
Received 16 March 2016

Accepted 18 June 2016

Efficient Greedy Randomized Adaptive Search Procedure for the Generalized

Regenerator Location Problem

J.D. Quintana 1 , J. Sánchez-Oro 1 , A. Duarte 1

1 Department of Computer Science, Universidad Rey Juan Carlos,
C/Tulipán, S/N,
Móstoles, Spain

E-mail: jd.quintana@alumnos.urjc.es, {jesus.sanchezoro, abraham.duarte}@urjc.es

Abstract

Over the years, there has been an evolution in the manner in which we perform traditional tasks. Nowa-
days, almost every simple action that we can think about involves the connection among two or more
devices. It is desirable to have a high quality connection among devices, by using electronic or optical
signals. Therefore, it is really important to have a reliable connection among terminals in the network.
However, the transmission of the signal deteriorates when increasing the distance among devices. There
exists a special piece of equipment that we can deploy in a network, called regenerator, which is able to
restore the signal transmitted through it, in order to maintain its quality. Deploying a regenerator in a net-
work is generally expensive, so it is important to minimize the number of regenerators used. In this paper
we focus on the Generalized Regenerator Location Problem (GRLP), which tries to find the minimum
number of regenerators that must be deployed in a network in order to have a reliable communication
without loss of quality. We present a GRASP metaheuristic in order to find good solutions for the GRLP.
The results obtained by the proposal are compared with the best previous methods for this problem. We
conduct an extensive computational experience with 60 large and challenging instances, emerging the
proposed method as the best performing one. This fact is finally supported by non-parametric statistical
tests.

Keywords: GRASP, regenerator, telecommunications, metaheuristic, generalized regenerator location
problem

1. Introduction

Last years society has become more and more con-
nection dependent, in such a way that nowadays it is
hard to think in accomplishing a common task with-
out using some kind of connection among two or
more devices. In most cases, we need a reliable con-
nection to transmit information in the form of elec-
tronic or optical signals. For that reason, the correct
transmission of these signals has become an essen-
tial part in our lives. The transmission of a signal
between two points is not usually direct, because

the two endpoints of the communication are usually
rather separated. For that reason, the signal travels
through a dense network of electronic devices, cre-
ating a path between the two endpoints. However,
the strength of the signal is usually deteriorated as it
gets farther from the source, mainly due to attenu-
ation. Then, in order to maintain the quality of the
signal, it is necessary to regenerate it periodically
by using a special type of electronic device in the
network called regenerator 1. These pieces of equip-
ment are usually expensive, so we need to deploy the

International Journal of Computational Intelligence Systems, Vol. 9, No. 6 (2016) 1016-1027

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1016

J.D. Quintana et al. / GRASP for Generalized RLP

lowest number of regenerators in order to reduce the
cost of the signal transmission.
In general, a network is usually modeled with a

graph G = (V,E), where the set of nodes V repre-
sents electronic devices and the set of edges E rep-
resents the link connections between electronic de-
vices. Each edge (u,v)∈ E presents a length duv > 0
which corresponds to the distance between nodes u
and v. The set of nodes is divided into two subsets.
The first one, S ⊆ V , contains the candidate loca-
tions to deploy a regenerator; while the second one,
T ⊆V , represents the set of terminal nodes that must
communicate with each other. Notice that T and S
are disjoint sets (i.e., T ∩S = /0 and T ∪S =V).
Each terminal node must be able to send signals

to the other terminal nodes throughout a path with-
out exceeding a maximum given distance, dmax > 0,
in order to avoid the deterioration of the signal.
Specifically, the path, P, between an origin terminal
to and a destination terminal td through the network
G is defined as the set of nodes that should be tra-
versed in order to reach td starting from to:

Pto,td = {to,vi, . . . ,v j, td},
with vi,v j ∈V . The distance of the path is evaluated
as:

d(Pto,td) = dto,vi + . . .+dvj,td .

If d(Pto,td) � dmax the signal can travel directly
from to to td without the necessity of regenerating
the signal. Therefore, the terminals of a network
are fully connected if the shortest path between each
pair of terminals nodes presents a distance lower
than dmax. In mathematical terms,

d(Pto,td)� dmax ∀to, td ∈ T

Otherwise, in order to assure a proper communi-
cation among terminal nodes, regenerators must be
deployed in one or more nodes in the paths where
d(Pto,td) > dmax. These regenerators are able to re-
store the signal in the node where they are installed,
in such a way that the distance traveled by the signal
starts again from zero after reaching a regenerator in
the path. This behavior allows the signal to be trans-
mitted for longer distances. Therefore, the distance

between two terminal nodes through a path that con-
tains one or more regenerators is evaluated as:

d(Pto,td) =max{d(Pto,r1),d(Pr1,r2), . . .d(Prk−1,rk),d(Prk,td)}
where k is the number of regenerators located in the
path between terminal nodes to and td . Figure 1 il-
lustrates the evaluation of a possible path between
terminal nodes A and E. Terminal nodes are repre-
sented using a square, while the candidates to deploy
a regenerator are represented with a circle (nodes
B and C). In Figure 1.a no regenerators have been
deployed yet. Therefore, the distance of the path
is evaluated as the sum of the distances between
each pair of connected nodes in it. In particular,
the path from A to E, denoted as PA,E is computed
as: d(PA,E) = dA,B +dB,C +dC,E = 175. However, the
deployment of a regenerator in node C (highlighted
in black in Figure 1.b) modifies the distance of the
path, since the signal is restored in node C. Specifi-
cally, the distance is now evaluated as the maximum
between the distance from terminal node A to regen-
erator C (where the signal is restored) and the dis-
tance from regenerator C and terminal node E, result-
ing in a total distance of 125. Considering a maxi-
mum distance dmax = 150, it would be necessary to
add the regenerator in C in order to send a signal
from terminal A to terminal E.

