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Abstract—As is well known, a finite field Kn = GF (qn) can be described in terms of n × n
matrices A over the field K = GF (q) such that their powers Ai, i = 1, 2, . . . , qn− 1, correspond
to all nonzero elements of the field. It is proved that, for fields Kn of characteristic 2, such
a matrix A can be chosen to be symmetric. Several constructions of field-representing symmet-
ric matrices are given. These matrices Ai together with the all-zero matrix can be considered as
a Kn-linear matrix code in the rank metric with maximum rank distance d = n and maximum
possible cardinality qn. These codes are called symmetric rank codes. In the vector represen-
tation, such codes are maximum rank distance (MRD) linear [n, 1, n] codes, which allows one
to use known rank-error-correcting algorithms. For symmetric codes, an algorithm of erasure
symmetrization is proposed, which considerably reduces the decoding complexity as compared
with standard algorithms.
It is also shown that a linear [n, k, d = n−k+1] MRD code Vk containing the above-mentioned
one-dimensional symmetric code as a subcode has the following property: the corresponding
transposed code is also Kn-linear. Such codes have an extended capability of correcting sym-
metric errors and erasures.

1. INTRODUCTION

Codes in the rank metric, introduced in [1], can be described in two alternative ways: either as
matrix or vector codes. Let K be a field of q elements, and let Kn be its extension field of degree n.

In the matrix representation, we consider the normed ring Mn(K) of n × n matrices over the
ground field K (in the present paper, square matrices are only considered). The norm of a matrix G
is its rank, rank(G), and the rank distance d(G1, G2) between two matrices G1 and G2 is the rank of
their difference: d(G1, G2) = rank(G1−G2). Any subset of matricesM⊆Mn(K) is called a matrix
code. The code distance d(M) = d is the minimum pairwise distance between matrices of the code:
d = min

(
rank(G1−G2) : G1, G2 ∈M; G1 6= G2

)
. A code is called K-linear if a linear combination

of two code matrices with coefficients in K is also a code matrix. For a given codeM, the transposed
code MT is defined as the code consisting of transposed matrices: MT =

{
GT : G ∈ M

}
. It is

clear that the cardinalities and code distances of the codes M and MT are the same. If M is a
K-linear code, then MT is also K-linear.

In the vector representation, we consider the normed space Knn of n-vectors over the extended
field Kn. The norm, or rank , of a vector g ∈ Knn is defined to be the maximum number r(g) of
its coordinates that are linearly independent over the ground field K. The rank distance d(g1,g2)
between two vectors g1 and g2 is the norm of their difference: d(g1,g2) = r(g1−g2). Any subset of
vectors V ⊆ Knn is called a vector code. the code distance d(V) = d is the minimum pairwise distance
between code vectors: d = min(r(g1 − g2) : g1,g2 ∈ V; g1 6= g2). A code V is said to be K-linear
if a linear combination of two code vectors with coefficients in K is also a code vector. A code V
is said to be Kn-linear if a linear combination of two code vectors with coefficients in Kn is also a
code vector, or, in other words, if V is a linear subspace of Knn. Note that K-linearity follows from
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Kn-linearity; however, the converse is not true. It is shown in [1] that for k = 1, 2, . . . , n there exist
linear [n, k, d] codes with maximum possible rank distance d = n − k + 1 (MRD codes). They are
k-dimensional subspaces of Knn.

Let Ω = {ω1, ω2, . . . , ωn} be a basis of Kn over K. Let θ−1 : Kn ⇒ Kn be an isomorphism
between the field Kn and the space of vector columns Kn over K. Elements of the basis are mapped
into linearly independent columns b1, b2, . . . , bn ∈ Kn, where bj = θ−1(ωj), j = 1, 2, . . . , n.

Let θ : Kn ⇒ Kn be the inverse mapping: θ(b) = β. If we apply it to every column of a matrix
M ∈Mn(K), we get a one-to-one mapping Θ: Mn(K)⇒ Knn of the space of n× n matrices over K
onto the space of n-vectors over Kn. For the mapping Θ(M) = g it is clear that the rank of the
matrix M coincides with the rank of the vector g, i.e., rank(M) = r(g).

The mapping Θ is isometric. Given a matrix code M, it allows one to construct a vector code
according to the rule V = Θ(M). Conversely, given a vector code V, one can construct a matrix
code with the same metric properties using the rule M = Θ−1(V).

The vector representation is more useful for for the description of constructions of rank codes
and their decoding algorithms (see, for example, [1]). The matrix representation is useful in code
modulation theory, for example, in the theory of space-time codes [3].

Given a rank code, one can construct a new code with the same cardinality and code distance
using the following procedure. For instance, let us be given a vector code V, two mappings θ and θ̃,
and the associated mappings Θ and Θ̃. Let us construct a new code VT using the chain of mappings

V Θ−1

−−−→M −−−→MT Θ̃−−−→ VT . (1)

The obtained code VT is called the transposed vector code. It should be noted that the mappings θ
and θ̃ can be different.

