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Abstract—We consider subspace codes, called multicomponent codes with zero prefix (MZP
codes), whose subspace code distance is twice their dimension. We find values of parameters
for which the codes are of the maximum cardinality. We construct combined codes where the
last component of the multicomponent code is the code from [1] found by exhaustive search for
particular parameter values. As a result, we obtain a family of subspace codes with maximum
cardinality for a number of parameters. We show that the family of maximum-cardinality codes
can be extended by using dual codes.
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1. INTRODUCTION

We use the following definitions and notation. Denote by W = GF (q)n an n-dimensional space
over the finite field GF (q). Let W (n,m) be the set of m-subspaces of the ambient space W , which
is referred to as a Grassmannian. The number of m-subspaces is

|W (n,m)| =
[
n

m

]
=

(qn − 1)(qn − q) . . . (qn − qm−1)

(qm − 1)(qm − q) . . . (qm − qm−1)
.

Let U, V ∈ W be two subspaces of dimensions m and r, respectively.

The intersection of two subspaces is defined as the subspace X with the maximal dimension
such that X ⊆ U and X ⊆ V . It is denoted by X = U ∩ V . It is clear that 0 ≤ dimX ≤
min{dimU,dimV }. If dimX = 0, then subspaces U and V intersect trivially, i.e., have only the
zero vector in common.

The union of two subspaces is defined as the subspace Y of the minimal dimension such that
U ⊆ Y and V ⊆ Y . It is denoted by Y = U�V . It is clear that dimY = dimU+dimV −dim(U∩V ).

The subspace distance between subspaces U and V is defined as

dsub(U, V ) = dimY − dimX = dim(U � V )− dim(U ∩ V ).

The following relations are valid:

dsub(U, V ) = dimU + dimV − 2 dim(U ∩ V ) = m+ r − 2 dim(U ∩ V ),

dsub(U, V ) = 2dim(U � V )−m− r.

In particular, if the dimension of subspaces is the same, i.e., m = r, then the distance between
subspaces is an even number:

dsub(U, V ) = 2m− 2 dim(U ∩ V ) = 2δ.

Here δ = m− dim(U ∩ V ).

1 Supported in part by the Russian Foundation for Basic Research, project no. 15-07-08480.
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A subspace code is any set of subspaces U ∈ W . If all code subspaces have equal dimensions m,
i.e., belong to the same Grassmannian W (n,m), such a code is said to be of dimension m.

We denote by [n,M, dsub = 2δ,m] a code in the subspace metric such that n is the code length,
M = M(n, dsub = 2δ,m) is the number of code words (subspaces), dsub is the code distance, and
m is the dimension.

A subspace of dimension m can be specified as the space spanned by rows of a full-rank matrix
of size m× n over GF (q). Let a subspace U be generated by an m× n matrix X1, and let V be
generated by an m× n matrix X2. Then

dim(U � V ) = Rk

([
X1

X2

])
= dim(U) + dim(V )− dim(U ∩ V ),

dsub(U, V ) = 2Rk

([
X1

X2

])
− 2m = 2δ.

The maximum possible subspace distance for a code of dimension m is dsub = 2m. In theory
of finite geometries, such codes are defined as sets of pairwise trivially intersecting subspaces of
dimension m, known as spreads or partial spreads.

The goal of the present paper is finding the parameters of MZP codes that have the cardinality
coinciding with the upper bound on the cardinality of subspace codes.

2. BOUNDS ON THE CARDINALITY OF SUBSPACE CODES

The cardinality is one of the the main characteristics of a code: the greater the cardinality, the
greater the transmission rate. Let us give basic presently known results on estimating the bounds
on the cardinality of subspace codes.

2.1. Lower Cardinality Bounds

In the literature, much attention is given to constructing subspace codes of large cardinality.
For example, such are the Silva–Koetter–Kschischang (SKK) subspace network codes [2,3], as well
as Gabidulin–Bossert multicomponent subspace network codes with zero prefix (MZP codes) [4–6].