A ECB

50 75 50

A ECB

Fig. 1. Evaluation of a path distance when (a) no regenera-
tors are deployed and (b) when a regenerator is deployed in
node C.

This optimization problem has been identified in
the related literature as the Generalized Regenerator
Location Problem (GRLP). The objective function
of this problem is then to find the subset of regen-
erators R ⊆ S with the minimum cardinality that al-
lows the communication among all terminal nodes
without exceeding the maximum distance. In math-
ematical terms:

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1017

J.D. Quintana et al. / GRASP for Generalized RLP

GRLP(G,R,T) =min |R|
s. t.

max{d(Pto,r1),d(Pr1,r2), . . .d(Prk−1,rk),d(Prk,td)}� dmax
∀to, td ∈ T

r1, . . . ,rk ∈ Pto,td

Regenerator placement problems have been
widely studied in the recent years due to its im-
portance in the area of telecommunications. Yet-
giner and Karasan 2 present one of the first works
in the context of traffic engineering with restoration,
while Gouveia et al. 3 address a multi-protocol la-
bel switching over wave division multiplexing net-
work design. In Chen et al. 4,5,6 several methods for
the Regenerator Location Problem (RLP) are pre-
sented. This optimization problem is a variant for
the GRLP where S = T = V (there are not distinc-
tions between terminal nodes and candidate loca-
tions). More recently, Duarte et al. 6 proposed a
GRASP procedure and a Biased Random Key Ge-
netic algorithm. A strategic oscillation procedure
is presented for the Maximum Leaf Spanning Tree
Problem 7, which presents an isomorphism with
the RLP. Finally, Chen et al. 8 formally defines the
GRLP as a generalization of the RLP. This problem
was proved to be NP-hard by Chen et al. 5 and Flam-
mini et al. 9. In spite of the importance of this prob-
lem in the optical network design and telecommu-
nications, GRLP has been barely ignored from the
heuristic point of view. Specifically, we have only
found one work 10 focused in the GRLP, where au-
thors propose a branch-and-cut algorithm as well as
two heuristics for solving the GRLP.
In this paper we propose an algorithm based on

the Greedy Randomized Adaptive Search Procedure
(GRASP) metaheuristic 11. Specifically, we intro-
duce two constructive procedures and a local search
method within the GRASP methodology. Addition-
ally, we propose two different enhancement for re-
ducing the computing time required by the local
search method, together with a procedure which re-
moves unnecessary regenerators.
The rest of the paper is organized as follows:

Section 2 describes a graph transformation algo-
rithm that simplifies the resolution of the GRLP.
Section 3 describes the algorithm proposal. We se-
lect the best GRASP variant and then compare it

with the current state of the art in Section 4. Finally,
main conclusions are presented in Section 5.

2. Communication graph

The communication graph is introduced as a graph
transformation procedure to convert the original net-
work into a simpler model 10. Specifically, consid-
ering the original graph G = (V,E), with V = S∪T ,
the first step consists of removing all edges with
length larger than dmax. These edges are useless
(from a communication point of view) in the net-
work since it is not possible to send the information
through them. In other words, the signal would not
have not enough quality to be processed at the desti-
nation because of the distance.
For all non-adjacent pairs of nodes, the next step

of this procedure consists of adding an artificial edge
between them. Its associated length is equal to the
length of the corresponding shortest path. As it was
aforementioned, artificial edges with length larger
than dmax are eliminated since it is not possible to
send information through them.
Artificial edges model the situation where an ori-

gin sends information to a destination through sev-
eral intermediate nodes but the total traveled dis-
tance is lower than or equal to the maximum allowed
one. Notice that it is equivalent to send the infor-
mation through the shortest path or, alternatively,
through the artificial added edge. At this step, we
can discard the distance information, resulting in an
unweighted graph, M = (V,E ′).
Figure 2.a shows an example of an original graph

G, where terminal nodes are represented within a
square (A, E, and F) and those which can hold a re-
generator with a circle (B, C, and D). The numbers in
the edges indicates the distance between the linked
nodes. Let us suppose that the maximum distance
that a signal can travel is set to 150. Then, the com-
munication graph is constructed by firstly removing
those edges whose distance is larger than the max-
imum distance. In this example only edge (A,D) is
removed (see Figure 2.b). The next step computes
the shortest path between each pair of nodes. For
the sake of simplicity we only report information
about shortest paths responsible of adding new ar-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1018

J.D. Quintana et al. / GRASP for Generalized RLP

tificial edges (i.e., the corresponding length is lower
than or equal to 150). In particular, the procedure
adds the following edges:

• Edge (A,C), with path:
{dA,B,dB,C}= 50+75= 125.