The codes VT and V have the same cardinality and the same rank weight distribution. However,
if V is Kn-linear (say, is an [n, k, d = n−k+1] MRD code), the code VT is not necessarily Kn-linear,
though it is always K-linear. This is a drawback of the construction since no direct fast decoding
algorithms for such codes are known. Of course, it is possible to convert a distorted code vector
y = w + e, w ∈ VT , into a distorted vector z = v + ẽ, v ∈ V, by means of (1) and then use a
standard algorithm for V. However, in this case the question arises of why at all we should use
the code VT . Another drawback of a code which is only K-linear is a larger size of the generator
matrix.

Let us illustrate this by the following example.

Example 1. Let q = 2. As V, choose the following one-dimensional K3-linear [n, 1, n] code:

V =
{

(0, 0, 0), (1, α, α2), (α,α2, α3), (α2, α3, α4), (α3, α4, α5), (α4, α5, α6), (α5, α6, 1), (α6, 1, α)
}
,

where α is a root of the irreducible polynomial f(λ) = λ3 + λ2 + 1. The generator matrix of
this code consists of one row: G = (1, α, α2). Information vectors are one-dimensional: u = (u),
u ∈ GF (23). Code vectors are given by v = uG = (u, uα, uα2).

Let θ−1 be defined by 1↔ (1, 0, 0)T , α↔ (0, 1, 0)T , and α2 ↔ (0, 0, 1)T . Then the corresponding
matrix code M is the following set of 3× 3 matrices:

M0 =

0 0 0
0 0 0
0 0 0

 , M1 =

1 0 0
0 1 0
0 0 1

 , M2 =

0 0 1
1 0 0
0 1 1

 , M3 =

0 1 1
0 0 1
1 1 1

 ,

M4 =

1 1 1
0 1 1
1 1 0

 , M5 =

1 1 0
1 1 1
1 0 1

 , M6 =

1 0 1
1 1 0
0 1 0

 , M7 =

0 1 0
1 0 1
1 0 0

 .
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If we transpose these matrices and convert them into vectors by means of the map θ, we obtain
the code

VT =
{

(0, 0, 0), (1, α, α2), (α2, 1, α6), (α6, α2, α4), (α4, α6, α3), (α5, α4, α3), (α3, α5, α), (α,α3, 1)
}
,

which is K-linear but is not a linear subspace, i.e., is not K3-linear. The generator matrix of the
transposed code is

G =

 1 α α2

α2 1 α6

α6 α2 α4

 ,
information vectors are u = (u1, u2, u3), u1, u2, u3 ∈ GF (2), and code vectors are given by
w = uG = (u1 + u2α

2 + u3α
6, u1α+ u2 + u3α

2, u1α
2 + u2α

6 + u3α
4).

Problem statement. Let a Kn-linear [n, k, d = n − k + 1] MRD vector code V be given.
Find mappings Θ and Θ̃ (if exist) such that the transposed vector code VT is also a Kn-linear
[n, k, d = n− k + 1] MRD code.

In this paper we give an answer for the particular case of one-dimensional [n, 1, d = n] MRD
codes and fields Kn of characteristic 2, i.e., q = 2r. As is easily seen from relation (1), if the setM
consists of symmetric matrices, then M = MT , and for Θ = Θ̃ we obtain V = VT . A linear
[n, 1, d = n] MRD code V can be defined by a generator matrix consisting of one row:

G = (g1, g2, . . . , gn),

where the coordinates gj ∈ Kn, j = 1, 2, . . . , n, are linearly independent over K. In this case, the
vector code V consists of the all-zero code vector 0 and vectors of the form αsG, j = 0, 1, . . . , qn−2.
We prove that there exist a generator row G and a map Θ such that Θ−1(αsG) = As, where A is
a symmetric matrix.

Moreover, we prove that a linear [n, k, d = n − k + 1] MRD code Vk containing the above-
mentioned one-dimensional symmetric code as a subcode has the following property: the transposed
vector code VTk is also Kn-linear. Such codes have an extended capability of correcting symmetric
errors and erasures.

2. MATRIX AND VECTOR REPRESENTATIONS OF AN EXTENDED FINITE FIELD

Consider a matrix A ∈Mn(K).

Definition 1. A matrix A represents the field Kn if and only if the polynomial algebra K[A] is
isomorphic to Kn.

A representation of Kn by a matrix A is said to be primitive if all matrices As, s = 1, 2, . . . , qn−1,
are different.

Primitive representations are characterized by the following lemma.

Lemma 1. A representation of Kn by A is primitive if and only if its characteristic polynomial
det(λIn −A) coincides with a primitive1 polynomial f(λ) of degree n over K

f(λ) = λn + fn−1λ
n−1 + fn−3λ

n−2 + . . . + f1λ
1 + f0. (2)

Proof. Let det(λIn −A) = f(λ). Then f(A) = 0n, where 0n denotes the all-zero n× n matrix.
Since the polynomial f(λ) divides λq

n−1−1 but does not divide the binomials λs−1, 1 ≤ s ≤ qn−2,

1 A polynomial f(λ) of degree n irreducible over K is called primitive if f(λ) divides the binomial λq
n−1−1

but does not divide the binomials λs − 1, 1 ≤ s ≤ qn − 2.
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we have Aq
n−1 = In, and all the matrices As, s = 1, 2, . . . , qn − 1, are different. Moreover, each

matrix As can be represented as a linear combination of the matrices In, A,A2, . . . , An−1 using
the relation An = −fn−1A

n−1 − fn−2A
n−2 − . . . − f1A− f0In. Hence, the algebra K[A] of matrix

polynomials is isomorphic to the field Kn = K(α) formed by the adjunction of a root α of the
primitive polynomial f(λ). Therefore, the matrix A represents the field Kn, and this representation
is primitive.

