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Abstract. Unlike wired networks, wireless networks do not come with links. Rather, links have to be fashioned out of the ether by nodes
choosing neighbors to connect to. Moreover the location of the nodes may be random.

The question that we resolve is: How many neighbors should each node be connected to in order that the overall network is connected in a
multi-hop fashion? We show that in a network with n randomly placed nodes, each node should be connected to �(log n) nearest neighbors.
If each node is connected to less than 0.074 log n nearest neighbors then the network is asymptotically disconnected with probability one as
n increases, while if each node is connected to more than 5.1774 log n nearest neighbors then the network is asymptotically connected with
probability approaching one as n increases. It appears that the critical constant may be close to one, but that remains an open problem.

These results should be contrasted with some works in the 1970s and 1980s which suggested that the “magic number” of nearest
neighbors should be six or eight.
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1. Introduction

Unlike wired networks, wireless networks do not come with
ready-made links. Rather, links are formed by nodes choosing
the power levels at which they transmit. This raises the ques-
tion: How many neighbors should each node be connected
to, in order that the overall network then becomes connected?
This question arises naturally in mobile multi-hop radio net-
works, also known as ad hoc networks. All nodes cooperate
in routing each other’s packets, so that packets are transported
in a multi-hop fashion from source to destination.

The problem of how many neighbors is desirable was con-
sidered in a series of papers [1–7] beginning in the 1970s. The
wireless network is modeled as nodes located randomly on
the plane according to a Poisson point process [1,3–7] or on a
line [2]. The focus in [1,2,4–6] is on the issue of maximizing
the one hop progress of a packet in the desired direction under
different transmission protocols. Based on the analysis of the
slotted ALOHA protocol and requiring that the transmission
powers are the same for all nodes, it was first proposed by
Kleinrock and Silvester in [1] that six was the “magic num-
ber”, i.e., on average every node should connect itself to its
six nearest neighbors. Later, the magic number was revised
to eight in [5]. In the same paper [5], Takagi and Kleinrock
also considered other transmission protocols, which resulted
in some other magic numbers five and seven. Hou and Li [6]
considered the situation when each node is allowed to adjust
its transmission range individually, and obtained the magic
numbers six and eight. When considering the maximization
of the transmission efficiency, defined as the ratio between the
expected progress and the area covered by the transmission,
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Hajek [7] suggested that each node should adjust its power
to cover about three neighbors on average. Mathar and Mat-
tfeldt [2] analyzed the wireless network generated by a Pois-
son point process on a line, and also obtained some magic
numbers.

However, the above analyses did not resolve the issue of
connectivity. Although simulations in [3] suggested that six
to eight neighbors can make a small size network connected
with high probability, it turns out that as the number of nodes
in the network increases, the network becomes disconnected
with probability one whether one connects to six or eight
neighbors, as we will show. In fact, we show that there are
no magic numbers if one takes connectivity also into consid-
eration. Specifically, for every finite number, the probability
of network disconnectivity converges to one as the number of
nodes in the network increases.

We also show that the number of neighbors of each node
needs to grow like �(logn) if the network is to be connected,
where n is the number of nodes in the network. We can even
bound the constant involved. If each node connects with less
than 0.074 logn nearest neighbors, then the network is as-
ymptotically disconnected. However, if each node connects
to greater than 5.1774 logn nearest neighbors, then the net-
work is asymptotically connected.

The problem of choosing how many neighbors to connect
to affects not only the connectivity of the network, but also the
capacity of the network, i.e., how much traffic it can carry. In
wireless networks, the presence of a link (i, j) can be an ad-
vantage in that it enables node i to send a packet on one hop to
node j . However, it can also be a disadvantage in that, when
i broadcasts, it causes interference at j . Thus the presence
of a large number of links means the possibility for lots of
interference, which reduces the capacity of the network.
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Hence one needs to examine the tradeoff between the pres-
ence and absence of links in a more careful manner. When
many links are present, a packet can get to its destination in
a fewer number of hops. This means that the relaying bur-
den on other nodes is reduced. Thus while interference is
larger when the number of links is larger, the relaying bur-
den is smaller. This problem has been addressed in [8] for
the case of connectivity based on distance. It is shown there
that if r is the range of a broadcast, then the relaying bur-
den grows like O(1/r), but the interference grows only like
O(r2). Thus, the net effect, the product, is a growth of O(r),
implying that the smaller the range the better. However, if
one chooses too small a range, then the network can get dis-
connected. This motivates the study of connectivity based on
distance. This is a different method of connectivity where one
simply connects to all nodes within a range r . This connectiv-
ity problem was studied in [9] when the points are distributed
as a Poisson process on a square. It was shown that if n is
the intensity of the Poisson process on a unit square, then a
choice of radius r(n) = √

((1 − ε)A logn)/(πn) would lead
to probability of connectedness converging to zero, for every
ε > 0. In [10], for the case of n points uniformly iid dis-
tributed in a disk of area A it was shown that a range chosen
as r(n) = √

(A(logn+ γn))/(πn) will lead to the probabil-
ity of connectedness converging to one as n → ∞ if and
only if γn → +∞. This result can also be deduced from a
result in Penrose [11] where the length of the longest edge
in a minimum spanning tree, suitably centered and normal-
ized, is shown to converge to a double exponential distribu-
tion.

Yet another area where the connectivity issue arises is in
random graphs. Specifically, the problem has been considered
for Bernoulli random graphs where an edge (i, j) is inserted
with probability p. It is shown (theorem VII.3 in [12]) that if
p(n) = (logn + γn)/n, then the probability that the graph is
connected goes to one as n → +∞ iff γn → +∞. It should
be noted that Bernoulli random graphs are not appropriate
models for connectivity in wireless networks since edges are
introduced independent of the distance between nodes. Thus
such a graph may have a link from a node to a faraway node,
without a link to a nearer node.

Connectedness has also been considered in the field of con-
tinuum percolation theory [13,14]. There, the model for the
points is a Poisson point process on the infinite plane, and the
focus is on the existence of an infinite size connected compo-
nent under different models of connections. Recently, [15,16]
have addressed wireless networks and covering algorithms
by the methods of continuum percolation. Under connection
based on the number of neighbors, [17] considers the central
limit theorem. The issue of uniqueness of the infinite compo-
nent is addressed in [18].

The rest of the paper is organized as follows. In section 2,
we provide the problem formulation and present the main re-
sult. In sections 3 and 4, we give the proof of the main result.
We provide some simulation results in section 5, and conclude
in section 6.

