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Abstract—We study subspace codes with nonmaximum code distance. As opposed to spreads,
i.e., codes with the maximum subspace distance, we refer to them as nonspreads here. We con-
sider families of nonspreads based on using the Silva–Kötter–Kschischang (SKK) subspace code
construction and Gabidulin–Bossert multicomponent codes with zero prefix (MZP). We give es-
timates for cardinalities of nonspreads for a large number of parameters. We show that for large
dimensions, the cardinalities almost attain the upper bound given by the Johnson inequality.
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1. INTRODUCTION

Interest to subspace codes has raised owing to development of ideas of random network coding [1]
and distributed storage systems [2], where they have found applications.

A subspace code is a set of subspaces of a given space. Consider a finite n-dimensional space
W = GF (q)n over a finite field GF (q). Let W (n,m) be the set of all m-dimensional subspaces
of W , referred to as them-Grassmanninan. The size of the Grassmanninan is given by the Gaussian
coefficients:

|W (n,m)| =
[
n

m

]
=

(qn − 1)(qn − q) . . . (qn − qm−1)

(qm − 1)(qm − q) . . . (qm − qm−1)
.

The subspace distance between two subspaces U, V ∈ W can be defined as

dsub(U, V ) = dim(U � V )− dim(U ∩ V )

= dim(U) + dim(V )− 2 dim(U ∩ V ),

where U �V denotes the smallest subspace containing both subspaces U and V . If U and V are of
the same dimension m, the subspace distance equals

dsub(U, V ) = 2(m− dim(U ∩ V )) = 2δ,

where δ = m− dim(U ∩ V ). This distance is also known as the Grassmannian metric.

If a code consists of elements of the m-Grassmanninan W (n,m) with number of subspaces M ,
minimum distance dsub, and dimensionm, then it is called a constant-dimension code and is denoted
by (M,n, dsub,m). A code with maximum distance dsub = 2m is called a spread. We will refer to
subspace codes with distances other than the maximum as nonspreads.
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Choose some spread with parameters (n, dsub,m). A code with parameters (n + 1, dsub,m + 1)
is a nonspread. Cardinalities of these codes are related via the Johnson inequality [3]

M(n+ 1, dsub,m+ 1) ≤ qn+1 − 1

qm+1 − 1
M(n, dsub,m). (1)

The ratio KJ =
qn+1 − 1

qm+1 − 1
will below be referred to as the Johnson coefficient. This coeffi-

cient shows that when passing from a spread to a nonspread, the code cardinality for the chosen
parameters can at the most increase by a factor of KJ .

Consider a spread with length n = mt + s, where t and s are integers with 0 ≤ s ≤ m − 1. If
s = 0, the spread is said to be complete, and if s > 0, it is said to be partial. It is known that there
exist optimal complete spreads and for some parameters, optimal partial spreads. Thus, in [4] MZP
spreads were considered, i.e., spreads constructed by the principle of multicomponent codes with
zero prefix (MZP codes), which were proposed in [5]. It was shown that complete MZP spreads
and partial MZP spreads attain the upper bound on the cardinality.

The cardinality of a complete MZP spread is [4]

MMZP spread =
qn − 1

qm − 1
. (2)

Using relations (1) and (2), one can obtain an upper bound on the cardinality of a nonspread

Mmax = KJ
qn − 1

qm − 1
=

qn+1 − 1

qm+1 − 1

qn − 1

qm − 1
. (3)

2. NONSPREADS FROM SKK SPREADS

In [6, 7], Silva, Kötter, and Kschischang gave a detailed description of the lifting construction
of their subspace SKK code designed for transmission through a network using random linear
transformations [1]. This code consists of a set of matrices of the form

MSKK =
{(

Im Mm×(n−m)

)}
,

where Im is the identity matrix of order m and Mm×(n−m) is a code matrix of size m× (n −m)
from a matrix rank code Mrank with rank distance drank = δ (see [8]). The subspace distance
of MSKK is twice the rank distance of the matrix code.

The cardinality of an SKK code equals the number of codewords of the rank code with rank
distance drank = δ and codeword length n−m:

MSKK = |MSKK| = |Mrank| = q(n−m)k,

where k = m − δ + 1, δ ≤ m. For an SKK spread with parameters (n, dsub = 2m, m), where
δ = m, n = tm, t ∈ N, we construct a nonspread by increasing the dimension and length by 1, i.e.,
a nonspread with parameters (n+1, dsub = 2m,m+1). For these parameters, k = (m+1)−m+1 = 2.
Let us see what is the cardinality of an SKK nonspread as a fraction of the maximum cardinality (3):

KSKK =
q2(n−m)

Mmax
= q2(n−m) q

m+1 − 1

qn+1 − 1

qm − 1

qn − 1
.

