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Abstract 

In this paper, we propose a supervised single-channel speech enhancement method that combines Kullback-Leibler 
(KL) divergence-based non-negative matrix factorization (NMF) and a hidden Markov model (NMF-HMM). With the 
integration of the HMM, the temporal dynamics information of speech signals can be taken into account. This method 
includes a training stage and an enhancement stage. In the training stage, the sum of the Poisson distribution, lead-
ing to the KL divergence measure, is used as the observation model for each state of the HMM. This ensures that a 
computationally efficient multiplicative update can be used for the parameter update of this model. In the online 
enhancement stage, a novel minimum mean square error estimator is proposed for the NMF-HMM. This estimator 
can be implemented using parallel computing, reducing the time complexity. Moreover, compared to the traditional 
NMF-based speech enhancement methods, the experimental results show that our proposed algorithm improved 
the short-time objective intelligibility and perceptual evaluation of speech quality by 5% and 0.18, respectively.
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1  Introduction
Single-channel speech enhancement technology is being 
widely used in our daily lives, such as in speech coding, 
teleconferencing, hearing aids, mobile communication, 
and automated robust speech recognition (ASR) [1, 2]. In 
general, the purpose of speech enhancement is to remove 
background noise from an audio source while preserving 
clean speech. It aims to improve the quality and intel-
ligibility of noisy speech [3]. Currently, single-channel 
speech enhancement is an active topic of research.

During the past decades, many different monaural speech 
enhancement approaches have been proposed [2, 4]. In an 
environment with additive noise, the simplest approach to 

speech enhancement is the spectral subtraction algorithm 
[5], which subtracts the estimated noise spectrum from the 
observed signal to acquire the desired clean speech. Other 
unsupervised methods, such as the signal subspace algo-
rithm [6–9], Wiener filtering [10], minimum mean square 
error (MMSE) spectral amplitude estimator [11], and log-
MMSE spectral amplitude estimator [12], are effective 
strategies for speech enhancement when the noise is sta-
tionary. These methods have low computational complex-
ity and have been widely applied in various areas. However, 
these approaches cannot always achieve satisfactory per-
formance for non-stationary noise and usually introduce 
musical noise because they do not make the best use of the 
prior information of the speech and noise [13]. Moreover, 
most unsupervised methods are based on the statistical 
properties of the speech and noise signals. However, it is 
difficult to meet these properties in actual noisy scenarios 
[14].
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Therefore, supervised speech enhancement approaches 
have been developed. For instance, Kavalekalam et  al. 
[15] proposed a codebook-based Kalman filter speech 
enhancement method, which performs a listening test 
and shows significant improvement for speech intel-
ligibility. In addition, Srinivasan et  al. [16] proposed a 
codebook-driven speech enhancement algorithm for 
non-stationary noise. In this work, the auto-regressive 
(AR) spectrum shape codebooks of speech and noise 
were pre-trained. In the enhancement stage, the code-
books could be used to build a Wiener filter to conduct 
speech enhancement. Inspired by this research, many 
other codebook-based speech enhancement approaches 
have been developed [17, 18]. Furthermore, an auto-
regressive hidden Markov model (ARHMM) [19, 20] has 
also been shown to be an effective supervised speech 
enhancement method because it considers the temporal 
information of the speech signal.

In recent years, advances in deep learning techniques 
[21, 22], specifically, deep neural networks (DNNs), 
have significantly promoted the development of speech 
enhancement [23]. These methods usually rely on fewer 
assumptions [3, 14, 23] between the noise and clean 
speech, so they have huge potential to achieve bet-
ter speech enhancement performance. Xu et  al. [3, 14] 
applied a feedforward multilayer perceptron (MLP) to 
map log-power spectrum (LPS) features of clean speech 
given noisy LPS input; the enhanced speech could be 
obtained directly by waveform reconstruction. Compared 
to the MMSE estimator [12], this method achieved better 
performance in various noisy environments. Wang et al. 
[24, 25] also utilized an MLP to estimate the ideal ratio 
mask (IRM) and ideal binary mask (IBM) in conducting 
speech enhancement and also achieved satisfactory per-
formance. Motivated by this work, researchers has used 
different DNN structures to conduct speech enhance-
ment, such as a fully convolutional neural network (FCN) 
[26], deep recurrent neural networks (DRNN) [27, 28], 
and generative adversarial networks (GANs) [29, 30]. 
These methods could help ASR systems achieve higher 
recognition accuracy in noisy environments. However, 
generalization is always a problem that needs to be con-
sidered for these DNN-based algorithms [31, 32].

A non-negative matrix factorization (NMF)-based 
speech enhancement algorithm [33–35] can also be 
viewed as a kind of supervised speech enhancement 
method. NMF-based methods usually include a train-
ing and enhancement stage. In [36], a mask-based NMF 
speech enhancement method was proposed. In the train-
ing stage, the basis matrix of clean speech and noise was 
trained. In the enhancement stage, the activation matrix 
could be acquired by combining the trained basis matrix 
and noisy signal. The mask was then estimated to conduct 

the speech enhancement. Additionally, an NMF-based 
denoising scheme was described in [37, 38], which added 
a heuristic term to the cost function, so the NMF coef-
ficients could be adjusted according to the long-term lev-
els of the signals. A parametric NMF method for speech 
enhancement was proposed in [17]. This method applied 
the AR coefficient and codebook to build the basis 
matrix. This strategy effectively improved the speech 
intelligibility. Moreover, some DNN-based NMF meth-
ods represent an effective strategy for conducting speech 
enhancement [39, 40]. In general, the basis matrix could 
be acquired using the traditional NMF method, and the 
activation matrix could be estimated by applying a DNN, 
which improved the accuracy of the estimated activa-
tion matrix. Thus, it could achieve a higher perceptual 
evaluation of speech quality (PESQ) [41] and short-time 
objective intelligibility (STOI) [42] scores than traditional 
NMF-based speech enhancement methods. The combi-
nation of DNN and NMF could also help the ASR system 
achieve a lower word error rate (WER) in noisy environ-
ments. In [43], a DNN-NMF-based method achieved 
excellent performance in the Computational Hearing 
in Multisource Environments (CHiME)-3 challenge. 
To capture temporal information, some HMM-based 
NMF speech enhancement methods have been pro-
posed. Mohammadiha et al.   [44] proposed a supervised 
and unsupervised NMF speech enhancement method. 
In [44], an HMM was used for modeling the temporal 
change of different noise types. In [45], a non-negative 
factorial HMM was used to model sound mixtures and 
showed superior performance in source separation tasks. 
In [46], an HMM-DNN NMF speech enhancement algo-
rithm was proposed, which applied a clustering method 
to acquire the HMM-based basis matrix and used the 
Viterbi algorithm to obtain the ideal state label for the 
DNN training. In the enhancement stage, the DNN was 
used to find the corresponding state to conduct speech 
enhancement.