2. Formulation and main result

Let S be a unit square in R2, and suppose that n nodes are
placed uniformly and independently in S. Denote by G(n, φn)
the network formed when each node is connected to its φn
nearest neighbors. More precisely, there exists an edge (i, j)
if either j is one of the φn nearest neighbors of i, or i is one
of the φn nearest neighbors of j .

We are interested in the following question:

• For what choice of the number of nearest neighbors φn
will the resulting graph G(n, φn) be connected as n goes
to ∞?

Our main result is the following theorem:

Theorem 1. For G(n, φn) to be asymptotically connected,
�(logn) neighbors are necessary and sufficient. Specifically,
there are two constants 0 < c1 < c2 such that:

lim
n→∞ Pr

{
G(n, c1 logn) is disconnected

} = 1 and

lim
n→∞ Pr

{
G(n, c2 logn) is connected

} = 1.

Remark 1. From the calculations in the proof of the theo-
rem 1 one can choose c1 = 0.074 and any c2 > 2/ log(4/e) =
5.1774.

3. �(logn) neighbors are necessary for connectivity

In this section we will give the proof of the necessity part of
theorem 1.

3.1. A scenario for disconnection

Definition 3.1. Square tessellation T n
S . We split the unit

square equally into Mn = �√n/(K logn)	2 small squares as
depicted in figure 1, where K > 0 is a tunable parameter, and
�x	 is the smallest integer larger than or equal to x. This tes-
sellation of the unit square will be denoted by T n

S . We name
the small squares as Sni , i = 1, 2, . . . ,Mn, from left to right,
and from top to bottom.

Denote by Nn
i , the number, among the n nodes, that fall

into square Sni .

Definition 3.2. Trap of size d . We call the structure in fig-
ure 2 a trap of size d . It is composed of 21 small squares all
of the same size placed in a larger square of size d . Twenty
of the small squares are at the periphery of the square, while
one is located at the center.

Definition 3.3. k-filling event. We say a k-filling event occurs
if there are at least k nodes in each of the twenty-one small
squares, and there is no node in the space between the center
and the other twenty squares; see figure 3.
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Figure 1. The square tessellation T n
s .

Figure 2. A trap of size d.

Figure 3. A k-filling event.

The significance of a (φn+1)-filling event is that the nodes
in the central small square are disconnected from the other
nodes. This is because the φn nearest neighbors of the nodes
in the center square are all within the central square itself.
Also, the nodes in the side squares cannot have a node in the
center as one of their φn nearest neighbors since they will have
enough neighbors close to them. Finally, the nodes outside
the square of size d are also blocked away from the nodes in
the central square by the nodes in the side squares.

Thus, if a (φn+1)-filling event occurs in a trap in G(n, φn),
then the center nodes contain a connected component. A sim-

ilar, but not the same, localization construction is used in [17]
in their study of the Central Limit Theorem for certain geo-
metric random variables.

Before presenting the full proof of the necessity part of the-
orem 1, we sketch the basic ideas involved and outline it. We
first show in section 3.2 that, if we tessellate the unit square by
small squares with area of order (logn)/n, then, with a very
high probability, there are �(logn) nodes simultaneously in
every such small square. Then we calculate the probability
that a k-filling event happens within such a small square con-
taining about �(logn) nodes. This allows us to calculate
a lower bound on the probability that a k-filling event hap-
pens within the unit square. Our calculation shows that, if
k < c1 logn, then a k-filling event will happen in the unit
square with high probability, thus proving the necessity part.

3.2. Not quite the Law of Large Numbers: A uniformity result

What we now show is that every square Sni in the tessella-
tion T n

S has about �(logn) nodes in it with high probability.
This result is uniformly true for all squares Sni . However, it
is not quite a law of large numbers for the following reason.
The mean number of nodes in any Sni is

E
[
Nn
i

] = K logn.

However the bound allows for a deviation in the actual num-
ber of nodes of order �(logn), and not o(logn). In fact
we cannot apply the Vapnik–Chervonenkis Uniform Law of
Large Numbers to deduce the result, since it deals with a res-
olution higher than what the uniform law of large numbers
can provide.

Lemma 3.1. Let K > 1/ log(4/e), and let µ∗ ∈ (0, 1) be the
sole root of the equation

−µ∗ + (1 + µ∗) log(1 + µ∗) = 1

K
. (1)

If we tessellate S by T n
S , then the following limit holds for

any µ > µ∗:

lim
n→∞ Pr

{
max
i

∣∣Nn
i −K logn

∣∣ � µK logn
}

= 1.

Proof. The basic idea of the proof is to consider the prob-
lem under a new assumption that the nodes are generated in
the unit square by a planar Poisson point process with inten-
sity λn = n, instead of having a deterministic numbers of n
nodes thrown into it. The main reason for doing so is that the
numbers of nodes in disjoint sets are then independent ran-
dom variables. This will allow us to compute the probability
that all squares have K logn ± µK logn nodes by taking the
product of the probabilities. To compute the result we will
show that the number of nodes in a square is more or less the
same whether we have a fixed number of nodes n in the unit
square, or a random number given by a Poisson process of
intensity n.

So consider a unit square on the plane with a Poisson
process with intensity λn = n. Denote the number of the
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nodes that fall into square Sni by Ñn
i . The total number of

the nodes that fall into the unit square is M̃n, which is also a
random variable.

We also introduce a sequence of iid rv’s {Xk, k =
1, 2, . . .}, which are uniformly distributed in a unit square. �

Remark 2. We have used the ceil function �·	 to truncate a
real number into an integer. For clarity of presentation we
ignore this and treat

√
n/(K logn) as an integer since it is

nearly so, i.e.,⌈√
n

K logn

⌉2

= n

K logn

(
1 + o(1)

)
, as n → +∞.

Lemma 3.2. Suppose we tessellate the unit square by T n
S .

Then for any deterministic integer sequence {mn
1,m

n
2, n =

1, 2, . . .} satisfying 0 � mn
2 −mn

1 �
√
n logn, ∀n, we have:

(i) Pr

{
max

1�i�Mn

mn
2∑

k=mn
1

ISni (Xk) � 2

}

� Pr

{
max
i

√
n logn∑
k=1

ISni (Xk) � 2

}
, (2)

(ii) lim
n→∞ Pr

{
max
i

√
n logn∑
k=1

ISni (Xk) � 2

}
= 1. (3)

Proof. The statement (i) is obvious. Let us prove (ii). Let
n̂ �

√
n logn and m � Mn = n/(K logn). First we want to

show that

Pr

{
n̂∑

k=1

ISn1 (Xk) � 2

}
= 1 + o

(
logn

n

)
, as n → ∞. (4)

We have

Pr

{
n̂∑

k=1

ISn1 (Xk) � 2

}

= C0
n̂

(
1

m

)0(
1 − 1

m

)n̂
+ C1

n̂

(
1

m

)1(
1 − 1

m

)n̂−1

+ C2
n̂

(
1

m

)2(
1 − 1

m

)n̂−2

� p0 + p1 + p2.