It grows rather fast with m. For q = 2, its values for various m and t are presented in Table 1.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 57 No. 3 2021



BOUNDS ON THE CARDINALITY OF SUBSPACE CODES 243

Table 1. Cardinality of an SKK nonspread as a fraction of the maximum for q = 2.

m t

2 3 4 5 6 7 8 9 10

2 0.7225806 0.6719160 0.6601128 0.6572124 0.6564904 0.6563101 0.6562650 0.6562538 0.6562509
3 0.8398950 0.8227212 0.8206130 0.8203501 0.8203172 0.8203131 0.8203126 0.8203125 0.8203125
4 0.9135490 0.9085358 0.9082239 0.9082044 0.9082032 0.9082031 0.9082031 0.9082031 0.9082031
5 0.9550118 0.9536569 0.9536146 0.9536133 0.9536133 0.9536133 0.9536133 0.9536133 0.9536133
6 0.9770423 0.9766902 0.9766847 0.9766846 0.9766846 0.9766846 0.9766846 0.9766846 0.9766846
7 0.9884023 0.9883125 0.9883118 0.9883118 0.9883118 0.9883118 0.9883118 0.9883118 0.9883118
8 0.9941710 0.9941483 0.9941483 0.9941483 0.9941483 0.9941483 0.9941483 0.9941483 0.9941483
9 0.9970779 0.9970722 0.9970722 0.9970722 0.9970722 0.9970722 0.9970722 0.9970722 0.9970722
10 0.9985371 0.9985356 0.9985356 0.9985356 0.9985356 0.9985356 0.9985356 0.9985356 0.9985356
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
30 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999

3. NONSPREADS FROM MZP SPREADS

Consider an MZP spread [4], i.e., an (n, dsub = 2m, m) subspace code, where n = tm, t ∈ N,
and construct a code of dimension m+ 1 with length of code matrices n+ 1 = tm+ 1, t ∈ N, and
subspace distance dsub = 2m. The first component of this code is an SKK code, and each next
component is a shift of the preceding component by a zero prefix. Thus, we have

1st component
(
Im+1 M1

(m+1)×(n−m)

)
,

2nd component
(
0(m+1)×m Im+1 M2

(m+1)×(n−2m)

)
,

(t− 2)nd component
(
0(m+1)×m 0(m+1)×m . . . 0(m+1)×m︸ ︷︷ ︸

t−3

Im+1 M t−2
(m+1)×2m

)
,

(t− 1)st component
(
0(m+1)×m 0(m+1)×m . . . 0(m+1)×m︸ ︷︷ ︸

t−2

Im+1 M t−1
(m+1)×m

)
,

tth component
(
0(m+1)×m 0(m+1)×m . . . 0(m+1)×m︸ ︷︷ ︸

t−1

Im+1

)
;

here, M is the matrix of a rank code where the superscript indicates the number of the component
and the subscript is the matrix size. For these parameters, k = (m+ 1)−m+ 1 = 2.

The cardinality of this MZP nonspread is the sum of cardinalities of the components:

MMZP = qk(n−m) +
t−2∑
i=1

qkmi + 1 =
qkn − 1

qkm − 1
. (4)

As in the case of an SKK code, let us see what is the cardinality of an MZP nonspread as a

fraction of the maximum cardinality, KMZP =
MMZP

Mmax
. For q = 2, its values for various m and t are

presented in Table 2.

Consider the ratio

KMZP

KSKK
=

qkn − 1

qkm − 1

1

qk(n−m)
=

qkn − 1

qkn − qk(n−m)
.