Conversely, let a matrix A represent the field Kn primitively. Then the minimal polynomials of A
and α are identical and coincide with a primitive polynomial f(λ). Since the minimal polynomial
divides the characteristic polynomial and has the same degree and leading coefficient, we have
det(λIn −A) = f(λ). 4

Corollary 1. All matrices A representing a field are similar to the matrix

C =


0 0 . . . 0 −f0

1 0 . . . 0 −f1

. . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 −fn−2

0 0 . . . 1 −fn−1

 ,

i.e., A = QCQ−1, where Q ∈Mn(K) is a nonsingular matrix and f0, f1, . . . , fn−1 are the coefficients
of a reduced primitive polynomial f(λ) = λn + fn−1λ

n−1 + fn−3λ
n−2 + . . .+ f1λ

1 + f0.

Proof. Characteristic polynomials of similar matrices are identical. Note that det(λIn − C) =
λn+fn−1λ

n−1 +fn−2λ
n−2 + . . .+f1λ

1 +f0 = f(λ). Let A be an n×n matrix with the characteristic
polynomial det(λIn − A) = f(λ). Since f(λ) is a primitive polynomial, the sets of invariant
polynomials (for definitions and properties, see [2]) of the matrices λIn − A and λIn − C coincide
and consist of the polynomials f(λ), 1, . . . , 1. Hence, by the necessary and sufficient criterion of
similarity (see [2]), the matrix A is similar to C, or A = QCQ−1, where Q is a nonsingular matrix
with entries in the ground field K. 4

Denote by M [j] the jth column of the matrix M . Let A be a matrix which primitively represents
the field Kn. Define the induced vector representation of Kn by the relation

θ−1(0) = 0n[1], θ(0n[1]) = 0,

θ−1(αs) = As[1], θ(As[1]) = αs, s = 0, 1, . . . , qn − 2.
(3)

This map is well defined for any n-column since a nonzero column b is equal to As[1] for some s,
and the zero column is equal to 0n[1].

We call this representation associated with the matrix A.

Lemma 2. Let c ∈ Kn. Then
θ−1(αc) = Aθ−1(c).

Proof. Since c = αs for some s, we have θ−1(αc) = θ−1(α1+s) = A1+s[1] = AAs[1] =
Aθ−1(c). 4

For a vector c = (c1, c2, . . . , cn) ∈ Knn, put

Θ−1(c) =
(
θ−1(c1), θ−1(c2), . . . , θ−1(cn)

)
. (4)

Thus, Θ−1(c) = M is an n× n matrix over K.
It is clear that

Θ−1(αc) = AΘ−1(c) = AM
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and, in the general case,

Θ−1(αsc) = AsΘ−1(c) = AsM, s = 1, 2, . . . . (5)

Conversely,
Θ(AsM) = αsΘ(M) = αsc.

Furthermore, if c ∈ Knn and R is an n×m matrix over K, then

Θ−1(cR) = Θ−1(c)R = MR.

3. SYMMETRIC MATRICES REPRESENTING A FIELD

Let us show that, if Kn is a field of characteristic 2, a matrix A representing the field can be
chosen to be symmetric.2 The first symmetric construction was proposed in [4]. It used 2n− 1 free
parameters. Here we describe a simpler construction, containing only n free parameters.

3.1. Auxiliary Matrices and Determinants

All operations are performed in the field K. Let Dn(λ) be the three-diagonal n × n matrix
where all elements on the main diagonal equal λ and all elements on the neighboring upper and
low diagonals equal 1:

Dn(λ) =



λ 1 0 . . . 0 0 0
1 λ 1 . . . 0 0 0
0 1 λ . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . λ 1 0
0 0 0 . . . 1 λ 1
0 0 0 . . . 0 1 λ


.

Denote by dn(λ) the determinant of this matrix.
Let Hn(λ) be the three-diagonal n × n matrix where all elements on the main diagonal except

for the last one equal λ and the last element is λ+ 1. All elements on the neighboring upper and
low diagonals equal 1:

Hn(λ) =



λ 1 0 . . . 0 0 0
1 λ 1 . . . 0 0 0
0 1 λ . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . λ 1 0
0 0 0 . . . 1 λ 1
0 0 0 . . . 0 1 λ+ 1


.

Denote by hn(λ) the determinant of this matrix.
By the definition, put d−1(λ) = 0, d0(λ) = 1, h−1(λ) = 1, and h0(λ) = 1. It is easily seen that

d1(λ) = λ and h1(λ) = λ+ 1.

2 Examples show that for n = 2, 3 there exist symmetric matrices representing a field for an arbitrary

characteristic p. For instance, the matrix A =
(

1 1
1 0

)
represents the field GF (32). However, we do not

know whether symmetric matrices representing Kn exist for arbitrary n. For some fields of characteristic 0,
for example, for C, representation by symmetric matrices is impossible.
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Then the determinants dn(λ) and hn(λ) can be calculated recursively:

dn(λ) = d1(λ)dn−1(λ) + dn−2(λ), n ≥ 2,
hn(λ) = d1(λ)hn−1(λ) + hn−2(λ), n ≥ 2.