We can compute that:

p0 = exp

{
n1/2(logn)1/2 log

(
1 − K logn

n

)}
= exp

{
n1/2(logn)1/2

×
(

−K logn

n
− K2(logn)2

2n2
+ o

(
(logn)2

n2

))}
= exp

{
−K(logn)3/2

n1/2
− K2(logn)5/2

2n3/2
+ o

(
logn

n

)}

= 1 − K(logn)3/2

n1/2
− K2(logn)5/2

2n3/2
+ o

(
logn

n

)
+ 1

2

(
K2(logn)3

n
+ o

(
logn

n

))
+ o

(
logn

n

)
= 1 − K(logn)3/2

n1/2 + K2(logn)3

2n
+ o

(
logn

n

)
,

p1 =√
n logn · K logn

n

× exp

{(√
n logn − 1

)
log

(
1 − K logn

n

)}
= K(logn)3/2

n1/2
exp

{(√
n logn − 1

)
×
(

−K logn

n
− K2(logn)2

2n2 + o

(
(logn)2

n2

))}
= K(logn)3/2

n1/2

× exp

{
−K(logn)3/2

n1/2 + K logn

n
+ o

(
logn

n

)}
= K(logn)3/2

n1/2

(
1 − K(logn)3/2

n1/2 + K logn

n

+ K2(logn)3

2n
+ o

(
logn

n

))
= K(logn)3/2

n1/2
− K2(logn)3

n
+ o

(
logn

n

)
,

and

p2 =
√
n logn(

√
n logn− 1)

2
· K

2(logn)2

n2

× exp

{(√
n logn − 2

)
log

(
1 − K logn

n

)}
= n logn − √

n logn

2
· K

2(logn)2

n2

× exp

{(√
n logn − 2

)
log

(
1 − K logn

n

)}
= K2(logn)3

2n
exp

{(√
n logn − 2

)
log

(
1 − K logn

n

)}
+ o

(
logn

n

)
= K2(logn)3

2n
exp

{(√
n logn − 2

)
×
(

−K logn

n
+ o

(
logn

n

))}
+ o

(
logn

n

)
= K2(logn)3

2n
exp

{
−K(logn)3/2

n1/2 + o

(
(logn)3/2

n1/2

)}
+ o

(
logn

n

)
= K2(logn)3

2n
+ o

(
logn

n

)
.
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Adding them up, we get (4).
Now we have

Pr

{
max
i

√
n logn∑
k=1

ISni (Xk) � 2

}

= 1 − Pr

{
max
i

n̂∑
k=1

ISni (Xk) > 2

}

� 1 −
∑
i

Pr

{
n̂∑

k=1

ISni (Xk) > 2

}

= 1 − Mn · Pr

{
n̂∑

k=1

ISn1 (Xk) > 2

}

= 1 − n

K logn

(
1 −

(
1 + o

(
logn

n

)))
= 1 + o(1), as n → ∞. �

Lemma 3.3.

lim
n→∞ Pr

{∣∣M̃n − n
∣∣ �

√
n logn

} = 1.

Proof. Since EM̃n = n and var(M̃n) = n, by Chebyshev’s
inequality,

Pr
{∣∣M̃n − n

∣∣ > √
n logn

}
� var(M̃n)

n logn
= n

n logn
= 1

logn
→ 0, as n → ∞. �

Lemma 3.4. Consider any K > 0 and µ ∈ (0, 1). If
limn→∞ Pr{maxi |Ñn

i − K logn| � µK logn} = 1, then for
any µ1 > µ, we have

lim
n→∞ Pr

{
max
i

∣∣Nn
i −K logn

∣∣ � µ1K logn
}

= 1. (5)

If limn→∞ Pr{maxi |Ñn
i − K logn| � µK logn} = 0, then

for any µ2 < µ, we have

lim
n→∞ Pr

{
max
i

∣∣Nn
i −K logn

∣∣ � µ2K logn
}

= 0. (6)

Proof. First we prove (5). By lemma 3.3, we know

Pr
{

max
i

∣∣Ñn
i −K logn

∣∣ � µK logn
}

=
∞∑
j=0

Pr
{
M̃n = j

}
× Pr

{
max
i

∣∣Ñn
i −K logn

∣∣ � µK logn
∣∣ M̃n = j

}
=
( ∑

|j−n|�√
n logn

+
∑

otherwise

)
Pr
{
M̃n = j

}
× Pr

{
max
i

∣∣Ñn
i −K logn

∣∣ � µK logn
∣∣ M̃n = j

}
=

∑
|j−n|�√

n logn

Pr
{
M̃n = j

}

× Pr

{
max
i

∣∣∣∣∣
j∑

k=1

ISni (Xk) −K logn

∣∣∣∣∣ � µK logn

}
+ o(1).

By lemma 3.2, we know that for any j such that n +√
n logn � j � n, and n large enough,

Pr

{
max
i

∣∣∣∣∣
j∑

k=1

ISni (Xk)− K logn

∣∣∣∣∣ � µK logn

}

= Pr

{
max
i

∣∣∣∣∣
j∑

k=1

ISni (Xk)− K logn

∣∣∣∣∣ � µK logn;

max
i

j∑
k=n+1

ISni (Xk) � 2

}
+ o(1)

� Pr

{
max
i

∣∣∣∣∣
n∑

k=1

ISni (Xk)−K logn

∣∣∣∣∣ � µ1K logn

}
+ o(1), as n → ∞.

Similarly, for any j such that n > j � n − √
n log n, and n

large enough, we have

Pr

{
max
i

∣∣∣∣∣
j∑

k=1

ISni (Xk)− K logn

∣∣∣∣∣ � µK logn

}

� Pr

{
max
i

∣∣∣∣∣
n∑

k=1

ISni (Xk)−K logn

∣∣∣∣∣ � µ1K logn

}
+ o(1), as n → ∞.

So we get

Pr
{

max
i

∣∣Ñn
i −K logn

∣∣ � µK logn
}

�
∑

|j−n|�√
n logn

Pr
{
M̃n = j

}
×
(

Pr

{
max
i

∣∣∣∣∣
n∑

k=1

ISni (Xk)−K logn

∣∣∣∣∣ � µ1K logn

}

+ o(1)

)
+ o(1)

= Pr
{

max
i

∣∣M̃n − n
∣∣ �

√
n logn

}
×
(

Pr
{

max
i

∣∣Nn
i −K logn

∣∣ � µ1K logn
}

+ o(1)
)

+ o(1)

= (
1 + o(1)

)
×
(

Pr
{

max
i

∣∣Nn
i − K logn

∣∣ � µ1K logn
}

+ o(1)
)

+ o(1).