Matrices of an SKK-code have the so-called lifting structure, consisting of the concatenation
of the identity matrix Im of order m and a matrix of a rank code M of size m × (n − m) with
entries Mij, i = 1, . . . ,m, j = 1, . . . , n−m, having rank distance dr = δ:

X =
[
Im M

]
=

⎡
⎢⎢⎢⎢⎣
1 0 . . . 0 M11 M12 . . . M1(n−m)

0 1 . . . 0 M21 M22 . . . M2(n−m)
...

...
. . .

...
...

... . . .
...

0 0 . . . 1 Mm1 Mm2 . . . Mm(n−m)

⎤
⎥⎥⎥⎥⎦ .

The code subspaces are subspaces U spanned by rows of the matrices X. Let a code subspace U1

be generated by a matrix X1 =
[
Im M ′

]
, and a code subspace U2, by a matrix X2 =

[
Im M ′′

]
.

Then

dsub(U1, U2) = 2Rk

([
Im M ′

Im M ′′

])
− 2m = 2Rk(M ′′ −M ′) ≥ 2δ. (1)

For m ≤ n−m, the maximum cardinality of a matrix code consisting of m× (n−m) matrices
and having rank distance δ is (see [7])

Mr = q(n−m)(m−δ+1).
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Hence it follows that the cardinality of an SKK code with subspace distance dsub = 2δ is

Mskk(2δ) = M(n, dsub = 2δ,m) = Mr = q(n−m)(m−δ+1).

An SKK code with maximum possible code distance dsub = 2m has cardinality

Mskk(2m) = q(n−m).

A class of multicomponent codes with zero prefix (MZP codes) was proposed in 2008 in [4]. Let
the length of code matrices of a code of dimension m be n = rm+ s, where r ≥ 1, 0 ≤ s ≤ m− 1.
The code consists of r components:

1st component: [Im M1],
2nd component: [0m Im M2],
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(r − 1)st component: [0m 0m 0m . . . Im M r−1],
rth component: [0m 0m 0m 0m . . . Im M r].

The subspaces generated by different components trivially intersect by the constructions; therefore,
pairwise subspace distances between them are maximal and are equal to 2m.

Let us choose matrices M i inside each fixed component so that the rank distance between the
different matrices M ′

i and M ′′
i is equal to m.

Let the first component be an SKK code with subspace distance dsub = 2m. To this end, the
matricesM1 of sizem×(n−m) = m×((r−1)m+s) are chosen from a matrix code with rank distance
dr = m. The cardinality of this code (the number of different matrices) is qn−m = q(r−1)m+s.

The second component is the concatenation of three matrices: the zero matrix prefix 0m of
order m, the identity matrix Im of orderm, and a matrixM 2 of size m×(n−2m) = m×(r−2)m+s
of a rank code M2 with rank distance dr = m. The cardinality of this code (and of the whole
component) is |M2| = qn−2m = q(r−2)m+s.

The (r − 1)st component is the concatenation of the following matrices: r − 2 zero matrix
prefixes 0m of order m, the identity matrix Im of order m, and a matrix M r−1 of size m ×
(n− (r − 1)m) = m× rm+ s of a rank code Mr−1 with rank distance dr = m. The cardinality of
this code (and of the whole component) is |Mr−1| = qn−(r−1)m = qm+s.

The last, rth, component is the concatenation of the following matrices: r − 1 zero matrix
prefixes 0m of order m, the identity matrix Im of order m, and a matrix M r of size m×(n−rm) =
m×s of a rank code. This matrix cannot be of the rank m, since s ≤ m−1. Hence, one can choose
only one (arbitrary) matrix M r. The cardinality of the last component is 1.