(6)

Moreover, repeating equations (6), we obtain for s ≥ 1 the relations

dn(λ) = ds(λ)dn−s(λ) + ds−1(λ)dn−s−1(λ), n ≥ 2,
hn(λ) = ds(λ)hn−s(λ) + ds−1(λ)hn−s−1(λ), n ≥ 2.

(7)

3.2. Main Construction

First, we prove the general result on the existence of symmetric matrices with a prescribed
characteristic polynomial.

Theorem 1. Let

g(λ) = λn + gn−1λ
n−1 + gn−3λ

n−2 + . . . + g1λ
1 + g0 (8)

be an arbitrary monic polynomial of degree n over K.
There exists a symmetric matrix A ∈Mn(K) for which g(λ) is the characteristic polynomial.

Proof. All elements of a binary field are squares. Choose elements an−1, an−2 = b2n−2, an−3 =
b2n−3, . . . , a0 = b20 ∈ K. Let b = (bn−2, bn−3, . . . , b0). Consider the bordered symmetric matrix of
the following form:

A =

(
an−1 b

bT Hn−1(0)

)
=



an−1 bn−2 bn−3 bn−4 . . . b2 b1 b0
bn−2 0 1 0 . . . 0 0 0
bn−3 1 0 1 . . . 0 0 0
bn−4 0 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b2 0 0 0 . . . 0 1 0
b1 0 0 0 . . . 1 0 1
b0 0 0 0 . . . 0 1 1


. (9)

Calculate the characteristic polynomial

χn(λ) = det(λIn +A) = det

(
λ+ an−1 b

bT Hn−1(λ)

)

= det



λ+ an−1 bn−2 bn−3 bn−4 . . . b2 b1 b0
bn−2 λ 1 0 . . . 0 0 0
bn−3 1 λ 1 . . . 0 0 0
bn−4 0 1 λ . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b2 0 0 0 . . . λ 1 0
b1 0 0 0 . . . 1 λ 1
b0 0 0 0 . . . 0 1 λ+ 1


.

Expanding the determinant by the first row, then expanding the obtained determinants by the first
column, and collecting similar terms, we obtain the relation

χn(λ) = (λ+ an−1)hn−1(λ) + b2n−2hn−2(λ)

+ b2n−3d1(λ)hn−3(λ) + . . .+ b21dn−3(λ)h1(λ) + b20dn−2(λ)
= (λ+ an−1)hn−1(λ) + an−2hn−2(λ)

+ an−3d1(λ)hn−3(λ) + . . .+ a1dn−3(λ)h1(λ) + a0dn−2(λ), (10)
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where the polynomials hi(λ) and di(λ) are defined by equations (6).
Equation (10) can be interpreted as the statement that the characteristic polynomial χn(λ) is a

linear combination of the polynomials(
λhn−1(λ), hn−1(λ), hn−2(λ), d1(λ)hn−3(λ), . . . , dn−3(λ)h1(λ), dn−2(λ)

)
(11)

with the coefficients (1, an−1, an−2, . . . , a1, a0).
Let us show that polynomials (11) are linearly independent over K. The polynomial λhn−1(λ)

is of degree n, the polynomial hn−1(λ) is of degree n− 1, and the other polynomials(
hn−2(λ), d1(λ)hn−3(λ), . . . , dn−3(λ)h1(λ), dn−2(λ)

)
(12)

are of degree n − 2. It suffices to prove that polynomials (12) are linearly independent. Add the
polynomial hn−2(λ) of system (12) to all the other polynomials ds(λ)hn−2−s(λ), s = 1, 2, . . . , n− 2.
Using relation (7), we obtain

hn−2(λ) + ds(λ)hn−2−s(λ) = ds−1(λ)hn−3−s(λ),

where the degrees of the polynomials ds−1(λ)hn−3−s(λ) equal n − 4. As a result, system (12) is
transformed into the system(

hn−2(λ), hn−4(λ), d1(λ)hn−5(λ), . . . , dn−5(λ)h1(λ), dn−4(λ), dn−3(λ)
)
. (13)

The first polynomial in (13) is of degree n − 2, the last polynomial is of degree n − 3, and the
other polynomials are of degree n − 4 and have the same form as (12). Iteratively continuing this
procedure, we reduce system (12) to the system(

hn−2(λ), hn−4(λ), hn−6(λ), . . . , h2(λ), h0(λ), d1(λ), d3(λ), . . . , dn−3(λ)
)
, n even,(

hn−2(λ), hn−4(λ), hn−6(λ), . . . , h1(λ), d0(λ), d2(λ), d4(λ), . . . , dn−3(λ)
)
, n odd.

All polynomials of this system have different degrees. Therefore, they are linearly independent
over K. 4

Hence, there exists a nonsingular matrix Ln ∈Mn(K) such that(
λhn−1(λ), hn−1(λ), hn−2(λ), d1(λ)hn−3(λ), . . . , dn−3(λ)h1(λ), dn−2(λ))T

= Ln(λn, λn−1, λn−2, . . . , λ, 1
)T
. (14)

Rows of the matrix Ln consist of the coefficients of the corresponding polynomials from the left-hand
side of (14).