Since limn→∞ Pr{maxi |Ñn
i − K logn| � µK logn} = 1,

we deduce

lim
n→∞ Pr

{
max
i

∣∣Nn
i −K logn

∣∣ � µ1K logn
}

= 1.
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The proof of (6) is similar and so we omit it. �

Lemma 3.5. For µ ∈ R+, define

ψα(µ) � µ+ (1 − µ) log(1 − µ),

ψβ(µ) � −µ + (1 + µ) log(1 + µ).

Then

(i) ψα(µ) > ψβ(µ) > 0, ∀µ ∈ (0, 1).

(ii) For any K > 1/ log(4/e), there is one and only one
root µ∗ of the equation ψβ(µ) = 1/K . Also ψβ(µ) >

ψβ(µ
∗), ∀µ ∈ (µ∗, 1).

Proof. (i) Let ψ(µ) � ψα(µ) − ψβ(µ). Then

ψ ′(µ)= 1 − log(1 − µ)− 1 − (−1 + log(1 + µ) + 1
)

= − log
(
1 − µ2) > 0, ∀µ ∈ (0, 1).

Also limµ→0+ ψ(µ) = 0. So we know ψα(µ) > ψβ(µ) > 0,
∀µ ∈ (0, 1).

(ii) We have ψ ′
β(µ) = −1 + log(1 +µ)+ 1 = log(1 +µ)

> 0. Also limµ→0+ ψβ(µ) = 0, limµ→1− ψβ(µ) = log(4/e).
So ψβ(µ) is strictly increasing on (0, 1) and its range is
(0, log(4/e)). �

Lemma 3.6. Suppose Y is a Poisson random variable with
parameter λ, then for any K > 0 and µ ∈ (0, 1), we have

(i) P1 � Pr{Y − λ � µλ}
= e−λ · λ(1−µ)λ

((1 − µ)λ)! · 1

µ
· (1 + o(1)

)
,

as λ → ∞, (7)

(ii) P2 � Pr{Y − λ � −µλ}
= e−λ · λ(1+µ)λ

((1 + µ)λ)! ·
(

1 + 1

µ

)
· (1 + o(1)

)
,

as λ → ∞, (8)

(iii) lim
λ→+∞

1

λ
e

1
K
λ · Pr

{|Y − λ| � µλ
} = 0, (9)

if K > 1/ log(4/e) and µ ∈ (µ∗, 1), where µ∗ is the root of

−µ∗ + (1 + µ∗) log(1 + µ∗) = 1

K
.

Proof. (i) By the definition of a Poisson random variable,
we have

P1 =
∑

0�k�(1−µ)λ

λk

k! e−λ

= e−λ

(
1 + λ + λ2

2
+ · · · + λ(1−µ)λ

((1 − µ)λ)!
)

= e−λ λ(1−µ)λ

((1 − µ)λ)!
(

1 + (1 − µ)λ

λ

+ ((1 − µ)λ)((1 − µ)λ− 1)

λ2
+ · · · + ((1 − µ)λ)!

λ(1−µ)λ

)

= e−λ λ(1−µ)λ

((1 − µ)λ)!

(
1 + (1 − µ) + (1 − µ)

(
1 − µ − 1

λ

)

+ · · · +
(1−µ)λ−1∏

j=0

(
1 − µ − j

λ

))

� e−λ λ(1−µ)λ

((1 − µ)λ)! · M1(λ).

Since
∑∞

k=0(1 − µ)k = 1/µ, for any ε > 0, there is N0 =
N0(ε) > 0 such that∣∣∣∣∣

N0∑
k=0

(1 − µ)k − 1

µ

∣∣∣∣∣ � ε

3
and

∞∑
k=N0+1

(1 − µ)k � ε

3
.

One can also choose λ0 = λ0(N0, ε) > 0 large enough
such that∣∣∣∣∣1 +

N0−1∑
k=0

k∏
j=0

(
1 − µ − j

λ

)
−

N0∑
k=0

(1 − µ)k

∣∣∣∣∣ � ε

3
,

∀λ > λ0.

We also have for λ satisfying (1 − µ)λ > N0,

(1−µ)λ−1∑
k=N0

k∏
j=0

(
1 − µ − j

λ

)
�

∞∑
k=N0+1

(1 − µ)k � ε

3
,

∀λ > λ0.

Hence, for any λ satisfying λ > λ0 and (1 − µ)λ > N0,∣∣∣∣M1(λ) − 1

µ

∣∣∣∣
�
∣∣∣∣∣1 +

N0−1∑
k=0

k∏
j=0

(
1 − µ− j

λ

)
−

N0∑
k=0

(1 − µ)k

∣∣∣∣∣
+
∣∣∣∣∣
N0∑
k=0

(1 − µ)k − 1

µ

∣∣∣∣∣
+
∣∣∣∣∣
(1−µ)λ−1∑
k=N0

k∏
j=0

(
1 − µ− j

λ

)∣∣∣∣∣
� ε

3
+ ε

3
+ ε

3
� ε.

So M1(λ) → 1/µ as λ → ∞. Hence

P1 = e−λ λ(1−µ)λ

((1 − µ)λ)! · 1

µ
· (1 + o(1)

)
, as λ → ∞.

(ii) Similarly we have

P2 =
∑

k�(1+µ)λ

λk

k! e−λ

= e−λ

(
λ(1+µ)λ

((1 + µ)λ)! + λ(1+µ)λ+1

((1 + µ)λ+ 1)! + · · ·
)

= e−λ λ(1+µ)λ

((1 + µ)λ)!
(

1 + λ

(1 + µ)λ + 1
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+ λ2

((1 + µ)λ+ 2)((1 + µ)λ + 1)
+ · · ·

)
= e−λ λ(1+µ)λ

((1 + µ)λ)!

(
1 +

∞∑
k=1

1∏k
j=1((1 + µ)+ j/λ)

)

� e−λ λ(1+µ)λ

((1 + µ)λ)! · M2(λ).

Since

1 +
∞∑
k=1

1

(1 + µ)k
= 1 + 1

µ
,

for any ε > 0, there is N0 = N0(ε) > 0 such that∣∣∣∣∣1 +
N0∑
k=1

1

(1 + µ)k
−
(

1 + 1

µ

)∣∣∣∣∣ � ε

3
, and

∞∑
k=N0+1

1

(1 + µ)k
� ε

3
, ∀λ > λ0.

