1 | Ψ) if we premultiply it by an appropriate nonsingular square matrix Ψ of order
n− k (see Lemma A.2). Thus, it is necessary to solve the system of equations

H ′m = Ψ


ẽ1

ẽ2
...

ẽn−k

 , (9)

where the right-hand side and the matrix H ′ are known.
Solving the system is the decoding problem for the GRS code CH′ with the standard-form parity-

check matrix H ′. The problem has a unique solution if the Hamming weight of the vector m does

not exceed the error-correcting capability of the code,
[
n− k

2

]
. In this case, a fast decoding

algorithms exists (see, e.g. [9]); on applying it, we find the vector m and then the vectors e and g.
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4. APPLICATION TO CRYPTOGRAPHY

4.1. Public-Key Cryptosystem Based on the Niederreiter System

A public-key cryptosystem that uses an error vector as a plaintext was first introduced by
Niederreiter [10]. A parity-check matrix H of a GRS code premultiplied by a nonsingular matrix S,
which hides the structure of H , is chosen as a public key:

Hpub = SH .

A plaintext is an error vector e of Hamming weight dH(e) ≤
[
d− 1

2

]
, where d is the minimum

distance of the GRS code. Encryption is calculating the syndrome s = SHe. A legitimate user
premultiplies the syndrome by S−1, applies a fast decoding algorithm for the GRS code, and finds
the vector e. To get the plaintext, an intruder would have to solve the problem of decoding a code
with known parity-check matrix SH in the general case. Up to now, no algorithm for solving the
problem in a polynomial time is known.

However, Sidelnikov and Shestakov showed [11] that it is possible to obtain a matrix of the
form S′H ′ from Hpub in a polynomial time, where S′ is a nonsingular square matrix and H ′ is a
generalized Vandermonde matrix, which is also a parity-check matrix for the same GRS code. Thus,
the original Niederreiter cryptosystem could not withstand the structural attack of reconstructing
a private key by a known public one.

One of the possible ways to modify the cryptosystem is introducing a hiding matrix X. In this
case, a public key is Hpub = S (H +X). In [12], it was proposed to use hiding matrices of rank 1.
Results of the present article allow one to use hiding matrices of much larger ranks.

The cryptosystem is constructed in the following way. First, a legitimate user chooses a matrix F ,
whose columns define an F-metric. The parent code with the parity-check matrix F must have
a fast decoding algorithm in the Hamming metric. Then it is necessary to choose a transposed
generator matrix GT of a linear code C with a fast decoding algorithm in the F-metric. In the
case of the Vandermonde F-metric, matrices F and GT are (2) and (3) respectively.

Next, one chooses a nonsingular square matrix S of order n and a permutation matrix P of
order N .

A secret key is the set of matrices
{
F ,GT ,S,P

}
.

A public key is the matrix

Hpub = S(F +GTU)P , (10)

where U is a random k×N matrix. Columns of the matrix GTU are code vectors Gi of the code C.
The matrix U is not needed for decryption, it should only be made unavailable for a cryptanalyst.

A plaintext is an N -dimensional vector m = (m1,m2, . . . ,mN )T , where mi ∈ Fq, and dH(m) =
tmin = min {tk, tP }, where tk is the error-correcting capability of the code defined by GT in the
space with the F-metric and tP is the error-correcting capability of the parent code. Hence, the
number of possible messages is Ctmin

n (q − 1)tmin .
Encryption. A cyphertext is computed as the syndrome

c = Hpubm = S(F +GTU)Pm = S(F +GTU)m̃
= S (m̃1(f1 +G1) + m̃2(f2 +G2) + . . .+ m̃N (fN +GN )) = S (g + e) ,

where m̃ = Pm and fi and Gi are columns of the matrices F and GTU respectively.
Decryption. A legitimate user premultiplies the received cyphertext S (g + e) by S−1 and then,

applying the fast decoding algorithm in the F-metric, gets the vectors g and e. Then he applies the
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fast decoding algorithm for the parent code to e to calculate the vector m̃. It is worth noting that,
in the case of the Vandermonde F-metric, the fast decoding algorithm in the F-metric immediately
yields m̃. To get the plaintext m, one has only to multiply m̃ by P−1.