The ratio
KMZP

KSKK
is always greater than one, so MZP nonspreads faster approach the maximum

cardinality with growing dimension m.
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Table 2. Cardinality of an SKK nonspread as a fraction of the maximum for q = 2.

m t

2 3 4 5 6 7 8 9 10

2 0.7677419 0.7165354 0.7041096 0.7010259 0.7002564 0.7000641 0.7000160 0.7000040 0.7000010
3 0.8530184 0.8357771 0.8336385 0.8333715 0.8333381 0.8333339 0.8333334 0.8333333 0.8333333
4 0.9171175 0.9120986 0.9117856 0.9117660 0.9117648 0.9117647 0.9117647 0.9117647 0.9117647
5 0.9559444 0.9545892 0.9545468 0.9545455 0.9545455 0.9545455 0.9545455 0.9545455 0.9545455
6 0.9772809 0.9769287 0.9769232 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231
7 0.9884626 0.9883728 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721
8 0.9941862 0.9941635 0.9941634 0.9941634 0.9941634 0.9941634 0.9941634 0.9941634 0.9941634
9 0.9970817 0.9970760 0.9970760 0.9970760 0.9970760 0.9970760 0.9970760 0.9970760 0.9970760
10 0.9985380 0.9985366 0.9985366 0.9985366 0.9985366 0.9985366 0.9985366 0.9985366 0.9985366
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
30 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999

4. NONSPREADS FROM PARTIAL MZP SPREADS

Consider a partial MZP spread (n, dsub = 2m, m) [4], where n = tm+ s, t ∈ N, 1 ≤ s < m, and
construct a nonspread from it by increasing the length and dimension by one:

1st component
(
Im+1 M1

(m+1)×(n−m)

)
,

2nd component
(
0(m+1)×m Im+1 M2

(m+1)×(n−2m)

)
,

(t− 2)nd component
(
0(m+1)×m 0(m+1)×m . . . 0(m+1)×m︸ ︷︷ ︸

t−3

Im+1 M t−2
(m+1)×(2m+s)

)
,

(t− 1)st component
(
0(m+1)×m 0(m+1)×m . . . 0(m+1)×m︸ ︷︷ ︸

t−2

Im+1 M t−1
(m+1)×(m+s)

)
,

tth component
(
0(m+1)×m 0(m+1)×m . . . 0(m+1)×m︸ ︷︷ ︸

t−1

Im+1 M t
(m+1)×s

)
.

Compute the cardinality of a partial MZP nonspread:

Mpartial MZP =
qkn − qk(m+s)

qkm − 1
+ 1. (5)

As in the cases above, find the cardinality of a partial MZP nonspread as a fraction of the maximum.
In Table 3 we give examples of some computed values.

5. KNOWN WORKS ON NONSPREADS

We present examples of nonspreads with the best values of the cardinality against previously
known subspace codes with the same parameters. In [9], using Steiner systems, a subspace code
with parameters (n = 13, dsub = 4, m = 3) and cardinality M = 1597 245 was constructed. The
obtained value of the cardinality coincides with the Johnson upper bound (3).

In [10, 11], subspace codes for parameters n = 6, m = 3, and dsub = 4 with cardinality 77 and
for parameters n = 7, m = 3, and dsub = 4 with cardinality 329 were constructed.

For a code with parameters (n = 6, dsub = 4, m = 3) and cardinality M = 77 in [10], computer
search was used first. Then the obtained codes were analyzed, and in a new construction, rank
codes with parameters (n = 3, drank = 3, m = 2) and cardinality M = 64 were used. Then an SKK
code with parameters (n = 6, dsub = 4, m = 3) was constructed. Additional treatment resulted in
constructing a code with cardinality M = 77. Since that, the cardinality value of 77 is considered
to be the best for a code with parameters (n = 6, dsub = 4, m = 3), whereas the Johnson inequality
yields an upper bound on the cardinality M(6, 4, 3) = 81.
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Table 3. Cardinality of a partial MZP nonspread as a fraction of the maximum for q = 2.

m t s

2 3 4 5 6 7 8 9 10

2 0.8024691 0.7291248 0.7074621 0.7018763 0.7004697 0.7001175 0.7000294 0.7000073 0.7000018 1

3
0.8892734 0.8409784 0.8342984 0.8334541 0.8333484 0.8333352 0.8333336 0.8333334 0.8333333 1
0.9117595 0.8436442 0.8346293 0.8334954 0.8333536 0.8333359 0.8333336 0.8333334 0.8333333 2

4
0.9412305 0.9137060 0.9118864 0.9117723 0.9117652 0.9117647 0.9117647 0.9117647 0.9117647 1
0.9545451 0.9145145 0.9119369 0.9117755 0.9117654 0.9117647 0.9117647 0.9117647 0.9117647 2
0.9615337 0.9149200 0.9119621 0.9117770 0.9117655 0.9117648 0.9117647 0.9117647 0.9117647 3