Also one can choose λ0 = λ0(N0, ε) > 0 large enough
such that∣∣∣∣∣1 +

N0∑
k=1

1∏k
j=1((1 + µ)+ j/λ)

−
(

1 +
N0∑
k=1

1

(1 + µ)k

)∣∣∣∣∣ � ε

3
, ∀λ > λ0.

We also have
∞∑

k=N0+1

1∏k
j=1((1 + µ) + j/λ)

�
∞∑

k=N0+1

1

(1 + µ)k

� ε

3
, ∀λ > λ0.

Hence, for any λ > λ0, we have∣∣∣∣M2(λ) −
(

1 + 1

µ

)∣∣∣∣�
∣∣∣∣∣1 +

N0∑
k=1

1∏k
j=1((1 + µ)+ j/λ)

−
(

1 +
N0∑
k=1

1

(1 + µ)k

)∣∣∣∣∣
+
∣∣∣∣∣1 +

N0∑
k=1

1

(1 + µ)k
−
(

1 + 1

µ

)∣∣∣∣∣
+
∣∣∣∣∣

∞∑
k=N0+1

1∏k
j=1((1 + µ)+ j/λ)

∣∣∣∣∣
� ε

3
+ ε

3
+ ε

3
� ε.

This means that M2(λ) → 1 + 1/µ as λ → ∞. So we
know

P2 = e−λ λ(1+µ)λ

((1 + µ)λ)! ·
(

1 + 1

µ

)
· (1 + o(1)

)
,

as λ → ∞.

(iii) By Stirling’s formula, we know

1

λ
e

1
K
λ · P1 = 1

λ
e(

1
K

−1)λ · λ(1−µ)λ

((1 − µ)λ)! · 1

µ
· (1 + o(1)

)
= 1

λ
e(

1
K −1)λ · λ(1−µ)λ

√
2π(1 − µ)λ((1 − µ)λ/e)(1−µ)λ

× 1

µ
· (1 + o(1)

)
= 1

λ
√

2π(1 − µ)λ
· exp

{(
1

K
− 1 + 1 − µ

)
λ

− (1 − µ)λ log(1 − µ)

}
· 1

µ
· (1 + o(1)

)
= 1

λ
√

2π(1 − µ)λ
· exp

{(
1

K
− (

µ + (1 − µ)

× log(1 − µ)
)) · λ

}
· 1

µ
· (1 + o(1)

)
= 1

λ
√

2π(1 − µ)λ
· exp

{(
1

K
− ψα(µ)

)
· λ
}

× 1

µ
· (1 + o(1)

)
,

where ψα(µ) is as defined in lemma 3.5.
Also by Stirling’s formula, we can compute that

1

λ
e

1
K λ · P2 = 1

λ
√

2π(1 + µ)λ

× exp

{[
1

K
− (−µ+ (1 + µ) log(1 + µ)

)] · λ
}

×
(

1 + 1

µ

)(
1 + o(1)

)
,

= 1

λ
√

2π(1 + µ)λ
· exp

{[
1

K
− ψβ(µ)

]
· λ
}

×
(

1 + 1

µ

)(
1 + o(1)

)
,

where ψβ(µ) is as defined in lemma 3.5.
Now, by lemma 3.5, for K,µ satisfying (9), we know that

1

K
− ψα(µ) <

1

K
− ψβ(µ) < 0.

Hence we have,

1

λ
e

1
K
λ · Pr

{|Y − λ| � µλ
} = 1

λ
e

1
K
λ · (P1 + P2) → 0,

as λ → ∞. �

Proof of lemma 3.1. According to lemma 3.4, if we can
show that for any K > 1/ log(4/e),

lim
n→∞ Pr

{
max
i

∣∣Ñn
i − K logn

∣∣ � µK logn
}

= 1,

∀µ ∈ (µ∗, 1),

where µ∗ ∈ (0, 1) is the sole root of the equation −µ∗ + (1 +
µ∗) log(1 + µ∗) = 1/K , then lemma 3.1 is true.
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Recall Mn � n/(K logn). By invoking the indepen-
dence property of the Poisson process for the random vari-
ables Ñn

1 , Ñ
n
2 , . . . , Ñ

n
n/(K logn), we have

Pr
{

max
1�i�Mn

∣∣Ñn
i −K logn

∣∣ � µK logn
}

=
Mn∏
i=1

Pr
{∣∣Ñn

i −K logn
∣∣ � µK logn

}
= (

Pr
{∣∣Ñn

1 −K logn
∣∣ � µK logn

})Mn

= (
1 − Pr

{∣∣Ñn
1 −K logn

∣∣ > µK logn
})n/(K logn)

= exp

{
n

K logn

× log
(
1 − Pr

{∣∣Ñn
1 − K logn

∣∣ > µK logn
})}

.

If we let ρn � K logn, which is the mean value of Ñn
1 ,

then

Pr
{

max
i

∣∣Ñn
i −K logn

∣∣ � µK logn
}

= exp

{
eρn/K

ρn
· log

(
1 − Pr

{∣∣Ñn
1 − ρn

∣∣ > µρn
})}

.

Since by Chebyshev’s inequality,

Pr
{∣∣Ñn

1 − ρn
∣∣ > µρn

}
�

var(Ñn
1 )

(µρn)2
= ρn

(µρn)2
= 1

µ2ρn
→ 0, n → ∞,

we have

Pr
{

max
i

∣∣Ñn
i − K logn

∣∣ � µK logn
}

= exp

{
−eρn/K

ρn
· Pr
{∣∣Ñn

1 − ρn
∣∣ > µρn

} · (1 + o(1)
)}
.

Hence, by lemma 3.6(iii), we deduce that

Pr
{

max
i

∣∣Ñn
i − K logn

∣∣ � µK logn
}

→ 1, as n → ∞. �

3.3. Proof of the necessity part of theorem 1

Suppose we connect each node in Gn to its ε logn nearest
neighbors. Denote the resulting graph by G(n, ε logn). Then
it suffices to show that for some ε > 0,

lim
n→∞ Pr

{
G(n, ε logn) is connected

} = 0.

Let us tessellate G(n, ε logn) by T n
S , with K , µ satisfying

lemma 3.1. Put a trap of size
√
a ln at the center of each

square of T n
S , where a ∈ (0, 1) is a parameter and ln is the

size of the squares Sni . See figure 4.
According to lemma 3.1,

lim
n→∞ Pr

{
max
i

∣∣Nn
i −K logn

∣∣ � µK logn
}

= 1. (10)

So, if we let

Figure 4. A trap in a small square.