If the code C consists of the zero vector only, we get the classical Niederreiter cryptosystem,
broken by Sidelnikov and Shestakov [11].

It should be noted that not every matrix U can be used to construct a secure cryptosystem.
For example, if U = V F , then

H = S(En +GTV )FP , (11)

that is, we only get an additional scrambling matrix for the Niederreiter cryptosystem.

5. CONCLUSION

In this paper, we have constructed codes for a projective F-metric associated with a generalized
Vandermonde matrix, developed a fast decoding algorithm, and considered an application of the
codes to cryptography. In the future, it seems to be of great interest to define F-metrics for other
codes and find fast decoding algorithms for them. Also, it makes sense to investigate the security
of the public-key cryptosystem presented.

In conclusion, we would like to thank Alexey Ourivsky, as well as an anonymous reviewer, for
their constructive criticism, which helped us to improve the paper.

APPENDIX

Lemma A.1. Let V be an n× (m+ n) generalized Vandermonde matrix and R be the matrix
formed by the last n columns of V . The product R−1V is the concatenation of a generalized
Cauchy matrix and an identity matrix:

V =


z1 z2 . . . zm zm+1 . . . zm+n

z1x
2
1 z2x

2
2 . . . zmx

2
m zm+1x

2
m+1 . . . zm+nx

2
m+n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z1x
n−1
1 z2x

n−1
2 . . . zmx

n−1
m zm+1x

n−1
m+1 . . . zm+nx

n−1
m+n

 . (12)

Proof. Consider the set of Lagrange interpolation polynomials of degree n− 1:

fi(x) =
∏

1≤s≤n
s 6=i

(xm+s − x)
(xm+s − xm+i)

=
n∑
s=1

fisx
s−1, i = 1, . . . , n. (13)

Note that

fi(xj) =
n∑
s=1

fisx
s−1
j = δi,j−m =

{
1, i = j,

0, i 6= j,
i = 1, . . . , n, j = m+ 1, . . . ,m+ n. (14)

Define the matrix A as Ai` =
[
fi`
zm+i

]
, i, ` = 1, . . . , n. Consider the product of A and V :

[AV ]ij =
n∑
s=1

fiszjx
s−1
j

zm+i
=

zj
zm+i

n∑
s=1

fisx
s−1
j =

zj
zm+i

fi(xj).
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For j = m + 1 . . . ,m + n, we have

[AV ]ij = δi,j−m,

that is, the last n columns of AV form an identity matrix:

AV =


∗ . . . ∗ 1 0 . . . 0
∗ . . . ∗ 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
∗ . . . ∗ 0 0 . . . 1

 . (15)

Consequently, A = R−1.
For j = 1, . . . ,m, we have

[
R−1V

]
ij

=
zjfi(xj)
zm+i

=
zj
zm+i

∏
1≤s≤n
s 6=i

(xm+s − xj)
(xm+s − xm+i)

=
zj
zm+i

∏
1≤s≤n

(xm+s − xj)∏
1≤s≤n
s 6=i

(xm+s − xm+i)
1

xm+i − xj

=

 1
zm+i

∏
1≤s≤n
s 6=i

(xm+s − xm+i)

zj ∏
1≤s≤n

(xm+s − xj)

 1
xm+i − xj

=
αiβj

xm+i − xj
,

where

αi =
1

zm+i
∏

1≤s≤n
s 6=i

(xm+s − xm+i)
6= 0, i = 1, 2, . . . , n,

βj = zj
∏

1≤s≤n
(xm+s − xj) 6= 0, j = 1, 2, . . . ,m.

(16)

Thus, the product R−1V is the concatenation of a generalized Cauchy matrix and an identity
matrix.