Thus, if polynomial (8) is given, elements of symmetric matrix (9) for which this polynomial is
characteristic can be obtained from the equation

(1, an−1, an−2, . . . , a1, a0) = (1, gn−1, gn−2, . . . , g1, g0)L−1
n

by taking square roots of as, s = 1, 2, . . . , n − 1.
In particular, if polynomial (8) coincides with primitive polynomial (2), then the matrix A

represents the field Kn.

Example 2. Let q = 4, K = GF (4), n = 2, K2 = GF (q2) = GF (16). Let β be a primitive
element of K, i.e., β2 + β + 1 = 0. The polynomial f(λ) = λ2 + λ(β + 1) + (β + 1) is irreducible
over K and primitive. The symmetric matrix

A =

(
β β
β 1

)

represents the field K2 = GF (q2) = GF (16) because its characteristic polynomial is f(λ).
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Example 3. Let q = 2, K = GF (2), n = 4, K4 = GF (24) = GF (16). The polynomial f(λ) =
λ4 + λ3 + 1 is irreducible over K and primitive. The symmetric matrix

A =


0 0 1 1
0 0 1 0
1 1 0 1
1 0 1 1


represents the field K4 = GF (24) = GF (16) because its characteristic polynomial is f(λ).

3.3. Other Constructions

Let n = ms. Then the field Kn can be defined by a primitive polynomial of degree s over Km.
Let β be a primitive element of Km. Let a symmetric s× s matrix A(aij) ∈Ms(Km) represent Kn.
Its element aij is either zero or a power of β: aij = βkij .

In turn, let a symmetric m×m matrix B ∈Mm(K) represent the field Km. If we replace each
element aij of A by either the all-zero matrix 0m or the corresponding symmetric matrix Bkij ,
we obtain a symmetric matrix D of size ms = n with elements in K. The characteristic polynomial
of this matrix is irreducible. If, in addition, it is primitive, then the n×n matrix D represents Kn.
Otherwise, we should find a linear combination of powers of the matrix D with a primitive charac-
teristic polynomial.

Example 4. The matrix B =

(
0 1
1 1

)
represents the field GF (4). Let us replace elements β of

the matrix from Example 2 with the matrix B and replace the element 1 by I2:

A =

(
β β
β 1

)
−→ D =


0 1 0 1
1 1 1 1
0 1 1 0
1 1 0 1

 .
The characteristic polynomial of D is the primitive polynomial λ4 +λ+ 1, so D represents the field
GF (16) primitively.

4. RANK METRIC CODES CONSISTING OF SYMMETRIC MATRICES

Let a symmetric matrix A ∈ Mn(K) represent the field Kn. Consider the matrix code M
consisting of qn matrices:

M =
{

0n, In, A,A2, . . . , Aq
n−2

}
. (15)

Lemma 3. The code M is K-linear with maximum rank distance d = n.

Proof. Since A represents Kn, we see that a K-linear combination of matrices from M is also
a matrix belonging to M. In addition, the difference of any two distinct matrices from M is a
nonzero matrix fromM and hence is of rank n. The cardinality of the codeM is maximum possible
for the distance d = n. Indeed, for any matrix code of cardinality greater than qn there exists a
pair of matrices such that their difference contains a zero row; therefore, the distance between these
matrices is strictly less than n. 4

Transform the matrix codeM into the vector code V1 using field representation (3) compatible
with the matrix A.

Lemma 4. The vector code V1 is a Kn-linear [n, 1, n] MRD code.
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Proof. Choose the vector Θ(In) as a generator (row) matrix:

g0 = (g1, g2, . . . , gn) = Θ(In). (16)

This matrix generates a Kn-linear [n, 1, n] MRD code V1 consisting of the vectors

0, g0, αg0, α
2g0, . . . , α

qn−2g0. (17)

According to (5), we have Θ−1(αg0) = AΘ−1(g0) = AIn = A. Similarly, Θ−1(αsg0) =
AsΘ−1(g0) = AsIn = As, s = 2, . . . , qn − 2. This proves that vector linear code (17) is the
inverse image of matrix code (15). 4

It is clear that the transposed code VT1 coincides with V1. Hence, it is also linear.

5. CORRECTION OF RANK ERASURES BY SYMMETRIC RANK CODES

It is convenient to define the concept of a rank erasure in terms of the matrix representation of
an extension field. For general MRD codes, joint correction of rank errors and rank erasures was
considered in [5].

In practical applications, a code vector is represented as a signal matrix, whose elements are
transmitted through the channel. At the receiver end, hard decision about each element is made.
Then the decision matrix is transformed into a vector for further algebraic decoding. A received
matrix is of the form Y = M+E, whereM is the code matrix and E is an error matrix. If rank(E) ≤
(d− 1)/2, then the algebraic decoder corrects the error [1].

Sometimes it is possible to evaluate the unreliability of each hard decision. Then, together
with the matrix Y , a decoding algorithm can use the unreliability matrix Z, whose element zij
is the unreliability of the element yij of the matrix Y . We consider the ideal situation where the
unreliability matrix Z consists solely of zeros and ones. If an element of this matrix is 0, this means
that the decision for the corresponding element of the matrix Y is right for sure. If an element
of the matrix Z is 1, this means that the decision for the corresponding element of the matrix Y
could be wrong. In this case, it is traditionally said about a symbol erasure, although, in fact, some
decision about the symbol is made. The matrix E is called a rank erasure. At the receiver end,
upon receiving the matrix Y and computing the matrix Z, we know the positions where there are
no errors for sure. It is said that the matrix E is compatible with the unreliability matrix Z.