In this paper, we propose a novel NMF-HMM speech 
enhancement method based on the Kullback-Leibler 
(KL) divergence, expanding on our preliminary work 
[47]. Our preliminary work has briefly verified the effec-
tiveness of an NMF-HMM for speech enhancement [47, 
48], but the effect of the parameters for the model was 
not considered. This is very important to optimize the 
algorithm performance. Additionally, its performance in 
various noisy environments was also not investigated. In 
this paper, we expand our preliminary research on these 
two aspects. Compared to other HMM-based methods 
[44, 45, 49], our method uses the HMM to capture the 
temporal dynamics of the speech and noise signal. More-
over, we use the sum of the Poisson distribution as the 
state-conditioned likelihood for the HMM, rather than 
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the general Gaussian mixture model (GMM), because 
the sum of the Poisson distribution leads to the KL diver-
gence measure. KL divergence is a mainstream measure 
in NMF, and its parameter update rule is identical to the 
multiplicative update rule. This ensures that the param-
eter update is computationally efficient during the train-
ing stage. In the enhancement stage, in contrast with 
previous works [44, 45], we propose a novel NMF-HMM-
based MMSE estimator to perform the online enhance-
ment. A major benefit of the proposed algorithm is that 
the activation matrix could be updated by parallel com-
puting in the online stage. This could effectively reduce 
computational time. In this paper, we also show a more 
detailed algorithm derivation towards the preliminary 
NMF-HMM-based algorithm [47]. Moreover, the pro-
posed method was compared with other state-of-the-art 
speech enhancement algorithms, which further indicated 
the advantages of the proposed algorithm.

The rest of this paper is organized as follows. First, we 
will briefly review the general NMF-based speech enhance-
ment method with KL divergence in Section  2. The pro-
posed HMM-based signal model will be introduced in 
Section 3, and the more detailed offline parameter learning 
will be explained in Section 4. The details of the proposed 
MMSE estimator and online speech enhancement process 
will be given in Section  5. The experimental comparison 
and analysis of results will be illustrated in Section 5, and 
we will draw conclusions in Section 6.

2 � NMF‑based speech enhancement method 
with KL divergence

In this section, we will briefly review the NMF-based 
speech enhancement with KL divergence. Under the 
additive noise assumption, the noisy signal model can be 
expressed as:

where y(t) , s(t) , and m(t) denote the noisy signal, clean 
speech, and noise, respectively, and t is the time index. 
With (1), the short-time Fourier transform (STFT) of y(t) 
can be written as:

where Y(f,  n), S(f , n) , and M(f , n) denote the fre-
quency spectra  of y(t) , s(t) , and m(t) , respec-
tively. Here, f ∈ [1, F ] and n ∈ [1,N ] denote the 
frequency bin and time frame indices, respectively. 
Collecting the F frequency bins and N time frames, 
we define the magnitude spectrum matrices YN  , 
SN  , and MN  , where YN = [y1, · · · , yn, · · · , yN ] and 
yn = [|Y (1, n)|, · · · , |Y (f , n)|, · · · , |Y (F , n)|]T  and also 
sn and mn are defined similarly to yn . Additionally, SN 

(1)y(t) = s(t)+m(t),

(2)Y (f , n) = S(f , n)+M(f , n),

and MN  are defined similarly to YN  ; we assume that 
YN = SN +MN  . The classical NMF-based speech 
enhancement has two stages: training and enhance-
ment. In the training stage, the clean speech basis 
matrix W and noise basis matrix Ẅ are trained using 
clean speech and noise databases, respectively. Many 
cost functions have been proposed for NMF, such as 
KL divergence [34], Itakura-Saito (IS) divergence [50], 
β divergence, and Euclidean distance [51]. In this paper, 
we focus on using the KL divergence measure. There 
are two reasons for this choice. First, compared with 
other cost functions, the best speech enhancement 
performance can be achieved using the KL divergence-
based NMF with the magnitude spectrum [52]. Second, 
the efficient multiplicative update (MU) rule of the KL 
divergence-based NMF can be also derived statistically 
using the expectation maximization (EM) algorithm 
[53]. For the two matrices B and B̂ , the KL divergence 
measure is defined as:

where bi,j and b̂i,j denote the elements from the ith row 
and jth column of the matrices B and B̂ , respectively. 
Using speech basis matrix training as an example, the 
cost function of the KL divergence-based NMF for train-
ing W can be written as:

 Noise basis matrix training is similar to speech basis 
matrix training. In [34], it is derived that W and H can 
be obtained iteratively using the following multiplicative 
update rules:

 where ⊙ and all divisions are element-wise multipli-
cation and division operations, respectively, and 1 is a 
matrix of ones with the same size as SN . In the enhance-
ment stage, the noisy speech basis matrix W can be con-
structed by concatenating the speech and noise basis 
matrices, W = [W, Ẅ] . The activation matrix H of the 
noisy speech can be estimated iteratively by replacing 
SN , W , and H in (6) with YN , W , and H , respectively. 
The enhanced signal can be obtained using various 
algorithms [36, 37, 44, 45]. One popular approach is to 

(3)KL(B|B̂) =

i,j

(bi,j log(bi,j/b̂i,j)− bi,j + b̂i,j),

(4)(W,H) = arg min
W,H

KL(SN |W ×H).