An
i �

{
No (ε logn + 1)-filling event occurs

in the trap of Sni
}
,

Qn �
{
(k1, k2, . . . , kMn): k1 + k2 + · · · + kMn = n,

and ki � 0, ∀i},
then we have

Pr
{
G(n, ε logn) is connected

}
� Pr

{
An
i , ∀i}

=
∑

(k1,k2,...,kMn )∈Qn

Pr
{
An
i , ∀i; Nn

i = ki, ∀i}
=

∑
(k1,k2,...,kMn )∈Qn

Pr
{
An
i , ∀i | Nn

i = ki, ∀i}
× Pr

{
Nn
i = ki, ∀i}

=
( ∑

maxi |ki−K logn|�µK logn

+
∑

Otherwise

)
× Pr

{
An
i , ∀i | Nn

i = ki, ∀i} · Pr
{
Nn
i = ki, ∀i}

�
∑

maxi |ki−K logn|�µK logn

(
Mn∏
i=1

Pr{An
i | Nn

i = ki}
)

× Pr
{
Nn
i = ki, ∀i}+

∑
Otherwise

1 · Pr
{
Nn
i = ki, ∀i}

=
∑

maxi |ki−K logn|�µK logn

(
Mn∏
i=1

Pr
{
An
i | Nn

i = ki
})

× Pr
{
Nn
i = ki, ∀i}+ o(1), (11)

where (11) comes from lemma 3.1.
Now, suppose Nn

i = ki where ki ∈ [(1 − µ)K logn, (1 +
µ)K logn]. Note that actually ki i.i.d. nodes are thrown into
Sni ; see figure 4. For (K,µ) with (1 − µ)K > 21ε, we have

Pr
{
An
i | Nn

i = ki
}

= 1 − Pr
{
An (ε logn + 1)-filling event occurs

in the trap of Sni | Nn
i = ki

}
� 1 − (

ki
ε log n+1,...,ε logn+1, ki−21(ε logn+1)

)
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×
(
a

36

)21(ε logn+1)

· (1 − a)ki−21(ε logn+1)

� 1 − ( (1−µ)K logn
ε logn+1,...,ε logn+1, (1−µ)K logn−21(ε logn+1)

)
×
(
a

36

)21(ε logn+1)

· (1 − a)ki−21(ε logn+1).

By Stirling’s formula, we know(
(1−µ)K logn

ε logn+1,...,ε logn+1, (1−µ)K logn−21(ε logn+1)

)
= eO(log logn) · ((1 − µ)K logn)!

(ε logn!)21(((1 − µ)K − 21ε) logn)!
= eO(log logn) (((1 − µ)K logn)/e)(1−µ)K logn

((ε logn)/e)21ε logn

× 1

((((1 − µ)K − 21ε) logn)/e)((1−µ)K−21ε) logn

= exp
{
O(log logn)+ (

(1 − µ)K log
(
(1 − µ)K

)
− 21ε log ε − (

(1 − µ)K − 21ε
)

× log
(
(1 − µ)K − 21ε

)) · logn
}

� exp
{
O(log logn) + φ̂(ε, µ,K) · logn

}
.

Hence, we have,

Pr
{
An
i | Nn

i = ki
}

� 1 − exp
{
O(log logn) + φ̂(ε, µ,K) · logn

}
×
(
a

36

)21(ε logn+1)

· (1 − a)ki−21(ε logn+1)

= 1 − exp

{
o(logn) + φ̂(ε, µ,K) · logn

+ 21ε logn · log
a

36
+ (ki − 21ε logn) · log(1 − a)

}
= 1 − exp

{
o(logn) + φ̂(ε, µ,K) · logn + 21ε log

a

36

× logn+ (
(1 + µ)K − 21ε

)
logn · log(1 − a)

}
= 1 − exp

{
ψ(ε, a,K,µ) · logn · (1 + o(1)

)}
,

where we define

ψ(ε, a,K,µ) � (1 − µ)K log
(
(1 − µ)K

)− 21ε log ε

− (
(1 − µ)K − 21ε

)
log
(
(1 − µ)K − 21ε

)
+ 21ε log

a

36
+ (

(1 + µ)K − 21ε
)

× log(1 − a).

Let us define the set

Dε,a,K,µ �
{
(ε, a,K,µ) ∈ R4: −1 < ψ(ε, a,K,µ) < 0,

(1 − µ)K > 21ε > 0, a ∈ (0, 1),

and (K,µ) satisfy lemma 3.1
}
.

It is easy to verify that Dε,a,K,µ �= φ. Note that one set of
feasible choices is ε = 0.074, K = 1973.9, µ = 0.032 and
a = 0.001, whence we obtain ψ = −0.9996.

For any (ε, a,K,µ) ∈ Dε,a,K,µ, there are constants
Nε,a,K,µ > 0, and δ ∈ (0, 1), such that

Pr
{
An
i | Nn

i = ki
}

� 1 − n−δ,

∀(ki, n): |ki − K logn| � µK logn, n � Nε,a,K,µ.

Hence, by remark 2, (11) and lemma 3.1, for any (ε, a,

K,µ) ∈ Dε,a,K,µ,

Pr
{
G(n, ε logn) is connected

}
�

∑
maxi |ki−K logn|�µK log n

(
1 − n−δ

)MnPr
{
Nn
i = ki, ∀i}

+ o(1) = (
1 − n−δ

) n
K logn (1+o(1))

× Pr
{

max
i

∣∣Nn
i − K logn

∣∣ � µK logn
}

+ o(1)

�
(
1 − n−δ

) n
K logn (1+o(1)) · 1 + o(1)

=
(

1 − 1

nδ

)−nδ · −n1−δ

K logn (1+o(1))

+ o(1)

= o(1), as n → ∞.

4. �(logn) neighbors are sufficient for connectivity

In this section we prove the sufficiency part of theorem 1.

Definition 4.1. Disk tessellation T n
D(a, b). Suppose the unit

square is located with corner at the origin, as in figure 5. Let r
be such that πr2 = (K logn)/n, where K > 0 is tunable pa-
rameter. We consider a grid of squares of size 2r , with corners
at (a mod 2r, b mod 2r) as in figure 5. Inside each square,
we inscribe a disk of area (K logn)/n. We call the set of all
the disks intersecting the unit square as the Disk Tessellation
T n
D(a, b) (with a minor abuse of the term “tessellation”).