The rank of the matrix E is called the rank of erasure. Consider all matrices E compatible
with Z. Let rmax(Z) denote the maximum possible rank of E. It is clear that the code with rank
distance d corrects a rank erasure E compatible with Z if rmax(Z) ≤ d− 1.

To evaluate rmax(Z), it is convenient to use the concept of the term rank of a matrix, introduced
in combinatorial analysis (see, e.g., [6]).

The term rank of a matrix A (denoted by termrank(A)) is defined to be the maximum possible
number t of nonzero elements of the matrix that can be chosen in such a way that no two of them
lie in the same line (row or column).

It follows from the definition that rank(E) ≤ termrank(E). In turn, for any matrix E compatible
with Z, we have the inequality termrank(E) ≤ termrank(Z). Hence,

rmax(Z) ≤ termrank(Z).

Lemma 5 [6]. The term rank of a (0, 1)-matrix Z is equal to the minimum number t of lines
(rows and columns) containing all nonzero elements of Z.

The lemma implies the following equality.
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Lemma 6. We have rmax(Z) = termrank(Z).

Proof. Let t be the minimum number of lines containing all the erasures (possible errors). Let
there be s rows and m columns among them, s + m = t. Then it is possible to choose s nonzero
elements in s rows and m nonzero elements in m columns in such a way that no two of them lie
in the same line. Otherwise, the term rank would be less than t. Let us choose the matrix E
compatible with Z such that only the t positions mentioned above are nonzero. Then the algebraic
rank of the matrix is t; i.e., rmax(Z) ≥ termrank(Z).

The inverse inequality obviously follows from the definition of the term rank. 4
Consider correction of rank erasures by the code V1 defined in (15) and (16).
Introduce the notation [j] = qj if j ≥ 0 and [j] = qn+j if j < 0. The expression g[j] = gq

j
is

called the jth Frobenius power of an element g. In particular, g[n] = gq
n

= g. The Frobenius power
of a vector is defined componentwise.

For decoding, the parity-check matrix of the form

Hn−1 =
(
h

[i]
j

)
, i = 0, 1, . . . , n− 2, j = 1, 2, . . . , n,

is used such that g0H
T
n−1 = 0.

Let y = αsg0 + e be a received signal in the vector representation, where e = (e1, e2, . . . , en)
is the vector representation of a rank erasure E. Calculation of a syndrome leads to a system of
n− 1 equations over Kn: n∑

j=1

ejh
[i]
j = si, i = 0, 1, . . . , n− 2.

Since the positions of possible errors in the matrix E are known, we can rewrite this system as
a system of n(n − 1) linear equations over the ground field, where possible errors are unknowns.
The number of unknowns depends on the matrix configuration of E. If an erasure is of rank n− 1,
and errors are located in n− 1 rows (or n− 1 columns), then the number of unknowns is maximal
and equals n(n− 1). In this case, the complexity of solving the system is maximal. If the rank of
erasure is n−1 and errors are located in bn/2c rows and b(n− 1)/2c columns, where b·c denotes the
integer part, then the number s of unknowns is n(n−1)−bn/2cb(n − 1)/2c, which is approximately
less by quarter. Thus, syndrome decoding of erasures is reduced to solving the system of n(n− 1)
linear equations over K in n(n− 1) or less (in the general case) unknowns. The less the number of
unknowns, the less is the complexity of solving the system.

For symmetric rank codes, the number of unknowns can considerably be reduced using a trick
called the symmetrization procedure.

Let Y = M+E be a received signal in the matrix representation, and let E be a rank erasure. We
can get additional information about errors by calculating the matrix Q = Y + Y T = M +MT +
E + ET . Since for symmetric codes we have M = MT , M ∈ M, for binary fields we have
M +MT = 0n. Therefore, we know the matrix

Q = Y + Y T = E + ET .

The unreliability matrix Z shows the zero entries of E. This allows one, by analyzing E + ET ,
to directly find a part of errors and get additional information about the others.

Let us illustrate possible situations by examples.

Example 5. Let n = 4, d = 4, and let the unreliability matrix be of the form

Z =


1 1 1 1
1 1 1 1
0 0 0 1
0 0 0 1

 .
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This means that the erasure matrix is of the form

E =


a1 a2 a3 a4

a5 a6 a7 a8

0 0 0 a9

0 0 0 a10

 ,
and the maximum possible rank is d − 1 = 3. In total, the matrix contains ten binary unknowns
ai at known positions. Then

Q = E + ET =


0 a2 + a5 a3 a4

a5 + a2 0 a7 a8

a3 a7 0 a9

a4 a8 a9 0

 .
From this matrix, the errors a3, a4, a7, a8, and a9 can immediately be found. Also, we obtain the
sum a2 +a5 = b, where b is known. However, no information can be obtained about the “diagonal”
errors a1, a6, and a10.

Now, let us modify the received matrix Y by adding the upper triangular matrix with known
values

R =


0 b a3 a4

0 0 a7 a8

0 0 0 a9

0 0 0 0

 .
As a result, we obtain the modified matrix

Ymod = Y +R = M +E +R = M + Emod,

where

Emod =


a1 a5 0 0
a5 a6 0 0
0 0 0 0
0 0 0 a10

 .
The modified erasure matrix is a symmetric matrix with only four binary unknowns located at
known positions. This procedure is called the symmetrization of erasures.