(5)W ← W ⊙

SN
W×H

H
T

1H
T

,

(6)H ← H⊙
W

T SN
W×H

W
T
1

,
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use the following Wiener filter-like spectral gain gNMF
n  

function:

where (8) can be solved iteratively using (6). Apart from 
the gradient descent derivation of the MU update rules 
(5) and (6) presented in [34], it is further shown in [53] 
that the MU update rules can be derived from a statistical 
perspective. More specifically, the KL divergence-based 
NMF can be motivated from the following hierarchical 
statistical model:

where PO(x; �) = �
xe−�

Ŵ(x+1) is the Poisson distribution, 
Ŵ(x + 1) = x! denotes the gamma function for positive 
integer x, K denotes the number of basis vectors, C(k) 
is the latent matrix, and cf ,n(k) denotes the element of 
C(k) in the f th row and nth column. Note that cf ,n(k) is 
assumed to have a Poisson distribution, which can only 
be used for discrete variables. However, in practice, this 
hierarchical statistical model is not limited to discrete 
variables because the gamma function for continuous 
variables can be used to replace the factorial calculation 
[53]. It has been shown in [53] that the iterative update 
of the parameters H and W using the EM algorithm is 
identical to the multiplicative update rules shown in (5) 
and (6).

One of the advantages of the classical NMF-based 
method for speech enhancement is that the computational 
efficient MU rules can be applied. However, the temporal 
dynamical aspects of speech and noise are not taken into 
account. To incorporate the temporal dynamical informa-
tion of audio signals, the HMM model is used in [45] for 
source separation. However, the parameter update rules 
are computationally complex. Moreover, this method 
[45] can only perform the offline enhancement. In this 
paper, we propose an NMF-based speech enhancement 
algorithm using the HMM to take the temporal aspects 
of both the speech and noise into account. The proposed 
approach can achieve efficient parameter updates. Moreo-
ver, an online MMSE estimator for speech enhancement 
is derived. Although other methods also considered the 

(7)gNMF
n =

Whn

Whn + Ẅ ḧn
,

(8)
hn =

[

h
T
n , ḧ

T
n

]T

= arg min
hn

KL(yn|Whn),

(9)SN =

K
∑

k=1

C(k),

(10)cf ,n(k) ∼ PO(cf ,n(k);Wf ,kHk ,n),

temporal dynamical information for speech enhancement, 
such as simply stacking multiple frames to a vector [14, 
54], using the DRNN [28], and non-negative matrix decon-
volution [55], the high computational complexity and the 
large model size lead to a high storage complexity. In this 
paper, the proposed method can achieve a higher PESQ 
score than the referenced DNN-based method for unseen 
noise and also has a lower complexity than it.

3 � HMM‑based signal models with the KL 
divergence

In this section, we present the details of the proposed sig-
nal models, including the speech and noise signal models 
and the noisy signal model.

3.1 � Speech and noise signal models
In this work, the same signal model is used for both the 
clean speech and noise signals, so we will derive the 
equations using only the clean speech signal. Addition-
ally, we use the overbar ( · ) and double dots ( ̈· ) to repre-
sent the clean speech and noise, respectively. To consider 
the temporal dynamic information of the speech and 
noise, we use the HMM. Following the conditional inde-
pendence property of the standard HMM [56], the likeli-
hood function can be expressed as follows:

where xN = [x1, · · · , xn, · · · , xN ]
T is a collection of 

states, xn ∈ {1, 2, · · · , J } denote the state at the nth frame, 
and J  denotes the total number of states. The function 
p(xn|xn−1) denotes the state transition probability from 
state xn−1 to xn with p(x1|x0) being the initial state prob-
ability. p(Sn|xn) is the state-conditioned likelihood func-
tion, and � is a collection of modeling parameters. Next, 
we describe the state transition probability and the state-
conditioned likelihood function, respectively, for the pro-
posed signal model.

The state transition probability p(xn|xn−1) : Following 
the standard HMM, we use a first-order Markov chain to 
model the state transition, that is:

where l(·) denotes an indicator function, which is one 
when the logic expression in the parentheses is true 
and zero otherwise. In addition, Ai,j and π j denote the 

(11)p(SN ;�) =
∑

xN

N
∏

n=1

p(sn|xn)p(xn|xn−1),

(12)p(xn|xn−1) =

J
∏

i=1

J
∏

j=1

A
l(xn=j,xn−1=i)
i,j ,

(13)p(x1|x0) = p(x1) =

J
∏

j=1

π
l(x1=j)
j ,
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transition probability from state i to state j and the ini-
tial probability for the first frame’s state x1 being state 
j, respectively. Collecting all the initial and transition 
probabilities, we can write them into matrix forms, 
π = [π1, · · · ,π j , · · · ,π J ]

T and A with Ai,j being the 
element at the ith row and jth column. Therefore, the 
modeling parameters of the HMM can be expressed as 
�hmm = {A,π , J } . The modeling parameters A and π  
with a predefined J  can be trained through the EM algo-
rithm shown in the next section. In the experiments, we 
investigate the impact of the total number of states J .

The state-conditioned likelihood function: Next, we 
present the proposed state-conditioned likelihood func-
tion. Motived by the good speech enhancement perfor-
mance, the computationally efficient MU rule, and the 
equivalence between the gradient descent derivation and 
the EM algorithm for the KL divergence-based NMF, 
we propose to use the statistical model in (9) and (10) to 
build the state-conditioned likelihood function, that is:

where K  is the number of basis vectors, cn(k) contains 
the hidden variables, and Wxn

k ,n and Hxn
k ,n correspond to 

the elements of the basis and activation matrices, respec-
tively. By writing cn = [cn(1)

T , cn(2)
T , · · · , cn(K )T ]T and 

integrating cn , the state conditioned likelihood function 
can be written as:

where we use the superposition property of the Poisson 
random variable [53]. Collecting the unknown param-
eters {Wxn

f ,k} and {Hxn
k ,n} , we can write them into matrix 

forms, {Wj
} and {Hj

} . Therefore, unlike the traditional 
NMF using only one basis matrix, the proposed model 
has J  basis matrices to be trained. Each basis matrix is 
intended to capture a specific feature (e.g., a phoneme) 
of the speech signal. The modeling parameters of the 
proposed state-conditioned likelihood function can be 
expressed as �like = {{W

j
}, {H

j
},K , J } . The modeling 

parameters {Wj
} and {Hj

} with predefined J  and K  can 
be trained through the EM algorithm shown in the next 

(14)sn =

K
∑

k=1

cn(k),

(15)p(cn(k)|xn) =

F
∏

f=1

PO(cf ,n(k);W
xn
f ,kH

xn
k ,n),

(16)

p(sn|xn) =

∫

p(sn|cn)p(cn|xn) dcn

=

F
∏

f=1

PO(|S(f , n)|;

K
∑

k=1

W
xn
f ,kH

xn
k ,n),

section. In the experiments, we investigate the impact of 
the number of basis vectors K  and J  . It will also be shown 
that a multiplicative update rule can be derived for the 
basis and activation matrices update of the proposed 
state-conditioned likelihood function.