• Edge (A,D), with path:
{dA,B,dB,D}= 50+100= 150.

• Edge (B,E), with path:
{dB,C,dC,E}= 50+75= 125.

• Edge (B,F), with path:
{dB,D,dD,F}= 100+50= 150.

Figure 2.c shows the resulting intermediate com-
munication graph. Finally, in Figure 2.d we show
the final communication graph where the length in-
formation is discarded.

50

75

50

200

150

50

100

A

CB

D

E

F

50

75

50

150

50

100

A

CB

D

E

F

50

75

50

125

150

150
125

150

50

100

A

CB

D

E

F

A

CB

D

E

F

Fig. 2. Construction of the communication graph.

The communication graph is particularly useful
when evaluating the effect of including a new regen-
erator in the network. In particular, if a node s ∈ S
holds a regenerator, the signal can be restored and,
therefore, transmitted to all nodes directly connected
to s (i.e., the set of adjacent nodes, N(s) = {v ∈ V :
(s,v) ∈ E}). This property is reflected in the com-
munication graph as the inclusion of several new ar-
tificial edges between each pair of adjacent nodes to
s. Notice that the actual added artificial edges are

those not previously present in the communication
graph.
Let t1, t2 ∈ T be two non-adjacent termi-

nal nodes in the communication graph and let
s ∈ S ∩ N(t1) ∩ N(t2) be a candidate node to hold
a regenerator adjacent to both, t1 and t2 (see Figure
3.a). In this situation, terminal t1 can share informa-
tion with s. Similarly, s can share information with
t2. However, t1 cannot share information with t2 un-
less we place a regenerator in s to restore the quality
of the signal. Therefore, the inclusion of a regener-
ator in s allows the communication between t1 and
t2, which is equivalent to include an artificial edge
between t1 and t2 in the communication graph. We
illustrate this situation in Figure 3.b by adding a new
edge represented with a dotted line.

t
1

t
2

C

s

t
1

t
2

C

s

Fig. 3. Construction of the communication graph.

As a result, given a graph G = (V,E), and its as-
sociated communication graph, M = (V,E ′), a node
v ∈V can send a signal to another one u ∈V , (with-
out loss of quality) if and only if there exist an edge
(u,v) ∈ E ′. The objective of the GRLP is to con-
nect all terminal nodes among them. Therefore, a
solution R, (i.e., set of included regenerators) is fea-
sible if the associated communication graph has an
edge between each pair of terminal nodes. Let us
illustrate this situation by considering the example
depicted in Figure 2.d. The solution derived from
this communication graph (i.e. R = /0) is not feasi-
ble. More precisely, not all the terminal nodes are
connected, see {(A,E),(A,F),(E,F)}. In order to ob-
tain a feasible solution, it is necessary to insert some
regenerators in the communication graph. For ex-
ample, if we deploy a regenerator in vertex C (which
implies R = {C}) all nodes adjacent to C, (i.e., ver-
tices A, B, and E), become connected. Considering
the set of terminal nodes, the inclusion of a regener-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1019

J.D. Quintana et al. / GRASP for Generalized RLP

ator in C only adds the edge (A,E). As it is shown
in Figure 4.a, this solution is not feasible since not
all terminal nodes are directly connected (see for in-
stance A and F). If we add a new additional regener-
ator in node B, the solution becomes feasible since
all terminal nodes are able to share information (i.e.,
there is an edge between each pair of terminals).
Therefore, the solution is R = {C,B}, whose objec-
tive function value is |R| = 2, which means that we
have deployed two regenerators to connect all termi-
nals in T . Notice that this is not the optimal solution
since we can connect all terminal nodes by deploy-
ing a single regenerator in node B.

A

CB

D

E

F

A

CB

D

E

F

Fig. 4. Communication graph resulting from the insertion
of a regenerator in (a) node C and (b) in node B in the graph
depicted in Figure 2.d. New edges are represented with dot-
ted lines.

Therefore, the objective of the GRLP is based
on connecting those terminal nodes which are not
directly connected in the corresponding communi-
cation graph M. The connections are created by in-
cluding new regenerators in the graph which gen-
erate new edges between pairs of terminal nodes.
The set of non-directly connected terminal nodes
in a given communication graph is denoted as
NDC(M,R). For example, analyzing the communi-
cation graph depicted in Figure 2.d, NDC(M,R) =
{(A,E),(A,F),(E,F)}. The deployment of a regener-
ator in node C as depicted in Figure 4.a eliminates
the pair (A,E) from the NDC set. Finally, the re-
generator deployed in node B removes pairs (A,F)
and (E,F) from the NDC set, resulting in an empty
NDC set and, therefore, in a feasible solution (see
Figure 4.b).

3. Greedy randomized adaptive search

procedure

In this paper we propose an algorithm based on
the Greedy Randomized Adaptive Search Procedure
(GRASP) metaheuristic. GRASP was developed by
12 in the late 80s, but it was not formally introduced
until 1994 11. Recent surveys on the methodology
have been presented 13,14. The main idea behind
GRASP methodology is to iteratively and stochas-
tically sample greedy solutions, and then improve
them to reach a local optimum. This stages are re-
peated until a termination criterion is met. In this
paper we propose two constructive procedures and
an efficient method. The GRASP algorithm selects
a constructive method to generate initial solutions
during a preset number of iterations. For each gen-
erated solution, the algorithm uses the improvement
method proposed to obtain a local optimum. Finally,
the algorithm stores the best solution found during
the exploration. This metaheuristic has been suc-
cessfully applied in several recentNP-hard problems
15,16.