Similarly to the square tessellation, we name the small
disks intersecting the unit square as Dn

i , for i � Mn. Let

Figure 5. The disk tessellation T n
D(a, b).
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the number of the n nodes that fall into disk Sni be denoted as
Nn
i , which is a random variable.
The proof of the following lemma is very similar to the

proof of lemma 3.1, in the sense that we can just replace
the small squares there by small disks here. So we omit the
proof.

Lemma 4.1. For any K > 1/ log(4/e) and any point se-
quence {(an, bn) ∈ R2, n = 1, 2, . . .},

lim
n→∞ Pr

{
Nn
i � (1 + µ)K logn, for any disk Dn

i

in tessellation T n
D(an, bn)

} = 1, ∀µ ∈ (µ∗, 1),

where µ∗ is the sole root of

−µ∗ + (1 + µ∗) log(1 + µ∗) = 1

K
. (12)

Proof of the sufficiency part of theorem 1. We want to prove
that for any δ > 0, G(n, (2/ log(4/e) + δ) logn) will be con-
nected in the sense of theorem 1.

According to (12), µ∗ → 1 as K → (1/ log(4/e))+. So
for any δ > 0, there is a constant δ′ > 0 such that

K = 1

log(4/e)
+ δ′ �⇒

(1 + µ∗)K <
2

log(4/e)
+ δ. (13)

From now on, we fix the parameter K in the Disk tessella-
tion to be the one in (13), and fix µ such that

1 > µ > µ∗ and (1 + µ)K <
2

log(4/e)
+ δ.

Let rn �
√
(K logn)/(πn), the radius of the disks in the

Disk tessellation. Then choose two positive constants ε, η ∈
(0, 1) such that

π(rn − εrn)
2 >

(1 + η) logn

n
. (14)

Now let us tessellate the unit square by a collection of sev-
eral disk tessellations:

T n
ε �

{
T n
D(i · εrn, j · εrn), i, j = 0, 1, 2, . . . , 2 ·

[
1

ε

]
+ 1

}
.

This collection of tessellations has the following property:

• For any point (a, b) in the unit square, there is a disk in T n
ε

whose center is within a distance of εrn from the point; see
figure 6.

Since the number of tessellations in T n
ε is finite, by

lemma 4.1, we know that

Pr
{

Every disk of T n
ε contains no more than

(2/ log(4/e)+ δ) logn nodes
} → 1, as n → ∞.

By the choice of rn, ε and T n
ε , any disk with radius (1 −

ε)rn and with its center in the unit square, will be contained in
a disk in the collection of tessellations T n

ε ; see figure 6. So if

Figure 6. Tessellation collection T n
ε .

any of the disks of the tessellation collection T n
ε contains no

more than (2/ log(4/e)+δ) logn nodes of Gn, then each node
of G(n, (2/ log(4/e) + δ) logn) will be connected to every
node that is within distance of (1 − ε)rn. To complete the
proof, we need the following theorem on connectivity based
on distance.

Theorem 4.1 (Theorem 3.2 in [10]). (Let G(n, r(n)) be
the graph formed by connecting every node to its neighbors
that are within distance r(n).) Then, graph G(n, r(n)), with
πr(n)2 = (logn+c(n))/n, is connected with probability one
as n → ∞ if and only if c(n) → ∞.

Now, by (14), and the above theorem 4.1, we know
G(n, (2/ log(4/e) + δ) logn) will be connected with high
probability.

So if we define Bn � {Every disk of T n
ε contains no more

than (2/ log(4/e)+ δ) logn nodes}, then

Pr
{
G(n, (2/ log(4/e)+ δ) logn) is connected | Bn

} → 1,

as n → ∞.

Then,

Pr
{
G(n, (2/ log(4/e)+ δ) logn) is connected

}
= Pr{Bn}

× Pr
{
G(n, (2/ log(4/e)+ δ) logn) is connected | Bn

}
+ Pr

{
Bc
n

}
× Pr

{
G(n, (2/ log(4/e)+ δ) logn) is connected | Bc

n

}
= (

1 + o(1)
) · (1 + o(1)

)+ o(1) → 1, as n → ∞.

Hence we have proved the result. �

5. A simulation study

The theoretical results of this paper are asymptotic in nature.
The question naturally arises as to how rapidly the probabil-
ity of connectedness approaches one as n is increased. Our
current theory is inadequate for this task.
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Figure 7. Simulation results for connection based on c logn nearest neighbors.

To investigate this we have conducted a simulation study.
In each run, n nodes were placed randomly (uniformly iid)
in a unit square. For various values of c, it was determined
whether the network was connected when each node was con-
nected to its c logn nearest neighbors. By repeating the sim-
ulation 1000 times, the empirical probability that the network
is connected is obtained. These empirical probabilities were
plotted for various values of n; see figure 7.

The results suggest that the critical value of c is near one.
The jumps in the plots arise because c logn is generally not an
integer. What we display is the probability of connectedness
for �c logn� nearest neighbors when c < 1, and for �c logn	
nearest neighbors when c > 1.

It is an interesting question whether the critical value of c
is one. In any case we see that for c larger than about 1.5,
the probability of connectedness increases rapidly to one for
a modest number of nodes (e.g., n ≈ 30).

We also present for comparison purposes simulation re-
sults for connectivity based on distance; see figure 8. Shown
are the plots when nodes are connected to all others within a
distance

√
(c logn)/(πn). In this case the critical c is known

to be one (see [10]), and the plots clearly illustrate this.
To illustrate another instance of a problem with a critical

value of the preconstant determining connectivity, we exhibit
the results for Bernoulli random graphs; see figure 8. Here
an edge is drawn between a pair of nodes with probability
(c logn)/n. Again it is known that the critical value of c is
one (see [12]), and the plots illustrate this too. Note how-
ever that Bernoulli random graphs do not model wireless net-
works.

6. Concluding remarks

As the number of nodes participating in a wireless network
increases, the number of nearest neighbors each is connected
to should not remain constant. Otherwise one obtains a dis-
connected network. In fact the number of nearest neighbors
needs to grow like �(logn). This contrasts with some pre-
vious studies in the 1970s and 1980s which recommended
various “magic numbers” of nearest neighbors (three, six,
seven, eight etc.). However that will result in network dis-
connectivity with probability approaching one as the num-
ber of nodes increases. We have shown that asymptotic con-
nectivity results when every node is connected to its nearest
5.1774 logn neighbors, while asymptotic disconnectivity re-
sults when each node is connected to less than 0.074 logn
nearest neighbors. Simulations suggest that there may be a
critical value of c, and that it is close to one. However our
theory is inadequate to resolve this, and it remains an open
problem. In any case when c � 1.5, the probability of con-
nectedness increases to near one even for modest n. These
results should guide schemes for power control, media access
control and routing in ad hoc networks; see [19].