The cardinality of the MZP code of length n = rm+ s with subspace distance dsub = 2m is

MMZP =
r−1∑
i=1

q(r−i)m+s + 1 =
qn − qs

qm − 1
− (qs − 1). (2)

2.2. Upper Cardinality Bounds

For a code [n,M, dsub = 2δ,m] of dimension m with subspace distance 2δ, an upper cardinality
bound is obtained in 2003 [8]. It is of the form

M ≤ MWang =

⌊ |W (n,m− δ + 1)|
|W (m,m− δ + 1)|

⌋
=

⎢⎢⎢⎢⎣
[ n

m− δ + 1

]
[ m

m− δ + 1

]
⎥⎥⎥⎥⎦ . (3)
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For spreads, i.e., codes of dimension m with maximum possible subspace distance dsub = 2m,
bounds were obtained in many papers, including those published long before 2003 (see, e.g.,
[9–12], etc.).

Represent the code length in the form

n = rm+ s, r ≥ 2, 0 ≤ s ≤ m− 1.

Then the upper bound (3) can be rewritten as

M = M(n, dsub = 2m,m) ≤ MWang(n, dsub = 2m,m) =
qn − qs

qm − 1
. (4)

If s = 0, i.e., n = rm, then the upper bound MWang(n, dsub = 2m,m) =
qn − 1

qm − 1
coincides with

the lower existence bound (2) for an MZP code:

MMZP =
r−1∑
i=1

q(r−i)m + 1 =
qn − 1

qm − 1
.

An algorithm for constructing subspace codes with parameters n = rm was proposed in [4,13], and
also in other terms, in [9–12].

For lengths n = rm+ s, 1 ≤ s ≤ m− 1, the bound MWang(n, dsub = 2m,m) in (4) is not tight.

For s = 1, an upper bound was obtained in [10] in the form

M = M(n, dsub = 2m,m) ≤ qn − q

qm − 1
− (q − 1). (5)

In this case, the cardinality (2) of an MZP code coincides with this bound.

For s ≥ 2, results of [11] allow to modify the bound (4) as follows:

M = M(n, dsub = 2m,m) ≤ qn − qs

qm − 1
− �θ	 − 1, (6)

where
2θ =

√
1 + 4qm(qm − qs)− (2qm − 2qs + 1). (7)

Let us represent the parameter θ explicitly. To this end, we rewrite
√
1 + 4qm(qm − qs) as

√
1 + 4qm(qm − qs) = 2qm

√
1− qs

qm
+

1

4q2m
= 2qm

√
1− x, (8)

where x =
qs

qm
− 1

4q2m
. The Tailor series expansion gives

√
1− x = 1− 1

2
x−

∑
k≥2

(2k − 3)!!

2k · k! xk

= 1− 1

2

(
qs

qm
− 1

4q2m

)
−

∑
k≥2

(2k − 3)!!

2k · k!

(
qs

qm
− 1

4q2m

)k

. (9)

Using (9) in (8) and (7) gives

θ =
qs − 1

2
+

1

4qm
−

∑
k≥2

(2k − 3)!!

2k · k!

(
qm/k+s

qm
− qm/k

4q2m

)k

. (10)

PROBLEMS OF INFORMATION TRANSMISSION Vol. 52 No. 3 2016



280 GABIDULIN, PILIPCHUK

Next, consider the case q = 2. Then the first several terms of θ can be written as

θ = 2s−1 − 1

2
− 22s−m−3 − ε, (11)

where ε is a small quantity.

Let 2s < m + 2. Then from the integer 2s−1 there is subtracted a number of absolute value
less than 1. Hence, in this case �θ	 = 2s−1 − 1. A similar analysis for the cases 2s = m + 2 and
2s > m+ 2 shows that

�θ	 =

⎧⎪⎪⎨
⎪⎪⎩
2s−1 − 1 if 2s < m+ 2,

2s−1 − 2 if 2s = m+ 2,

2s−1 − 22s−m−3 − 1 if 2s > m+ 2.