The matrix Ymod is used for syndrome decoding of erasures. The symmetrization reduced the
number of unknowns from ten to four.

Remark 1. For the class of codes under consideration, any line (row or column) of a code matrix
can be regarded as an information set. If, for each line, we preliminarily find the matrix for the
computation of the other lines, the decoding procedure is considerably simplified if one of the lines
of the received matrix is free of errors. In Example 5, symmetrization leads to the erasure matrix
containing zero lines (the third column or third row), so we can avoid syndrome decoding.

In the general case, symmetrization makes the number of unknowns at least half as large.
Thus, for the case where the rank of erasure is d− 1 = n− 1, and all errors are located in n− 1

rows, symmetrization reduces the number of unknowns to n(n− 1)/2, as compared with the initial
n(n− 1) unknowns.

Let n = 2s + 1. If the rank of erasure is n − 1, and all errors are located in the first s rows
and last s columns, then symmetrization reduces the number of unknowns from the initial value
(3n2 − 2n − 1)

4
to

(n2 − 1)
4

, which is approximately a third.
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6. RANK CODES BASED ON SYMMETRIC MATRICES

Consider a Kn-linear [n, k, d = n− k + 1] MRD code Vk with the generator matrix

Gk =


g1 g2 · · · gn

g
[1]
1 g

[1]
2 · · · g

[1]
n

. . . . . . . . . . . . . . . . . . . . . . . . .

g
[k−1]
1 g

[k−1]
2 · · · g

[k−1]
n

 . (18)

As the first row of this matrix, choose components of the vector g0 from equation (16).
A code Vk is said to be based on symmetric matrices if it contains a one-dimensional subcode V1

consisting of symmetric matrices.
Let the transposed code VTk be obtained by mappings Θ and Θ−1 defined in (3) and (4). We will

show that the code VTk is also Kn-linear and is based on symmetric matrices. Moreover, combined
use of the codes Vk and VTk allows one to correct not only ordinary rank errors (or erasures) but
also symmetric errors (erasures) beyond the bound b(d − 1)/2c.

6.1. Auxiliary Results

Denote by

gi =
(
g

[i]
1 , g

[i]
2 , . . . , g

[i]
n

)
, i = 0, 1, 2, . . . , n− 1,

the successive Frobenius powers of a vector g0 = (g1, g2, . . . , gn). These vectors are linearly inde-
pendent over K.

Components of each of them form a basis of Kn over K. Therefore, there exists a nondegenerate
matrix D ∈ Mn(K) such that g1 = g0D. Hence it follows that gi = g0D

i. Moreover, Di 6= In

if i ≤ n − 1, but Dn = In since gn = g0D
n =

(
g

[n]
1 , g

[n]
2 , . . . , g

[n]
n
)

= (g1, g2, . . . , gn) = g0. The
matrix representation of gi is

Gi = Θ−1(gi) = Di. (19)

Lemma 7. We have the relations

g0A = αg0, (20)
g1A = αqg1, (21)
DA = AqD, (22)

DrAs = Asq
r
Dr, r = 0, 1, . . . , n− 1, s = 0, 1, . . . , qn − 2. (23)

Proof. To prove (20), apply the mapping Θ−1 to both sides: Θ−1(g0A) = Θ−1(g0)A =
InA = A. On the other hand, according to (5) we have Θ−1(αg0) = AΘ−1(g0) = AIn = A.
Equality (21) follows from (20) by raising both sides of (20) to the first Frobenius power and tak-
ing into account the fact that A ∈Mn(K). Equality (22) follows from (21) by applying Θ to both
sides of (21). Equality (23) follows from (22) by successively isolating the multipliers DA on the
left-hand side of (23) and using equality (22). 4

Lemma 8. The matrices D and DT are related by the equality

DT = AmDn−1, (24)

where m is an integer.
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Proof. Transpose the matrices in (22) and take into account that A is a symmetric matrix.
Then DTAq = ADT . Left multiply both sides of equation (22) by DT . We obtain DTDA =
DTAqD = ADTD. Hence it follows that the matrix DTD commutes with A. Since all eigenvalues
of the matrix A are different (in some extension), the matrix DTD is necessarily a polynomial of A
(see, e.g., [2]); hence, it is equal to some power m of A. 4

6.2. Matrix Representation of the Code Vk
The generator matrix of the code Vk consists of the first k vectors gj , j = 0, 1, . . . , k − 1. Let

components of an information vector u = (u0, u1, . . . , uk−1) be presented by powers of α, i.e.,
u = (ε0α

s0, ε1α
s1 , . . . , εk−1α

sk−1). Here the coefficients εj are equal to zero if uj = 0 and to 1
otherwise. Then the corresponding code vector is

g(u) =
k−1∑
j=0

εjα
sjgj.

Using (5) and (19), find the matrix representation of g(u):

M(u) = Θ−1(g(u)) =
k−1∑
j=0

εjA
sjDj. (25)

The set of matrices M = {M(u)} for all information vectors u is the matrix representation of the
code Vk.