Acknowledgements

This material is based upon work partially supported by US-
ARO under contract Nos. DAAD 19-00-1-0466 and DAAD
19-01010-465, DARPA under contract Nos. F33615-01-C-
1905 and N00014-01-1-0576, AFOSR under contract Nos.
F49620-02-1-0217 and AF-DC-5-36128, DARPA|AFOSR



180 XUE AND KUMAR

Figure 8. Simulation results for connection based on distance and for Bernoulli graphs.

under contract No. F49620-02-1-0325, NSF under con-
tract No. NSFANI-02-21357, and ONR under contract No.
N00014-99-1-0696. Any opinions, findings and conclusions
or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the
above agencies.

References

[1] L. Kleinrock and J.A. Silvester, Optimum transmission radii for packet
radio networks or why six is a magic number, in: Proc. of IEEE Nat.
Telecommun. Conf. (December 1978) pp. 4.3.1–4.3.5.

[2] R. Mathar and J. Mattfeldt, Analyzing routing strategy NFP in multihop
packet radio network on a line, IEEE Transactions on Communications
43(2–4) (1995) 977–988.

[3] J. Ni and S. Chandler, Connectivity properties of a random radio net-
work, Proceedings of the IEE – Communications 141 (August 1994)
289–296.

[4] J.A. Silvester, On the spatial capacity of packet radio networks, Eng.
Rep. UCLA-ENG-8021, Dept. Comput. Sci., School Eng. Appl. Sci.,
Univ. California, Los Angeles (March 1980).

[5] H. Takagi and L. Kleinrock, Optimal transmission ranges for randomly
distributed packet radio terminals, IEEE Trans. Commun. 32 (1984)
246–257.

[6] T. Hou and V. Li, Transmission range control in multihop packet radio
networks, IEEE Trans. Commun. 34 (January 1986) 38–44.

[7] B. Hajek, Adaptive transmission strategies and routing in mobile radio
networks, in: Proceedings of the Conference on Information Sciences
and Systems (March 1983) pp. 373–378.

[8] P. Gupta and P. Kumar, The capacity of wireless networks, IEEE Trans-
actions on Information Theory 46 (March 2000) 388–404.

[9] T.K. Philips, S.S. Panwar and A.N. Tantawi, Connectivity properties
of a packet radio network model, IEEE Transactions on Information
Theory 35 (September 1989) 1044–1047.

[10] P. Gupta and P.R. Kumar, Critical power for asymptotic connectivity in
wireless networks, in: Stochastic Analysis, Control, Optimization and
Applications: A Volume in Honor of W.H. Fleming, eds W.M. McE-
neany, G. Yin and Q. Zhang (Birkhäuser, Boston, MA, 1998) pp. 547–
566.

[11] M.D. Penrose, The longest edge of the random minimal spanning tree,
The Annals of Applied Probability 7(2) (1997) 340–361.

[12] B. Bollobás, Random Graphs (Academic Press, Orlando, FL, 1985).
[13] R. Meester and R. Roy, Continuum Percolation (Cambridge University

Press, Cambridge, UK, 1996).
[14] H. Kesten, Percolation Theory for Mathematicians (Birkhäuser,

Boston, MA, 1982).
[15] L. Booth, J. Bruck, M. Franceschetti and R. Meester, Covering algo-

rithms, continuum percolation and the geometry of wireless networks,
Preprint, http://www.paradise.caltech.edu/ETR.html
(2001).

[16] M. Franceschetti, M. Cook and J. Bruck, A geometric the-
orem for approximate disk covering algorithms, Preprint,
http://www.paradise.caltech.edu/ETR.html (2001).

[17] F. Avram and D. Bertsimas, On central limit theorems in geometrical
probability, Annals of Applied Probability 3(4) (1993) 1033–1046.



THE NUMBER OF NEIGHBORS NEEDED FOR CONNECTIVITY OF WIRELESS NETWORKS 181

[18] O. Häggström and R. Meester, Nearest neighbor and hard sphere mod-
els in continuum percolation, Random Structures and Algorithms 9
(1996) 295–315.

[19] S. Narayanaswamy, V. Kawadia, R.S. Sreenivas and P.R. Kumar, Power
control in ad-hoc networks: Theory, architecture, algorithm and imple-
mentation of the COMPOW protocol, in: European Wireless Confer-
ence – Next Generation Wireless Networks: Technologies, Protocols,
Services and Applications, Florence, Italy (25–28 February 2002).

Feng Xue received his B.S. in control science from
Shandong University, Jinan, China, in 1997, and
an M.S. in control theory from Institute of Systems
Science, Chinese Academy of Sciences, Beijing, in
2000. Since 2000 he has been a research assis-
tant at University of Illinois at Urbana-Champaign,
where he is pursuing his Ph.D. His research interests
include information theoty, communication systems
and ad hoc wireless networks.
E-mail: fengxue@uiuc.edu

P.R. Kumar is the Franklin W. Woeltge Profes-
sor of Electrical and Computer Engineering, and
a Research Professor in the Coordinated Science
Laboratory, at the University of Illinois, Urbana-
Champaign. He was the recipient of the Donald P.
Eckman Award of the American Automatic Control
Council. He has presented plenary lectures at the
SIAM Annual Meeting and the SIAM Control Con-
ference in 2001, the IEEE Conference on Decision
and Control in San Antonio, Texas, 1993, the SIAM

Conference on Optimization in Chicago, 1992, the SIAM Annual Meeting
at San Diego, 1994, The Fifth Stochastik-Tage: German Open Conference
on Probability and Statistics, Magdeburg, Germany, 2002, 10th Mediter-
ranean Conference on Control and Automation, Lisbon, 2002, Brazilian Au-
tomatic Control Congress, and the Third Annual Semiconductor Manufac-
turing, Control and Optimization Workshop. He is a co-author with Pravin
Varaiya of the book Stochastic Systems: Estimation, Identification and Adap-
tive Control. He serves on the editorial boards of Communications in Infor-
mation and Systems, Journal of Discrete Event Dynamic Systems; Math-
ematics of Control Signals and Systems; Mathematical Problems in Engi-
neering: Problems, Theories and Applications; and in the past has served as
Associate Editor at Large for IEEE Transactions on Automatic Control; As-
sociate Editor of SIAM Journal on Control and Optimization; Systems and
Control Letters; Journal of Adaptive Control and Signal Processing; and the
IEEE Transactions on Automatic Control. He is a Fellow of IEEE. Professor
Kumar’s current research interests are in wireless networks, distributed real-
time systems, wafer fabrication plants, and machine learning.
E-mail: prkumar@uiuc.edu