3.1. Constructive procedures

Starting from scratch, a classical GRASP construc-
tive procedure iteratively builds a solution adding an
element at each step. The set of eligible elements are
usually denoted as Candidate List (CL). In the con-
text of the GRLP, all the nodes in S are candidates
to hold a regenerator. Therefore, at the beginning
of the process CL = S. Then, each node v ∈ CL is
evaluated with a greedy function. In this paper, we
introduce a greedy function, named g1, which is de-
fined as the number of terminal nodes connected to
v. The rationale behind this idea is that regenerators
should be deployed in those nodes which are con-
nected to the maximum number of terminal nodes,
creating several artificial edges between them. In
mathematical terms:

g1(v) =
∣∣{u ∈ T : (v,u) ∈ E ′}∣∣

The constructive procedure then creates a Re-
stricted Candidate List (RCL) with the subset of
the most promising nodes, according to its g1-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1020

J.D. Quintana et al. / GRASP for Generalized RLP

evaluation. Specifically, RCL contains all elements
in CL whose greedy function value is higher than or
equal to a given threshold th, computed as:

th = gmin + α (gmax−gmin)

where α is a parameter of the algorithm, which con-
trols the greediness/randomness of procedure. Val-
ues gmax and gmin are respectively the maximum and
minimum values of those elements in CL evaluated
with g1. Figure 5 presents the pseudocode of the
constructive method proposed, called C1.

1: function C1(M = (S,T),α)
2: R← /0
3: CL← S
4: while NDC(M,R) 	= /0 do
5: gmin← min

v∈CL
g1(v)

6: gmax← max
v∈CL

g1(v)

7: th← gmax−α (gmax−gmin)
8: RCL←{v ∈ CL : g1(v)� th}
9: v← SelectRandom(RCL)
10: R← R∪{v}
11: UpdateCommGraph(M,v)
12: CL← CL\{v}
13: end while

14: return R
15: end function

Fig. 5. Algorithm C1.

The procedure starts by creating the CL with the
nodes that can host a regenerator (step 3). Then,
in each step, the RCL is constructed as described
above (steps 5-8). In step 9, a node is selected at ran-
dom from the RCL, and added to the solution (step
10). Finally, the communication graph is updated,
by adding new edges between each pair of adjacent
nodes to v (step 11). The CL is also updated by re-
moving v (step 12). The procedure continues adding
new nodes to the solution until the NDC associated
to the communication graph becomes empty (steps
4-13). In this case, the procedure returns the con-
structed solution R.
We propose a second constructive procedure

(C2) whose main difference with respect to the pre-
vious one is the greedy function used to evaluate

the nodes in the CL. In this case, the greedy func-
tion g2 is intended to promote those nodes which
create the maximum number of edges between non-
directly connected terminal nodes when holding a
regenerator. More formally,

g2(v) = |{(u,w) ∈ NDC(M,R) : (v,u) ∈ E ′ ∧ (v,w) ∈ E ′}|
We do not include a pseudocode for the second

constructive procedure since it is equivalent to the
one presented in Algorithm 5, but using g2 instead
of g1 in steps 5, 6, and 8.
The solutions constructed using the proposed

procedures may contain some nodes which do not
need to actually hold a regenerator in order to have
a feasible solution. Let us illustrate this situation
with the example depicted in Figure 3.b. The de-
ployment of a genenerator in node C creates an edge
between A and E, while the regenerator in B includes
the same edge (A,E) and other additional edges be-
tween terminal nodes {(A,F),(E,F)}. Therefore, we
can remove node C from the solution, keeping it fea-
sible, and producing a better solution with only one
regenerator deployed in node B.
Given a communication graph M and a solution

R, we propose a procedure clean(M,R) which iter-
ates over every node v ∈ R. For each node, the pro-
cedure checks whether the solution remains feasible
when removing the regenerator or not. In case the
solution remains feasible, the regenerator is defini-
tively removed from the solution. Otherwise, it is
included again on it. The clean procedure is per-
formed for each constructed solution, in order to re-
move redundant regenerators.

3.2. Improvement method

The second phase of a GRASP algorithm consists of
improving the constructed solution until reaching a
local optimum. Before proposing a local search pro-
cedure, it is necessary to define which moves are al-
lowed during the search. In the context of GRLP, we
propose two different and complimentary moves: in-
sert and remove. The insert move consists of adding
a new node to the solution, deploying a regenera-
tor in it, while the remove one consists of deleting a
node from the current solution, removing its corre-
sponding regenerator.
The local search proposed in this work (LS) tries

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1021

J.D. Quintana et al. / GRASP for Generalized RLP

to reduce the number of regenerators contained in a
given solution by performing an exhaustive search.
Specifically, in each iteration, the method tries to re-
move two regenerators, deploying only a new one. If
the resulting solution is still feasible, the number of
regenerators would have been reduced in one unit,
improving the original solution. Figure 6 presents
the pseudocode of the proposed method.