To summarize, five types of parameters in the param-
eter set �=�hmm ∪�like can be identified. They are the 
transition matrix A , initial state probabilities in π  , basis 
matrices of different states {Wj

} , activation matrices of 
different states {Hj

} , and modeling parameters K  and J  . 
In this paper, the modeling parameters K  and J  are pre-
defined, the activation matrices {Hj

} are estimated by 
online speech enhancement, and the other three types of 
parameters are obtained using offline learning.

3.2 � Noisy speech model
Based on the proposed clean speech and noise signal models 
(1) and (2), the noisy speech model can be defined. We assume 
that there are a total of J̈ hidden states for the noise, and the 
hidden state of the noise is ẍn(ẍn ∈ {1, 2, · · · , J̈ }) . The nota-
tions π̈ and Ä correspond to the initial state probability and 
transition probability matrix of the noise. Thus, there are a 
total of J × J̈ hidden states for the noisy speech. Each compos-
ite state consists of a pair of states of clean speech xn and noise 
ẍn . Thus, if we list the state space for a noisy signal, we have 
(xn = 1, ẍn = 1), (xn = 1, ẍn = 2),⋯ , (xn = 1, ẍn = J̈ );(xn = 2, ẍn = 1),

(xn = 2, ẍn = 2),⋯ , (xn = 2, ẍn = J̈ );⋯ ;(xn = J , ẍn = 1), (xn = J , ẍn = 2),

⋯ , (xn = J , ẍn = J̈ ) . Moreover, the initial state and transition 
probability matrices of the noisy speech can be expressed as 
π ⊗ π̈ and A ⊗ Ä , where ⊗ denotes the Kronecker product. 
Finally, the state conditioned likelihood function of the noisy 
speech can be written as follows:

where K̈  , {Ẅ ẍn
f ,k} , and {Ḧ ẍn

f ,k} represent the number of basis 
vectors, elements of the basis matrices, and the activation 
matrices for the noise, respectively. We can write {Ẅ ẍn

f ,k} 
and {Ḧ ẍn

k ,n} into matrix forms as {Ẅj} and {Ḧj} , respec-
tively. Note that we also used the superposition property 
of Poisson random variables to obtain (17).

4 � Methods
4.1 � Offline NMF‑HMM‑based parameter learning
In the offline training stage, the objective is to find the 
parameter set � that maximizes the likelihood function 
(11). In general, the EM algorithm [56] can be used to 
address this problem. Because we use the same model 

(17)

p(yn|xn, ẍn) =

F
∏

f=1

PO(|(Y (f , n)|;

K
∑

k=1

W
xn
f ,kH

xn
k ,n +

K̈
∑

k=1

Ẅ
ẍn
f ,kḦ

ẍn
k ,n),
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for the speech and noise, here, we use the clean speech 
as an example to illustrate the offline parameter learn-
ing process. First, we define the complete data set 
(SN , xN ,CN ) , where CN = [c1, c2, · · · , cN ] . Thus, using 
the conditional independence property, the complete 
data likelihood function can be written as:

Next, we show how the parameter set can be obtained 
iteratively using the EM algorithm. Moreover, we pro-
pose an acceleration strategy to lower the computational 
and memory complexities. The traditional MU update 
algorithm for the KL divergence-based NMF can be seen 
as a special case of the proposed algorithm.

Expectation step: We first calculate the posterior 
state probability and the joint posterior probability, 
which can be written as:

where i is the iteration number. The calculation of (19) 
and (20) can be performed using the forward-backward 
algorithm [56]. Apart from this, we also need to evaluate 
the posterior expectation Ecn|SN ,xn;�

i−1(cn) , which will be 
used in the maximization step. By using the Bayes rule 
and the conditional independence property of the pro-
posed model, we have:

Combining (14) and (15) and following the derivation in 
[53], we have:

where M(·) denotes the multinomial distribution and

Using the properties of the multinomial distribution, the 
mean can be written as:

(18)

p(SN , xN ,CN ) =

N
∏

n=1

p(sn|cn)p(cn|xn)p(xn|xn−1).

(19)q(xn) = p(xn|SN ;�
i−1),

(20)q(xn, xn−1) = p(xn, xn−1|SN ;�
i−1),

(21)

q(cn|xn) = p(cn|SN , xn;�
i−1) =

p(sn|cn)p(cn|xn)

p(SN , xn)
.

(22)

q(cn|xn) =

F
∏

f=1

M(cf ,n(1), · · · , cf ,n(K ); |S(f , n)|,

p
xn
f ,n(1), · · · , p

xn
f ,n(K )),

(23)p
xn
f ,n(k) =

W
xn
f ,kH

xn
k ,n

∑K
l=1W

xn
f ,lH

xn
l,n

.

Maximization step: In this step, our objective is to find 
parameters to maximize the expectation of the logarithm 
of the complete data likelihood, that is,

The estimators for A and π  are the same as the tradi-
tional HMM [56]. For completeness, the results are 
shown below:

where 1 ≤ o, j ≤ J  . The estimated basis and activation 
matrices can be derived by setting the derivatives of (25) 
to zeros, and we can obtain:

Acceleration strategy: Although we can directly use the 
above EM algorithm to update the parameter set, saving 
the conditional expectation of cf ,n(k) in (24) requires a 
great deal of memory. Like [53], we substitute (24) into 
(28) and (29) and can obtain:

We can further write (30) and (31) in matrix forms:

(24)E(cf ,n(k)|SN , xn) = |S(f , n)|
W

xn
f ,kH

xn
k ,n

∑K
l=1W

xn
f ,lH

xn
l,n

.

(25)

�
i = arg max

�

ExN ,CN |SN ;�i−1 [log p(SN , xN ,CN )].

(26)π j =
q(x1 = j)

∑J
o=1 q(x1 = o)

,

(27)Ao,j =

∑N
n=2 q(xn = j, xn−1 = o)

∑J
j=1

∑N
n=2 q(xn = j, xn−1 = o)

,

(28)W
j
f ,k =

∑N
n=1 q(xn = j)E(cf ,n(k)|SN , xn = j)

∑N
n=1 q(xn = j)H

j
k ,n

,

(29)H
j
k ,n =

∑F
f=1 E(cf ,n(k)|SN , xn = j)

∑F
f=1W

j
f ,k

.