Lemma A.2. Let us be given a concatenation of a generalized Cauchy matrix and an identity
matrix

C =



a1b1
c1 − d1

a1b2
c1 − d2

. . .
a1bm
c1 − dm

1 0 . . . 0

a2b1
c2 − d1

a2b2
c2 − d2

. . .
a2bm
c2 − dm

0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
anb1
cn − d1

anb2
cn − d2

. . .
anbm
cn − dm

0 0 . . . 1


with given coefficients ai, ci, bj , dj , i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Then there exists a nonsingular
matrix Ψ of order n such that the product ΨC is a generalized Vandermonde matrix.
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Proof. Define the elements x` and z`, ` = 1, . . . ,m+ n, of the matrix V (12) in the following
way:

xj = dj, xm+i = ci,

zj =
bj∏

1≤s≤n
(xm+s − xj)

, zm+i =
1

ai
∏

1≤s≤n
s 6=i

(xm+s − xm+i)
, (17)

j = 1, . . . ,m, i = 1, . . . , n.

Since all the x` are distinct and z` are nonzero, V is a generalized Vandermonde matrix. If R is a
matrix formed by the last n columns of V , then, by the previous lemma, the product R−1V is the
concatenation of a generalized Cauchy matrix and an identity matrix. Taking (16) and (17) into
account, we get R−1V = C. Thus, Ψ = R. 4

It is obvious that the matrix Ψ can be defined in different ways. For example, for any γ 6= 0,
it is possible to define x` and z`, ` = 1, . . . ,m+ n, as

xj = γdj , xm+i = γci,

zj =
bj∏

1≤s≤n
(xm+s − xj)

, zm+i =
1

γai
∏

1≤s≤n
s 6=i

(xm+s − xm+i)
, (18)

j = 1, . . . ,m, i = 1, . . . , n.

According to Lemma A.2, a generalized Vandermonde matrix V with coefficients (18) can be
transformed into a concatenation of a generalized Cauchy matrix and an identity matrix. It follows
from (16) that αi = γai, βj = bj, and

αiβj
xm+i − xm+j

=
γaibj

γci − γdj
=

aibj
ci − dj

.

Lemma A.3. Let us be given a matrix
(
F | GT

)
of the form (5). The matrix H ′ used in the

fast decoding algorithm (see Section 3.3) can be calculated according to the following formulas:

H ′ =


ξ1x1 ξ1x2 . . . ξ1xN
ξ2x

2
2 ξ2x

2
2 . . . ξ2x

2
N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξn−kx
n−k−1
1 ξn−kx

n−k−1
2 . . . ξn−kx

n−k−1
N

 ,

where

ξj = zj
∏

n−k+1≤s≤n
(xN−n+k+s − xj), j = 1, . . . , N − n+ k,

ξN−n+k+i = zN−n+k+i

∏
n−k+1≤s≤n

(xN−n+k+s − xN−n+k+i), i = 1, . . . , n− k.

Proof. It is easily seen that the coefficients x`, ` = 1, . . . , N , for H ′ can be taken the same.
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To obtain formulas for the coefficients ξ`, we use (16) and (17):

ξj =
bj∏

1≤s≤n−k
(xN−n+k+s − xj)

=
zj

∏
1≤s≤n

(xN−n+k+s − xj)∏
1≤s≤n−k

(xN−n+k+s − xj)

= zj
∏

n−k+1≤s≤n
(xN−n+k+s − xj), j = 1, . . . , N − n+ k,

ξN−n+k+i =
1

ai
∏

1≤s≤n−k
s 6=i

(xN−n+k+s − xN−n+k+i)

=

zN−n+k+i
∏

1≤s≤n
s 6=i

(xN−n+k+s − xN−n+k+i)

∏
1≤s≤n−k

s 6=i

(xN−n+k+s − xN−n+k+i)

= zN−n+k+i

∏
n−k+1≤s≤n

(xN−n+k+s − xN−n+k+i), i = 1, . . . , n− k. 4

It is obvious that the matrix Ψ (see Section 3.3) consists of the last n− k columns of H ′.
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