1: function LS(M = (S,T),R)
2: for u ∈ R do

3: R← R\{u}
4: for v ∈ R do

5: R← R\{v}
6: for w ∈ S\R do

7: R← R∪{w}
8: if NDC(M,R) = /0 then
9: go to 2 // Improvement
10: end if

11: R← R\{w}
12: end for

13: R← R∪{v}
14: end for

15: R← R∪{u}
16: end for

17: return R
18: end function

Fig. 6. Algorithm LS.

The local search method iterates over each pair
of regenerators already deployed in the solution
(steps 2-16 and 4-14, respectively). In each itera-
tion, two regenerators are removed from the solu-
tion R (steps 3 and 5). Then, the procedure iterates
over the list of possible regenerators (steps 6-12).
For each potential node to hold a regenerator, LS
inserts it in the solution (step 7). If the new solution
is feasible (step 8), i.e., all terminal nodes are con-
nected, then an improved solution has been found,
restarting the search (step 9). Otherwise, the method
restores the solution by removing the included re-
generator (step 11), and including the previously re-
moved ones (steps 13 and 15). The procedure ends
when no improvement is found, returning the best
solution found in the search.
The exhaustive nature of the proposed local

search method makes it computationally intensive in
terms of CPU time. Therefore, we propose two dif-
ferent enhancements which make the search more
efficient without loss of quality. The first enhance-
ment, denoted as LSpred, is intended to avoid per-
forming those moves which leads to unfeasible so-
lutions. Before inserting the next node in the so-
lution (step 7), it is possible to predict whether the
insertion will result in a feasible solution or not. The
insertion of a node v produces a feasible solution if
and only if each node which appears in the NDC
is adjacent to v. The rationale behind this idea is
that deploying a regenerator in v will generate an
edge between each pair of adjacent vertices to it and,
therefore, the corresponding pair in the NDC will
be removed. In other words, if the regenerator is
able to connect all pairs in the NDC, the solution
remains feasible. More formally, given a commu-
nication graph M and an unfeasible solution R, the
inclusion of a regenerator in v makes R feasible if
∀u ∈ NDC(M,R) ∃ (v,u) ∈ E ′. In order to include
this enhancement, the insertion of a new node in the
solution (step 7 of Algorithm 6) is modified by con-
sidering only those ones that result in a feasible so-
lution.

A

E

D

C

B

F

A

E

D

C

B

F

A

E

D

C

B

F

Fig. 7. Result of deploying a regenerator in F in different or-
der: (b) the first regenerator and (c) second one. New edges
created by F are represented with dotted lines.

The second enhancement introduced in this pa-
per, named LSstack, is intended to increase the effi-
ciency of the search by reducing the computing time
of updating the communication graph after remov-
ing a regenerator (see steps 3 and 5 of Algorithm 6).
In order to do that, we need to determine the regen-
erator responsible of including new artificial edges
in the communication graph. It is worth mention-
ing that these edges depends on the order in which
regenerators were included in the solution. Let us
illustrate this fact by considering the example de-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1022

J.D. Quintana et al. / GRASP for Generalized RLP

picted in Figure 7. Specifically, we show in Figure
7.a the original communication graph. If we firstly
deploy a regenerator in F then three new edges are
created, (C,D),(C,E), and (D,E). See Figure 7.b,
where the new added edges are represented with dot-
ted lines. However, if the first regenerator has been
deployed in C, and then we deploy a regenerator in F
(Figure 7.c), then three additional edges are created,
(A,D),(B,D) and (A,E).

We can conclude that the edges created by the
insertion of a regenerator in a solution not only de-
pends on the node itself, but also on the previously
introduced ones. Therefore, in a straightforward im-
plementation, if we eliminate a regenerator, we must
reconstruct the communication graph from scratch,
since it is not possible to isolate the effect of remov-
ing a single regenerator from the solution. However,
if we consider the order in which the regenerators
were introduced in the solution, we can significantly
reduce the number of operations needed to update
the communication graph.

Say for instance that we want to remove the re-
generator in v. In order to do that, we firstly elimi-
nate all regenerators that were added after it. Then,
we actually remove v, and finally insert again, in the
same order, the removed regenerators (those origi-
nally inserted after v). Following these three steps,
we can assure that those edges created by the regen-
erators added after v, which were originally created
due the previous deployment of a regenerator in v,
have been effectively removed from the communi-
cation graph.

Figure 8 shows an example of the removal of a
regenerator. Let us assume that this solution was
constructed by firstly deploying a regenerator in C

and then in F. As it can be easily tested, it is a fea-
sible solution with two regenerators (black colored),
since all terminals (represented with a square) are
connected. The first step to remove C consist of
eliminating those regenerators that were inserted af-
ter it. Since F was inserted after C, then we need
to remove it from the communication graph, along
with the associated edges (represented with dotted
line) that were created due to its insertion (see Fig-
ure 8, 1 - Remove F). In the next step (Figure 8,
2 - Remove C), renegerator in node C and its asso-

ciated edges (represented with dotted line) are re-
moved from the graph. Finally, we need to insert
again those regenerators that were removed in the
first step. In this case, we only need to deploy a re-
generator in F, creating the edges (C,D),(C,E) and
(D,E) during the process.