(30)
W

j
f ,k ←

N
∑

n=1

q(xn = j)
|S(f , n)|H

j
k ,n

∑K
l=1W

j
f ,lH

j
l,n

∑N
n=1 q(xn = j)H

j
k ,n

,

(31)
H

j
k ,n ←

F
∑

f=1

W
j
f ,k |S(f , n)|

∑K
l=1W

j
f ,lH

j
l,n

∑F
f=1H

j
k ,n

.
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where �(j) = diag(q(x1 = j), q(x2 = j), · · · , q(xN = j)) . 
By using the proposed acceleration strategy, the comput-
ing and saving of the conditional expectation of cf ,n(k) 
in (24) is not required. Moreover, the multiplicative 
update rules for the basis and activation matrices can 
be obtained, leading to fast computing. In other words, 
there are more than one basis and active matrices to be 
estimated in the proposed algorithm. Using acceleration 
strategy, the different basis and active matrices can be 
simultaneously estimated. We do not need to estimate 
them one by one. This reduces the time complexity. Com-
paring the update rules of the proposed method (32), (33) 
with the traditional NMF-based method (5), (6), the dif-
ference is that the basis vectors update rule (32) for the 
proposed method takes the posterior state information 
�(j) into account. In fact, if the number of the state is 
set to one (i.e., J = 1 ), the proposed training method is 
identical to the traditional KL divergence-based NMF 
approach. Thus, the traditional NMF can be seen as a 
special case of the proposed algorithm. The entire flow of 
the offline parameter learning is shown in Algorithm  1. 
Note that, for stability reasons, each column of Wj is nor-
malized to have a unit norm during training. 

4.2 � Online speech enhancement using the MMSE 
estimator

4.2.1 � MMSE estimator for the NMF‑HMM
In this section, we provide a detailed derivation for the 
proposed MMSE-based online speech enhancement 

(32)W
j
← W

j
⊙

SN

W
j
H

j�(j)(H
j
)T

1�(j)(H
j
)T

,

(33)H
j
← H

j
⊙

(W
j
)T

SN

W
j
H

j

(W
j
)T1

,

algorithm in the proposed NMF-HMM model. Our 
objective is to obtain the MMSE estimate of the desired 
clean speech signal from noisy observation:

In (34), the posterior probability p(sn|Yn) can be derived 
as:

where we use the conditional independence property 
of the HMM. The term p(xn, ẍn|Yn−1) in (35) can be 
expressed as:

where the first term after the summation is the state 
transition probability for a noisy signal, and the second 
term is the forward probability that can be acquired using 
the well-known forward algorithm [56]. By applying the 
Bayes rule, the term p(sn, yn|xn, ẍn) in (35) can be further 
written as:

Substituting (37) for (35), the posterior probability can be 
re-written as:

where the weight 0 ≤ ωxn,ẍn ≤ 1 is defined as:

Thus, by combining (34) and (38), the proposed HMM-
based MMSE estimator can be expressed as:

Instead of obtaining the posterior probability density 
function (PDF) p(sn|yn, xn, ẍn) directly, we derive the for-
mula for the joint posterior PDF of the clean speech and 
noise first, that is:

(34)ŝn = Esn|Yn(sn) =

∫

snp(sn|Yn) dsn.

(35)
p(sn|Yn) =

p(sn, yn|Yn−1)

p(yn|Yn−1)

=

∑

xn,ẍn
p(sn, yn|xn, ẍn)p(xn, ẍn|Yn−1)

p(yn|Yn−1)
,

(36)

p(xn, ẍn|Yn−1)

=
∑

xn−1,ẍn−1

p(xn, ẍn|xn−1, ẍn−1)p(xn−1, ẍn−1|Yn−1),

(37)p(sn, yn|xn, ẍn) = p(sn|yn, xn, ẍn)p(yn|xn, ẍn).

(38)p(sn|Yn) =
∑

xn−1,ẍn−1

ωxn,ẍnp(sn|yn, xn, ẍn),

(39)ωxn,ẍn =
p(yn|xn, ẍn)p(xn, ẍn|Yn−1)

∑

xn,ẍn
p(yn|xn, ẍn)p(xn, ẍn|Yn−1)

.

(40)ŝn =
∑

xn,ẍn

ωxn,ẍn

∫

snp(sn|yn, xn, ẍn) dsn.
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By using (1), we can express the likelihood function 
p(yn|sn,mn) as p(yn|sn,mn) = δ(yn − sn −mn) , where 
δ(·) denotes the Dirac delta function, which is defined 
by δ(0) = +∞ , and δ(x) = 0 when x  = 0 . Furthermore, 
∫ +∞
−∞ δ(x) dx = 1 . The prior probability p(sn|xn) and 
p(mn|ẍn) can be estimated by using (16). Following the 
derivation in [53], we can verify that the joint posterior 
PDF can be expressed in terms of the multinomial distri-
bution as:

where pf ,n(xn, ẍn) and qf ,n(xn, ẍn) are defined as:

where qf ,n(xn, ẍn) = 1− pf ,n(xn, ẍn) . Therefore, the inte-
gral term in (40) can be expressed as:

where pn(xn, ẍn) = [p1,n(xn, ẍn), · · · , pF ,n(xn, ẍn)]
T , and 

we used the marginal mean property of the multinomial 
distribution. Combining (40) and (44), the MMSE esti-
mator can be expressed as:

where gn can be viewed as the spectral gain vector for the 
proposed model. Comparing the proposed gain vector gn 
with the traditional NMF-based gain vector [36], we find 
that the proposed gain vector is a weighted sum of each 
state’s gain, which is in the Wiener filtering form as the 
traditional NMF gain (7).

(41)

p(sn,mn|yn, xn, ẍn)

=
p(yn|sn,mn)p(sn,mn|xn, ẍn)

p(yn|xn, ẍn)

=
p(yn|sn,mn)p(sn|xn)p(mn|ẍn)

p(yn|xn, ẍn)
.