(12)

For instance, the upper bound (6) for s = 2 is of the form

M = M(n, dsub = 2m,m) ≤ 2n − 22

2m − 1
− 2, (13)

whereas the lower bound (2) is

M = M(n, dsub = 2m,m) ≥ 2n − 22

2m − 1
− 3. (14)

For the case s = 1, the upper and lower bounds coincide. The question for s ≥ 2 remains open.
For one particular case, it is solved in [1]. Let n = 8, m = 3, and dsub = 6, so that s = 2. In this

case the existence bound (14) gives M =
2n − 22

2m − 1
− 3 = 33. On the other hand, computer search

allowed the authors of [1] to find a code of cardinality 34, which coincides with the upper bound

M =
2n − 22

2m − 1
− 2 = 34. We call this code a ZJSSS code (using the first letters of the authors’

names); let us consider its properties in more detail.

3. ZJSSS CODE

Code subspaces of dimension m = 3 of the ZJSSS code are given by binary generator matrices
of size 3× 8. For brevity, each 8-bit row is written as a binary representation of a decimal number.
For example, the number 169 corresponds to the row [1 0 1 0 1 0 0 1]. The code matrices are as
follows:

A1 = (169, 75, 5), A2 = (195, 43, 6), A3 = (108, 29, 3), A4 = (130, 72, 20),

A5 = (144, 68, 33), A6 = (65, 61, 2), A7 = (66, 19, 4), A8 = (140, 87, 1),

A9 = (35, 16, 9), A10 = (147, 99, 7), A11 = (155, 76, 38), A12 = (69, 40, 24),

A13 = (132, 103, 12), A14 = (152, 88, 56), A15 = (153, 94, 39), A16 = (196, 34, 11),

A17 = (167, 97, 15), A18 = (159, 84, 32), A19 = (154, 71, 55), A20 = (145, 80, 50),

A21 = (131, 54, 13), A22 = (134, 74, 53), A23 = (166, 18, 8), A24 = (164, 64, 31),

A25 = (138, 90, 60), A26 = (135, 73, 27), A27 = (146, 77, 37), A28 = (171, 105, 17),

A29 = (158, 79, 52), A30 = (128, 89, 47), A31 = (129, 22, 10), A32 = (143, 83, 46),

A33 = (205, 36, 21), A34 = (137, 91, 44).

The ZJSSS code has the maximum cardinality for length n = 8 and subspace distance dsub = 6.
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MULTICOMPONENT CODES WITH MAXIMUM CODE DISTANCE 281

The construction algorithm for MZP codes allows to include the ZJSSS code as the last compo-
nent to increase the cardinality. Let us take the ZJSSS code as one component:

Last component: [X].

This component consists of 3×8 matrices X of the ZJSSS code such that dsub(X
′−X ′′) = 2m = 6.

The cardinality of this component is 34, which is the maximum possible for this length and this
code distance.

We extend this component by a zero matrix prefix 03 of order 3, and add the 1st component of
length 11 of the MZP code:

1st extra component: [Im X1],
Last component: [03 X].

The 1st component consists of the identity submatrix Im of order m and a matrix X1 of size
3 × 8 of a rank code: different matrices have rank distance dr = m = 3. The component has
subspace distance dsub = 2m = 6 and cardinality 28. As a result, both components form a code
of length 11 = 3 · 3 + 2, subspace distance dsub = 2m = 6, and maximum possible cardinality
211 − 22

23 − 1
− 2 = 290, which corresponds to the upper cardinality bound.

If a combined code of length 3(r − 1) + 2 is constructed, then the code of length n = 3r + 2
can be constructed from it by extending all the used components with the zero matrix prefix 03 of
order 3 and adding a new MZP-code component of length n = 3r + 2 and cardinality 23(r−1)+2.