A

E

D

C

B

F

1 - Remove F 3 - Insert F2 - Remove C

A

E

D

C

B

F

A

E

D

C

B

F

A

E

D

C

B

F

A

E

D

C

B

F

Fig. 8. Removal of the regenerator deployed in C consider-
ing the order of insertion [C,F].

Considering the aforementioned situation, the
number of operations required to update the com-
munication graph depends on the order in which it
was inserted. In particular, the sooner the regener-
ator was deployed, the larger the complexity of the
corresponding update when removing it. However if
we store the regenerators in a specific data structure
that keeps information about the time in which they
were specifically included in the solution, we could
reduce the computing time employed in updating the
communication graph. This data structure is usually
known as stack, where the last element included in it
(operation called push) is extracted in the fist place
(operation called pop), following the Last-In First-
Out (LIFO) strategy. In the context of the GRLP,
if we want to remove a regenerator v from the so-
lution, it is only needed to iteratively pop elements
from the stack until removing v, and then push them
again (excluding v) in to the stack. Then, all edges
created by regenerators included before v does not
require any update operation, saving a considerable
computing time.
The local search that incorporates this enhance-

ment is called LSstack. It traverses the regenerators
to be removed from the solution by following the or-
der of the stack. Specifically, it starts by removing
regenerators close to the top of the stack (resulting
in faster removals), while the regenerators that are at

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1023

J.D. Quintana et al. / GRASP for Generalized RLP

the bottom of the stack and, therefore, those which
requires more computing time, are the last ones to be
explored. In the next section we will experimentally
evaluate the performance of the proposed enhance-
ments.

4. Computational experiments

This Section presents the computational experi-
ments performed to test the quality of the proposed
algorithms for the GRLP. They were implemented
in Java SE 8 and the experiments were conducted on
an Intel Core i5 2410M CPU (2.30 GHz) and 8GB
RAM. Three different sets of instances where intro-
duce in Chen et al. 10. However, the exact procedure
propose in the same paper finds the optimal solu-
tion in some of them in less than an hour. There-
fore, we exclude these instances since they are not
an actual challenge for heuristic methods. We then
consider the subset of 60 instances where the opti-
mum is unknown. Each one is parametrized by the
number of nodes (n) and the percentage of terminal
nodes (p). The benchmark presents 10 instances for
each value of n and p in the range n ∈ {400,500}
and p ∈ {0.25,0.50,0.75}.
The experiments are divided into two different

parts: preliminary and final experimentation. The
former is intended to (i) select the best variant
among our proposed methods and (ii) evaluate the
influence of each proposed strategy over the final
performance. The objective of the latter is to con-
duct a comparison between our best algorithm with
the best one found in the literature 10.

4.1. Preliminary experimentation

We have selected a subset of 18 representative in-
stances (3 from each value of n and p) for the pre-
liminary experimentation in order to avoid over-
training. For each experiment, we report the follow-
ing statistics: average number of regenerators de-
ployed, Avg.; computing time measured in seconds,
Time (s); average percentage deviation with respect
to the best solution found in the experiment, Dev
(%); and the number of times that a given procedure
matches the best solution found in the preliminary
experimentation, # Best.

The first experiment is designed to select the
best constructive method by comparing C1 and C2
(see Section 3.1). We consider different values for
the α parameter to evaluate how it influences the
performance of each variant. Specifically, we set
α = {0.25n,0.50n,0.75n}, where n is the number of
nodes in the instance. The variation in the α parame-
ter allows us to study the influence of the balance be-
tween diversification and intensification in the con-
structive procedure 17. As it is customary in GRASP,
we execute 100 independent times each construc-
tive method, reporting the best solution found. Ta-
ble 1 presents the results obtained by the aforemen-
tioned variants. These results show that C2 is slower
than C1, but obtaining considerably better results in
terms of objective function value, average deviation
and number of best solutions found. Specifically, C2
with α = 0.75 is the best constructive method found,
with a deviation of 0.12%with respect to the best so-
lution.

It is worth mentioning that the computing time is
unexpectedly large for a constructive procedure. In
order to reduce this time, we decrease the number
of independent executions, from 100 to 5. However,
this strategy produces, as a side effect, lower quality
solutions. With the objective of compensate this loss
of quality, we include the cleanmethod proposed in
Section 3.1, whose goal is to eliminate the unneces-
sary regenerators after constructing a solution. Table
2 presents the results obtained by the constructive
coupled with the clean procedure. These results
show that the impact of this strategy has different
effects in C1 and C2. Specifically, the computing
time of variants based on C1 is increased. However,
the solutions found present considerably larger qual-
ity. In the case of C2, the reduction in the CPU time
is remarkable, while maintaining or even increasing
the quality of the constructed solutions. Analyzing
these results, C2 with α = 0.75 emerges as the best
method. We then select it for the rest of the experi-
mentation.