(42)

p(sn,mn|yn, xn, ẍn) =

F
∏

f=1

M(|S(f , n)|, |M(f , n)|;

|Y (f , n)|, pf ,n(xn, ẍn), qf ,n(xn, ẍn)),

(43)

pf ,n(xn, ẍn) =
∑K

k=1W
xn
f ,kH

xn
k ,n

∑K
k=1W

xn
f ,kH

xn
k ,n +

∑K̈
k=1 Ẅ

ẍn
f ,kḦ

ẍn
k ,n

,

(44)

∫

snp(sn|yn, xn, ẍn) dsn

=

∫

sn

∫

p(sn,mn|yn, xn, ẍn) dmn dsn

= yn ⊙ pn(xn, ẍn),

(45)ŝn = yn ⊙ gn,

(46)gn =
∑

xn,ẍn

ωxn,ẍnpn(xn, ẍn),

4.2.2 � Online estimation of activation matrices
After obtaining the trained basis matrices Wxn

f ,k and Ẅ ẍn
f ,k 

for both the clean speech and noise in the training stage, 
we need to obtain the online estimates of the activation 
parameters Hxn

f ,k and Ḧ ẍn
f ,k to acquire the gain in (45) and 

(46). The activation matrices are estimated by maximizing 
the logarithm of the state-conditioned likelihood function 
(17), which is equivalent to:

where the clean and noise activation matrices for the 
state (xn, ẍn) are defined as hn(xn, ẍn) = [H

xn
1,n,H

xn
2,n, · · · , 

H
xn
K ,n

]T , and ḧn(xn, ẍn) = [Ḧ
ẍn
1,n, Ḧ

ẍn
2,n, · · · ,H

ẍn
K̈ ,n

]T . The 
activation matrix (48) can be obtained iteratively by using 
the multiplicative update rule in Eq. (6). Note that paral-
lel computing can be used to reduce the time complexity 
when obtaining the activation matrices for different 
states. It can be readily shown that when J = J̈ = 1 , the 
gain vectors for the proposed algorithm (46) and the 
standard NMF (7) are identical, that is, gn = gNMF

n  . The 
entire flow of the proposed MMSE-based online speech 
enhancement algorithm is illustrated by Algorithm 2.

5 � Experimental results and discussion
In this section, we report on the investigation and 
evaluation of the proposed algorithm using various 
experiments. First, we investigated the effect of differ-
ent parameter settings for the proposed model, that is, 
the number of states and basis vectors of clean speech 
and noise, respectively. Second, we compared the pro-
posed NMF-HMM with other state-of-the-art speech 
enhancement methods to demonstrate the effectiveness 
of the proposed algorithm. In this work, the PESQ score 
[41], ranging from − 0.5 to 4.5, was used to quantify 

(47)hn(xn, ẍn) = arg min
hn

KL(yn|[W
xn , Ẅẍn ]hn),

(48)hn(xn, ẍn) = [hn(xn, ẍn)
T , ḧn(xn, ẍn)

T ]T ,
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the enhanced speech quality. The version of the PESQ 
model used was the International Telecommunication 
Union (ITU) standard P.862 [57]. The implementation 
code was provided by [2]. The STOI score [42], ranging 
from 0 to 1, was used to measure speech intelligibility.

5.1 � Experimental data preparation
In this study, the proposed algorithm was evaluated 
using the Texas Instruments/Massachusetts Institute of 
Technology (TIMIT) database [58], 100 environmen-
tal noises [59], office noise1, and the NoiseX-92 data-
base [60]. During the training stage, all 4620 utterances 
from the TIMIT training database were used to train 
the proposed NMF-HMM model for clean speech. For 
the experiments in Section 5.2, the Babble, F16, Factory, 
and White noises from the NoiseX-92 database were 
used to train the NMF-HMM model. For the experi-
ments in Section  5.2, 200 utterances from the TIMIT 
test set, including 1680 utterances, were randomly cho-
sen to build the test database. Four types of noise were 
then added at four different SNR levels (− 5, 0, 5, and 
10 dB). The noise types of the testing set were the same 
as the training set, but there was no overlap between 
the signals in the two sets. In total, 200× 4 × 4 = 3200 
utterances were used for the evaluation. For the experi-
ments in Section  5.3, we conducted extensive experi-
ments; the Babble and F16 noises from the NoiseX-92 
database and 90 environmental noises (N1–N90 in [59]) 
were used to train the NMF-HMM model for the noise 
dictionary. In the test stage, 200 utterances from the 
TIMIT test set, including 1680 utterances, were ran-
domly chosen to build three test databases. The first 
test database included 10 unseen environmental noises 
from [59] (N91–N100). The second included unseen 
office noise, and the third test database was built from 
25 seen environmental noises in [59] (N18–N43). In all 
three test databases, the noise was added at four differ-
ent SNR levels (− 5, 0, 5, and 10 dB). All the algorithms 
were evaluated using the same test dataset. In all experi-
ments, the sound signals were down-sampled to 16 kHz. 
The frame length was set to 1024 samples (64 ms) with 
a frame shift of 512 samples (32 ms). The size of STFT 
was 1024 points with a Hanning window. Furthermore, 
the maximum number of iterations was set to 30 in the 
training stage and 15 in the online speech enhancement 
stage for the proposed NMF-HMM algorithm.

5.2 � Analyses of the number of states and basis vectors
As explained in Sections  3 and 4, four parame-
ters are needed to be pre-defined in our proposed 

NMF-HMM-based speech enhancement algorithm. 
These parameters were the number of states ( J  and J̈  ) and 
basis vectors ( K  and K̈  ) for the clean speech and noise. In 
this section, we report on the investigation of the effects 
of these parameters in our proposed method and the 
choice of suitable parameters for the later experiments.

5.2.1 � HMM states analysis
First, before the state analysis, we want to indicate that 
using temporal dynamics can effectively help NMF 
obtain a better SE performance. To verify this point, we 
use the traditional NMF-based speech enhancement 
(T-NMF) [36] as the reference method. T-NMF is a spe-
cial case of NMF-HMM when J = 1 and J̈ = 1 . T-NMF 
does not include the temporal dynamics information. 
The transition matrix A is a non-informational matrix 
in T-NMF. For a fair comparison, we keep that the total 
numbers of clean speech basis vectors ( K × J  ) for the 
NMF-HMM and T-NMF method [36] are the same. For 
the T-NMF, the number of clean speech basis vectors K  
is varied as 25, 125, 250, 500, and 1000. For the NMF-
HMM, the K  is fixed to 25 and J  is varied as 1, 5, 10, 
20, and 40. The number of noise basis vectors for both 
the proposed NMF-HMM and T-NMF is fixed to 70, and 
the number of noise states for the NMF-HMM is fixed 
to 1. In this experiment, we use the average STOI and 
PESQ scores of 3200 utterances as the performance met-
rics. The experimental results are shown in Fig. 1. As can 
be seen, the T-NMF can achieve the best performance 
when K = 25. However, its performance degraded with 
the increasing of number of basis vectors due to over-
fitting. By contrast, NMF-HMM achieves higher PESQ 
and STOI scores with an increasing number of the clean 
speech basis vectors by taking the temporal dynamics 
into account using the HMM model, which indicates 
that temporal dynamics can improve the NMF’s SE 
performance.