4. MZP CODES OF THE MAXIMUM CARDINALITY

4.1. MZP Codes of Dimension m = 2

Let the code length be n = 2r + s, where r ≥ 2, s = 0, 1. The dimension of code subspaces is
m = 2 for all n. The cardinality of such codes

Mn,opt =
qn − qs

q2 − 1
− s

coincides with the upper bound.

4.2. MZP Codes of Dimension m = 3

Let the code length be n = 3r + s, where r ≥ 1, s = 0, 1. The dimension of code subspaces is
m = 3 for all n congruent with 0 or 1 modulo m = 3. The cardinality of the MZP-code

Mn,opt =
qn − qs

q3 − 1
− s

coincides with the upper bound.

For binary codes (q = 2) with the length n = 3r + 2, where r ≥ 2, the maximum cardinality is

Mn,max =
2n − 22

23 − 1
− 2.

These codes can be constructed based on the ZJSSS code by including it in MZP codes. In
particular, the cardinality of this code M8,opt = 34 is greater by 1 than the cardinality of the MZP
code.

Let us present an open problem. A conjecture: a combined code of the maximum cardinality
can be constructed for other dimensions if a code of the maximum cardinality has already been
constructed for small lengths. Assume that for n = 10 and m = 4 = δ a code of the maximum
cardinality M = 66 is constructed; then, using it as the last component, we can construct by the
above method a family of codes of the maximum cardinality for a number of parameters.
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4.3. Dual Codes of the Maximum Cardinality

Let us be given an [n,M, dsub = 2δ,m] subspace code of dimension m. Let us construct a dual
code [n,M, dsub = 2δ, n −m] of dimension n −m. For a subspace X ∈ W (n,m) of dimension m,
there exists an orthogonal complement subspace X⊥ ∈ W (n, n−m) of dimension n−m.

If one of these codes has the maximum cardinality, then the other has the same cardinality [13].

Let a subspace X of dimension m be generated by an m × n matrix L of rank m. Then the
orthogonal subspace X⊥ of dimension n−m is given by a matrix L⊥ of size (n−m)×n such that

(L⊥)(L�) = 0,

where L� means the transposed matrix.

Let us construct the dual MZP code. For j = 1, . . . , r, components of the MZP code of dimension
m and length n = rm+ s are given by matrices of rank m of the form

Lj =
[
0m . . . 0m Im M j

]
,

which consist of the zero matrix prefix of size m× (j− 1)m, the identity submatrix Im of order m,
and a submatrix M j of size m× n− jm. The orthogonal matrix L⊥

j of rank n−m is of the form

L⊥
j =

⎡
⎣I(j−1)m 0m(j−1)m 0n−jm

(j−1)m

0
(j−1)m
n−jm −M�

j In−jm

⎤
⎦ .

Here, 0ba means the zero matrix of size a× b.

The dimension of the dual MZP code L⊥
j is n −m, and its subspace distance dsub = 2m. For

lengths n = rm+ s, s = 0, 1, these codes have the maximum cardinality. The codes for n = 3r+ 2
with subspace distance dsub = 6 also have the maximum cardinality.

5. CONCLUSION

Let us summarize the obtained results. An MZP code has the maximum cardinality, which
coincides with the upper bound, in the case where the subspace code distance dsub is equal to twice
the dimension m and the code length is n = rm+ s, where s = 0, 1 and r is a positive integer.

If the subspace code distance dsub is equal to twice the dimension m = 2 for any length n, then
the MZP code also has the maximum cardinality. The dual code has the same length n, the same
code distance dsub, and a new value of the dimension n−m; it also has the maximum cardinality.
In this case the subspace code distance is not necessarily equal to twice the dimension.

The combination of an MZP code and the ZJSSS code (from [1]) yields a new combined MZP-
ZJSSS of the maximum cardinality for dimension m = 3, code distance dsub = 2m, and lengths of
the form n = rm+ s, where s = 0, 1, 2 and r is a positive integer.

The dual code (relative to the MZP-ZJSSS code), which is of dimension n − m, also has the
maximum cardinality.
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