The next experiment is intended to analyze the
influence of the proposed enhancements for the local
search method described in Section 3.2. In particu-
lar, we evaluate the behavior of each enhancement
isolated and then combine them in the same local

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1024

J.D. Quintana et al. / GRASP for Generalized RLP

Table 1. Comparison of constructive methods when considering
different values for α

C1 C2

α 0.25 0.50 0.75 0.25 0.50 0.75

Avg. 31.38 62.82 103.69 22.42 19.36 17.18
Time (s) 51.21 78.58 79.66 2769.23 2182.54 2031.72
Dev (%) 0.98 3.22 6.63 0.48 0.27 0.12
Best 0 0 0 0 1 7

Table 2. Comparison of constructive methods when applying
the clean procedure after each construction

C1 C2

α 0.25 0.50 0.75 0.25 0.50 0.75

Avg. 19.73 19.13 19.13 19.62 18.76 17.31
Time (s) 268.54 534.09 570.92 805.17 661.46 556.08
Dev (%) 0.31 0.27 0.26 0.30 0.24 0.14
Best 0 2 2 0 1 1

search variant. Figure 9 shows the computing time
needed to execute the local search method with each
corresponding enhancement. Specifically, LS refers
to the local search with no enhancements, LSpred in-
cludes the first enhancement proposed, and LSstack
considers the second enhancement. Finally, LScomb
corresponds to the local search method which con-
siders both enhancements at the same time.

LS
co

m
b

LS
pr

ed
LS

st
ac

k
LS

Time (s)

0 1000 2000 3000 4000 5000

Fig. 9. Performance comparison of the proposed enhance-
ments for the local search procedure.

Given two algorithms whose computing time is

time1 and time2, respectively, the speedup is defined
as S = time1/time2. If S > 1 then we can conclude
that the first compared algorithm is faster than the
second one. Obviously, if S < 1, the conclusion
is just the opposite. The results depicted in Fig-
ure 9 show that the use of a stack (LSstack) reduces
the computing time in 500 seconds approximately,
achieving a speedup of 1.14, which means that this
variant is 14% faster than the basic approach. LSpred
is able to reduce the computing time in 3900 sec-
onds, obtaining a speedup of 7.70 with respect to the
basic approach. Finally, the combination of both en-
hancements, LScomb, is able to obtain a speedup of
13.13 with respect to LS. Therefore, we select this
variant for the final version of the algorithm.

4.2. Final experimentation

The final experiment is intended to evaluate the per-
formance of our best proposal compared with the
best methods found in the state of the art 10. In
particular, our best proposal is a GRASP algorithm
which is configured with C2 (α = 0.75) coupled
with the clean method and the local search with
the combined enhancements, LScomb, as the improv-
ing strategy. In order to have a fair comparison, our
proposal has been executed for the same computing

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1025

J.D. Quintana et al. / GRASP for Generalized RLP

Table 3. Comparison of our GRASP algorithm with the best
previous heuristics found in the state of the art, GH1 and GH2,
and with an exact procedure, B&C

B&C GH1 GH2 GRASP

n p(%) UB LB Avg. Time (s) Avg. Time (s) Avg. Time (s)

400
25 21.90 13.30 22.40 7.40 22.40 8.90 20.90 6.85
50 19.60 11.10 19.80 20.30 20.00 18.80 18.30 19.53
75 14.40 9.50 14.70 4.70 14.40 6.00 13.90 4.62

500
25 24.80 12.10 25.00 21.60 24.80 28.40 23.40 18.25
50 21.40 8.80 21.40 20.30 21.40 33.20 19.60 19.19
75 12.70 7.60 12.70 32.40 15.00 28.20 12.40 29.82

Average 19.13 10.40 19.30 17.80 19.70 20.60 18.10 16.40

time as the best previous methods for the GRLP, i.e.,
the two heuristics (GH1 and GH2) presented in 10.
For the sake of completeness, we also include the
results of the branch-and-cut method (B&C) to have
an estimation about the quality of the heuristic solu-
tions. Specifically, we include the upper bound (UB)
and lower bound (LB) that establishes the interval in
which the optimal solution is located. This method
has been executed for a maximum computing time
of one hour.
Table 3 reports, for each size n and percentage

of terminal nodes p, the results averaged over 10 in-
stances. For each method (column), we show the
average number of deployed regenerators, Avg., and
the CPU time in seconds, Time (s). The last row
shows the average results over the whole set of 60
instances.
As it can be observed in this table, the proposed

GRASP method clearly outperforms previous meth-
ods in the state of the art (the best results are high-
lighted with bold fonts). It consistently produces
better outcomes for each couple of n and p values. In
particular, the improvement with respect to previous
method ranges from 2.42 % (n = 500 and p = 75)
to 9.18 % (n = 500 and p = 50). Notice that our
method needs, in general, shorter computing times
than GH1 and GH2 to find these results.
We apply the Friedman test to the raw data ob-

tained in the previous experiment. This test ranks
each method for each instance in the data set. That
is, for each instance, the method that performs the
best is assigned the rank 1, followed by the second

best (rank 2), and finally the worst method receives
the rank 3. Then, an average ranking is calculated
for each method. A small p-value associated with
this test indicates that the averages are indeed sig-
nificantly different. In this experiment, we obtain a
p-value lower than 0.008 indicating significant dif-
ferences among the methods. Additionally, the test
provides the ranking, where the best method is our
GRASP with an average ranking of 1.00, followed
by GH1 and GH2 both with the same ranking (2.50).
We conduct a Wilcoxon test for pairwise com-

parisons to complement this experiment. This sta-
tistical test answers the question: do the two sam-
ples (GRASP vs. GH1 and GRASP vs. GH2 in
our case) represent two different populations? The
resulting p-value lower than 0.03 clearly indicates
that the values compared come from different meth-
ods (using a typical significance level of a α = 0.05
as the threshold for rejecting or not the null hypoth-
esis). Therefore, this statistical test establishes that
there are significant differences among compared al-
gorithms, confirming the superiority of GRASP over
the previous methods in the performed experiments.