5.2.2 � States and basis vector analysis for clean speech
Next, we investigated the effect of the number of clean 
speech states J  and basis vector K  to the proposed model. 
The number of noise states was set to 1 (i.e., J̈ = 1 ) for 
the proposed NMF-HMM. The number of basis vectors 
for the noise was fixed to K̈ = 70 , respectively. The num-
ber of clean speech states was chosen as 1, 5, 10, 20, and 
40. Additionally, the number of clean speech basis vector 
was chosen as 5, 10, 25, and 50. The enhancement perfor-
mance was evaluated by the PESQ and STOI scores.

Tables 1 and 2 show the average STOI and PESQ score 
in different SNRs. It can be seen that if the number of 
basis vectors K  is fixed, there is a higher PESQ and STOI 
score with the increasing of clean state J  . This indicated 
the benefits of using the temporal dynamics in NMF 1  https://www.youtube.com/watch?v=D7ZZp8XuUTE
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model. Additionally, if the clean state J  is fixed, we can 
find that HMM can achieve the best speech enhance-
ment performance when K = 25 . A higher K  can lead to 
a worse speech enhancement performance due to over-
fitting. Therefore, based on these experimental results, 

we choose J = 40 and K = 25 to perform the following 
experiments.

5.2.3 � States and basis vector analysis for noise
In this part, we evaluated the effect of noise states J̈  and 
basis vector K̈  to the proposed model. Here, the num-
ber of clean states and basis vectors was set to 40 and 
25 ( J = 40 , K̈ = 25 ), respectively, which is based on 
the previous experimental results. The number of noise 
states was chosen as 1, 2, 5, and 10. In addition, the 
number of noise basis vector was chosen as 10, 20, 40, 
and 70.

Tables  3 and  4 show the experimental results for 
the average STOI and PESQ score in different SNRs. 
We can find that the PESQ and STOI have an increas-
ing trend with the increasing of noise state J̈  when 
the number of noise basis vectors K̈  is fixed. Moreo-
ver, if the J̈  is fixed, K̈ = 70 can achieve the highest 
PESQ score but the STOI score is slightly lower than 
K̈ = 40 . Based on the experimental results, we select 
J = 40, J̈ = 10,K = 25, K̈ = 40 for the rest of the experi-
ments because the model have the less parameters when 
K̈ = 40 . Furthermore, there is a higher STOI when 
K̈ = 40 and the PESQ difference is not obvious between 
the K̈ = 40 and K̈ = 70.

5.3 � Overall evaluation
In this section, we report on the comparison of the pro-
posed NMF-HMM speech enhancement method with 
state-of-the-art speech enhancement methods. We 
chose the optimally modified log-spectral amplitude 
(OM-LSA) method [61] with improved minima con-
trolled recursive averaging (IMCRA) noise estimator 
[62]; variable span linear filters method [7] (SLF-NMF), 

which uses the parametric NMF [17] for estimating 
the statistics; temporal-NMF [49]; convolutive NMF 
(CNMF) [55, 63]; DNN [64]; and log-MMSE [65] algo-
rithm as the reference methods. For the SLF-NMF, the 
maximum SNR filter was applied, and the number of 

Fig. 1  Performance of the NMF-HMM and T-NMF using different 
numbers of clean speech basis vectors

Table 1  Average STOI scores (%) comparisons of different clean speech states and basis vectors ( ̈J = 1, K̈ = 70)

Parameters K = 5 K = 10 K = 25 K = 50

Noisy 69.14 ( ± 0.51)

NMF-HMM, J = 1(T-NMF) 65.00 ( ± 0.43) 69.29 ( ± 0.44) 72.71 ( ± 0.48) 73.32 ( ± 0.49)

NMF-HMM, J = 5 68.66 ( ± 0.42) 71.93 ( ± 0.45) 73.94 ( ± 0.47) 74.02 ( ± 0.49)

NMF-HMM, J = 10 69.71 ( ± 0.42) 72.74 ( ± 0.45) 74.39 ( ± 0.47) 74.37 ( ± 0.50)

NMF-HMM, J = 20 71.14 ( ± 0.43) 73.51 ( ± 0.45) 74.76 ( ± 0.48) 74.87 ( ± 0.50)

NMF-HMM, J = 40 71.81 ( ± 0.44) 73.66 ( ± 0.45) 75.00 ( ± 0.48) 74.73 ( ± 0.51)
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eigenvectors was set to one. The variable span linear 
filters reference code can be found in [7]. The code-
book size of clean speech and noise was set to 64 and 
8, respectively. The other SLF-NMF parameter settings 
were the same as NMF-HMM. For the temporal-NMF, 
all the parameter settings were the same as the work 
in [49], which ensured that the temporal-NMF could 
achieve the best speech enhancement performance. 
For the CNMF, the related settings were similar to the 
CNMF in [40]. For the DNN, we used the DNS baseline 
[64] as the reference method, which is one of the state 
of the art speech enhancement algorithm. The OM-
LSA and log-MMSE were state-of-the-art unsupervised 
speech enhancement methods. while the SLF-NMF and 
temporal-NMF were state-of-the-art NMF-based speech 
enhancement methods. The temporal-NMF also consid-
ered the temporal information like our methods.

The performance of the NMF-HMM, DNN, tempo-
ral-NMF, CNMF, SLF-NMF, log-MMSE, and OM-LSA 
were evaluated using the test set. Figure  2 shows the 
average PESQ scores with 95% confidence intervals of 
these algorithms for 25 types of seen noise. As can be 
seen, the SLF-NMF had the worst performance among 
these algorithms. Temporal-NMF and CNMF achieved 
a higher score than SLF-NMF, which indicated the 
benefits of temporal information for speech enhance-
ment. Moreover, except for DNS baseline, the proposed 
NMF-HMM outperformed other enhancement algo-
rithms in all the SNR scenarios. Furthermore, in low 
SNR scenarios (e.g., − 5–5 dB), the average PESQ score 
improvement of the proposed NMF-HMM was larger 
than 0.5 against the other algorithms.