5

0.9697041 0.9550330 0.9545607 0.9545459 0.9545455 0.9545455 0.9545455 0.9545455 0.9545455 1
0.9769231 0.9552552 0.9545676 0.9545461 0.9545455 0.9545455 0.9545455 0.9545455 0.9545455 2
0.9806196 0.9553664 0.9545711 0.9545463 0.9545455 0.9545455 0.9545455 0.9545455 0.9545455 3
0.9824899 0.9554220 0.9545728 0.9545463 0.9545455 0.9545455 0.9545455 0.9545455 0.9545455 4

6

0.9846163 0.9770451 0.9769250 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231 1
0.9883721 0.9771033 0.9769259 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231 2
0.9902723 0.9771325 0.9769263 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231 3
0.9912280 0.9771470 0.9769266 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231 4
0.9917073 0.9771543 0.9769267 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231 0.9769231 5

7

0.9922482 0.9884026 0.9883723 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 1
0.9941634 0.9884175 0.9883724 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 2
0.9951267 0.9884250 0.9883725 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 3
0.9956097 0.9884287 0.9883725 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 4
0.9958516 0.9884306 0.9883725 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 5
0.9959727 0.9884315 0.9883726 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 0.9883721 6

20

0.9999990 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 1
0.9999993 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 2
0.9999994 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 3
0.9999995 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 4

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0.9999995 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 0.9999986 19

Another code with parameters (n = 7, dsub = 4, m = 3) and cardinality M = 329 was con-
structed by somewhat the same method in [11]. To obtain an SKK code, a rank code was prelimi-
narily constructed and an identity matrix was prepended. Also, ideas of finite geometry were used.
An upper bound on the cardinality by the Johnson inequality is 381 for this code.

In [12], an upper bound of 272 on the cardinality was presented for a code with parameters
(n = 8, dsub = 6, m = 4). The Johnson bound gives the value of 289 for this code.

Thus, except for the first paper [9], other works do not give values close to the Johnson maximum
cardinality. However, to the best of our knowledge, this work was not continued to construct codes
with other parameters.

Also, several works [13, 14] in the same direction are known. They use SKK codes in parallel
constructions and reach a considerable increase in the number of codewords for certain parameters.
Let us compare the cardinalities for the parameters considered in [13,14].

In [13], a lower bound on the cardinality of a code with parameters (16, 8, 8) was obtained:
A(16, 8, 8) = 1 099 562 828 461. A code with parameters (16, 8, 8) can be constructed as a nonspread
of a complete spread. Indeed,

d = 2δ = 8 =⇒ δ = 4 = m,

k = m+ 1− δ + 1 = 8− 4 + 1 = 5,

n = 3× 4 =⇒ t = 3,

and by equation (4) with q = 2 we obtain M(16, 8, 8) =
260 − 1

220 − 1
. Then

M(16, 8, 8)

A(16, 8, 8)
= 0.999954.
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Similarly we can find

M(19, 4, 6)

A(19, 4, 6)
= 0.8828625,

M(18, 8, 9)

A(18, 8, 9)
= 0.999955,

M(18, 6, 9)

A(18, 6, 9)
= 0.9948,

M(18, 4, 5)

A(18, 4, 5)
= 0.89316,

M(14, 4, 7)

A(14, 4, 7)
= 0.884,

M(12, 6, 6)

A(12, 6, 6)
= 0.995.

Constructions proposed in [13, 14] are rather complicated and use nonlinear conditions, which
are an obstacle for constructing codes for any values of the parameters. As is seen from the
above-given relations, with the use of simple constructions proposed in the present paper one can
construct codes containing more than 88% possible codewords, and for some parameter values,
even more than 99%. Moreover, these constructions allow to obtain codes for any parameters, and
the obtained codes can be efficiently decoded [15].

6. CONCLUSION

We have considered families of subspace codes of large cardinality with a nonmaximum code
distance. The construction algorithm is based on the Johnson inequality: fix a spread code with
subspace distance equal to twice the dimension and, keeping the distance unchanged, increase the
dimension and length by one. For an initial spread, we have considered three variants: an SKK
spread, MZP spread, and a partial MZP spread. We have shown that for large dimensions all the
three codes almost attain the maximum cardinality bound according to the Johnson inequality.
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