6.3. Matrix and Vector Representation of the Transposed Code

Let us find the transposed matrix code MT =
{
M(u)T

}
:

M(u)T =
k−1∑
j=0

εj(Dj)TAsj .

Using equations (24) and (23) and changing the summation order, we obtain

M(u)T =
n∑

i=n−k+1

εn−iA
miDi,

where

mi = sn−iq
i +m(qi+1 + qi+2 + . . .+ qn), i = n− k + 1, n− k + 2, . . . , n− 1, mn = s0q

n.

Now, using the mapping Θ, we obtain the vector representation of the transposed code:

g̃(u) = Θ(M(u)T ) =
n∑

i=n−k+1

Θ(εn−iAmiDi) =
n∑

i=n−k+1

εn−iα
migi. (26)

Vector (26) can be interpreted as a code vector of a Kn-linear [n, k, d = n − k + 1] MRD rank
code VTk with the generator matrix

G̃k =


g

[n−k+1]
1 g

[n−k+1]
2 · · · g

[n−k+1]
n

g
[n−k+2]
1 g

[n−k+2]
2 · · · g

[n−k+2]
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g
[n]
1 g

[n]
2 · · · g

[n]
n

 ,
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the corresponding information vector being ũ = (εk−1α
m0 , εk−2α

m1 , . . . , ε0α
mk−1). This code con-

tains a one-dimensional subcode V1, which consists of symmetric matrices. It is defined by the last
row of G̃k.

Thus, it is proved that the transposed code VTk is also Kn-linear and is based on symmetric
matrices.

6.4. Combined Use of the Codes Vk and VTk for the Decoding

Let a parity-check matrix of Vk be written as

Hn−k =



h1 h2 · · · hn

h
[1]
1 h

[1]
2 · · · h

[1]
n

h
[2]
1 h

[2]
2 · · · h

[2]
n

. . . . . . . . . . . . . . . . . . . . . . . . .

h
[d−2]
1 h

[d−2]
2 · · · h

[d−2]
n


. (27)

One can show that the parity-check matrix of VTk can be written as

H̃n−k =



h
[d]
1 h

[d]
2 · · · h

[d]
n

h
[d+1]
1 h

[d+1]
2 · · · h

[d+1]
n

h
[d+2]
1 h

[d+2]
2 · · · h

[d+2]
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

h
[2d−2]
1 h

[2d−2]
2 · · · h

[2d−2]
n


. (28)

First, consider rank error correction. Let the vector representation of a received signal be y =
g(u) + e, where e = (e1, e2, . . . , en) is the vector representation of an error. Let E be the matrix
representation of this error.

For the transposed form of this representation, we have ỹ = g̃(ũ) + ẽ, where ẽ = (ẽ1, ẽ2, . . . , ẽn)
is the error vector with the matrix representation of the error Ẽ = ET . For the decoding, we
have to calculate two syndromes, r = yHT

n−k = eHT
n−k and r̃ = ỹH̃

T

n−k = ẽH̃
T

n−k. Using both
syndromes has no advantages as compared with the standard decoding if errors e of the general
type are considered. In this case it suffices to have only one of the syndromes. If the rank of an
error is not greater than t = (d− 1)/2, then the error will be corrected given the syndrome r.

However, for correction of errors of a special form, it may be useful to employ both syndromes.
Such a class of errors is symmetric errors, whose matrix representations are symmetric matrices:
E = Ẽ = ET , or, equivalently, e = ẽ. In this case, we use the combined syndrome

R = (r, r̃) =
(
eHT

n−k, ẽH̃
T

n−k
)

=
(
eHT

n−k,eH̃
T

n−k
)
. (29)

The syndrome R can be considered as the syndrome of a code with the parity-check matrix con-
sisting of different rows of both matrices (27) and (28). There are two cases, depending on the code
rate.

1. Let 2d − 2 < n; i.e., R = k/n > 1/2. Then all rows of both matrices are different. The
corresponding code can have distance up to D = 2d − 1. Thus, using the syndrome R, we can
correct many symmetric errors of rank not greater than (D − 1)/2 = d− 1.

2. Let 2d− 2 ≥ n; i.e., R = k/n ≤ 1/2. Then the number of different rows in both matrices equals
n − 1. The corresponding code has distance D = n; so, using the syndrome R, we can correct
all symmetric errors of rank not greater than (n− 1)/2.
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Similar results are valid for correction of symmetric rank erasures. If R = k/n > 1/2, then, for
some codes, using the syndrome R one can correct many symmetric erasures of rank not greater
than D−1 = 2d−2. If R = k/n ≤ 1/2, then, using the syndrome R, one can correct all symmetric
erasures of rank not greater than n− 1.

7. CONCLUSION

It is shown that finite fields of characteristic 2 can be represented by symmetric matrices A.
The matrix code M consisting of powers of A and the zero matrix has the maximum possible

distance (d = n) and cardinality (|M| = qn). The corresponding vector code is linear. For
correction of rank erasures with the help of this code, a symmetrization procedure is proposed,
which allows one to reduce the number of unknowns for syndrome decoding to a half or a third.

For a class of linear codes Vk based on symmetric matrices, it is shown that the corresponding
transposed codes are also linear. Combined use of both codes in the decoding of symmetric errors
makes the error-correction capacity of the code almost twice as large.

The authors are grateful to the reviewer, whose constructive remarks helped them to improve
the paper.
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