5. Conclusions

In this paper we have tackled the Generalized Re-
generator Location Problem from a heuristic point
of view. Specifically, we have proposed two con-
structive procedures and a local search method com-
bined into a GRASP metaheuristic. Additionally,
we have introduced two different enhancements for

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1026

J.D. Quintana et al. / GRASP for Generalized RLP

reducing the computing time required by the local
search method, together with a procedure which re-
moves unnecessary regenerators. The best algorithm
proposed have been compared with the best heuris-
tics found in the state of the art. We have used the
same benchmark proposed by previous works, but
discarding those instances in which an exact proce-
dure is able to find the optimal value. Computational
results have shown that our GRASP method outper-
forms the previous algorithm when considering the
same computing time. These results are also sup-
ported by Friedman andWilcoxon test, emerging the
proposed GRASP as the current state of the art for
the GRLP.

Acknowledgment

This research has been partially supported by the
Spanish Ministry of “Economı́a y Competitividad”,
grants ref. TIN2012-35632-C02 and TIN2015-
65460-C2-2-P, and by the local government of
Madrid, grant ref. S2013/ICE-2894.

References

1. B. Mukherjee. WDM optical communication net-
works: progress and challenges. IEEE Journal on Se-
lected Areas in Communications, 18 (10): 1810–1824,
2000.

2. E. Yetginer and E. Karasan. Regenerator Placement
and Traffic Engineering with Restoration in GMPLS
Networks. Photonic Network Communications, 6 (2):
139–149, 2003.

3. L. Gouveia, P. Patricio, A.F. De Sousa, and R. Val-
adas. MPLS over WDM network design with packet
level QoS constraints based on ILP models. In INFO-
COM 2003. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications. IEEE
Societies, volume 1, pages 576–586 vol.1, March
2003.

4. S. Chen and S. Raghavan. The Regenerator Loca-
tion Problem. In Proceedings of the 2007 Inter-
national Network Optimization Conference (INOC
2007), 2007.

5. S. Chen, I. Ljubić, and S. Raghavan. The regenerator
location problem. Networks, 55 (3): 205–220, 2010.

6. A. Duarte, R. Martı́, M.G.C. Resende, and R.M.A.
Silva. Improved heuristics for the regenerator location
problem. International Transactions in Operational
Research, 21 (4): 541–558, 2014.

7. J. Sánchez-Oro and A. Duarte. Beyond Unfeasibil-
ity: Strategic Oscillation for the Maximum Leaf Span-
ning Tree Problem, volume 9422, pages 322–331.
Springer, 2015.

8. S. Chen, I. Ljubić, and S. Raghavan. The generalized
regenerator location problem. In Proceedings of the
2009 International Network Optimization Conference
(INOC 2009), 2009.

9. M. Flammini, A. Machetti, G. Monaco, L.
Moscardelli, and S. Zaks. On the complexity of
the regenerator placement problem in optical net-
works. IEEE/ACM Transactions on Networking, 19
(2): 498–511, 2011.

10. S. Chen, I. Ljubić, and S. Raghavan. The Generalized
Regenerator Location Problem. INFORMS Journal on
Computing, 27 (2): 204–220, 2015.

11. T.A. Feo and M.G.C. Resende. A Greedy Random-
ized Adaptive Search Procedure for Maximum Inde-
pendent Set. Operations Research, 42 (5): 860–878,
1994.

12. T.A Feo and M.G.C. Resende. A Probabilistic Heuris-
tic for a Computationally Difficult Set Covering Prob-
lem. Oper. Res. Lett., 8 (2): 67–71, 1989.

13. M.G.C. Resende and C.C. Ribeiro. Greedy Random-
ized Adaptive Search Procedures: Advances, Hy-
bridizations, and Applications. In M. Gendreau and
J.Y. Potvin, editors, Handbook of Metaheuristics,
volume 146 of International Series in Operations
Research & Management Science, pages 283–319.
Springer US, 2010.

14. M.G.C. Resende and C.C. Ribeiro. GRASP: Greedy
Randomized Adaptive Search Procedures. In E.K.
Burke and G. Kendall, editors, Search Methodologies,
pages 287–312. Springer US, 2014.

15. V. Campos, R. Martı́, J. Sánchez-Oro, and A. Duarte.
GRASP with path relinking for the orienteering prob-
lem. Journal of the Operational Research Society, 65
(12): 1800–1813, 2014.

16. A. Duarte, J. Sánchez-Oro, M.G.C. Resende, F.
Glover, and R. Martı́. Greedy randomized adaptive
search procedure with exterior path relinking for dif-
ferential dispersion minimization. Information Sci-
ences, 296 (1): 46 – 60, 2015.

17. J. Sánchez-Oro, J.J. Pantrigo, and A. Duarte. Com-
bining intensification and diversification strategies in
VNS. An application to the Vertex Separation prob-
lem. Computers & Operations Research, 52, Part B:
209 – 219, 2014.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1027