Figures 3 and 4 show the PESQ result under an unseen 
noise environment, which indicates that NMF-HMM 
could always achieve a higher PESQ score than the refer-
ence methods at all four SNRs except for DNS baseline.

The results of the STOI scores with 95% confidence 
intervals for various algorithms are provided in Table 5. 
As can be seen, the temporal-NMF, CNMF, and NMF-
HMM had higher STOI scores than SLF-NMF under 
three different test datasets, which illustrates the ben-
efits of considering speech temporal information. 
In general, NMF-HMM achieved the highest STOI 
score, better than the referenced NMF-based methods 
(temporal-NMF, CNMF, and SLF-NMF) for seen and 
unseen noise. In addition, the DNS baseline achieved a 
better STOI score than NMF-HMM.

Table 2  Average PESQ scores (%) comparisons of different clean speech states and basis vectors ( ̈J = 1, K̈ = 70)

Parameters K = 5 K = 10 K = 25 K = 50

Noisy 2.02 ( ± 0.03)

NMF-HMM, J = 1(T-NMF) 2.12 ( ± 0.03) 2.18 ( ± 0.03) 2.21 ( ± 0.02) 2.18 ( ± 0.02)

NMF-HMM, J = 5 2.27 ( ± 0.03) 2.31 ( ± 0.03) 2.32 ( ± 0.02) 2.29 ( ± 0.02)

NMF-HMM, J = 10 2.31 ( ± 0.03) 2.35 ( ± 0.03) 2.35 ( ± 0.03) 2.30 ( ± 0.02)

NMF-HMM, J = 20 2.36 ( ± 0.03) 2.39 ( ± 0.02) 2.36 ( ± 0.02) 2.32 ( ± 0.02)

NMF-HMM, J = 40 2.38 ( ± 0.02) 2.41 ( ± 0.02) 2.39 ( ± 0.02) 2.33 ( ± 0.02)

Table 3  Average STOI scores (%) comparisons of different noise states and basis vectors ( J = 40, K = 25)

Parameters K̈ = 10 K̈ = 20 K̈ = 40 K̈ = 70

Noisy 69.14 ( ± 0.51)

NMF-HMM, J̈ = 1 74.51 ( ± 0.51) 74.71 ( ± 0.51) 75.03 ( ± 0.49) 75.00 ( ± 0.48)

NMF-HMM, J̈ = 2 75.00 ( ± 0.51) 75.30 ( ± 0.50) 75.51 ( ± 0.49) 75.33 ( ± 0.47)

NMF-HMM, J̈ = 5 75.44 ( ± 0.51) 75.77 ( ± 0.50) 76.05 ( ± 0.47) 75.15 ( ± 0.46)

NMF-HMM, J̈ = 10 75.56 ( ± 0.50) 76.11 ( ± 0.49) 76.27 ( ± 0.48) 75.70 ( ± 0.46)

Table 4  Average PESE scores (%) comparisons of different noise 
states and basis vectors ( J = 40, K = 25)

Parameters K̈ = 10 K̈ = 20 K̈ = 40 K̈ = 70

Noisy 2.02 ( ± 0.03)

T-NMF, J̈ = 1 2.28 ( ± 0.03) 2.31 ( ± 0.03) 2.36 ( ± 0.02) 2.39 ( ± 0.02)

NMF-HMM, 
J̈ = 2

2.29 ( ± 0.03) 2.33 ( ± 0.04) 2.37 ( ± 0.04) 2.40 ( ± 0.03)

NMF-HMM, 
J̈ = 5

2.31 ( ± 0.03) 2.34 ( ± 0.04) 2.39 ( ± 0.03) 2.40 ( ± 0.03)

NMF-HMM, 
J̈ = 10

2.32 ( ± 0.03) 2.36 ( ± 0.03) 2.40 ( ± 0.02) 2.41 ( ± 0.02)
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In general, for these non-DNN-based speech enhance-
ment algorithm, the proposed method can achieve the best 
speech enhancement performance. Moreover, DNS base-
line can achieve the highest speech enhancement score. In 

the future work, we think that a DNN-based strategy can 
be combine with proposed algorithm to improve to accu-
racy of basis vector estimation. As a result, our algorithm 
can achieve a better speech enhancement performance.

Fig. 2  Average PESQ scores of different methods for 25 types of seen noise

Fig. 3  Average PESQ scores of different methods for 10 types of unseen noise
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Fig. 4  Average PESQ scores of different methods for unseen office noise

Table 5  Comparison of STOI scores (%) for various algorithms under different SNRs using different types of noise

Test type Method − 5 0 5 10

Unseen 10 types of noise Noisy 76.97 ( ± 1.45) 84.24 ( ± 0.96) 90.07 ( ± 0.68) 94.16 ( ± 0.49)

Log-MMSE 75.86 ( ± 1.54) 83.67 ( ± 1.01) 89.72 ( ± 0.70) 93.85 ( ± 0.48)

OMLSA 75.88 ( ± 1.52) 83.58 ( ± 1.01) 89.51 ( ± 0.72) 93.62 ( ± 0.55)

Temporal-NMF 77.21 ( ± 1.45) 84.39 ( ± 0.96) 90.15 ( ± 0.68) 94.19 ( ± 0.49)

SLF-NMF 69.35 ( ± 1.78) 77.01 ( ± 1.28) 82.11 ( ± 1.09) 85.72 ( ± 0.94)

CNMF 77.12 ( ± 1.51) 83.02 ( ± 1.13) 86.01 ( ± 1.02) 89.44 ( ± 0.91)

NMF-HMM 78.58 ( ± 1.34) 84.76 ( ± 0.84) 88.39 ( ± 0.58) 90.88 ( ± 0.43)

DNS baseline 81.84 ( ± 1.36) 86.91 ( ± 1.09) 91.44 ( ± 0.75) 94.67 ( ± 0.55)

Unseen office noise Noisy 49.91 ( ± 1.33) 61.03 ( ± 1.40) 72.80 ( ± 1.27) 82.57 ( ± 1.05)

Log-MMSE 46.46 ( ± 1.50) 58.75 ( ± 1.57) 71.09 ( ± 1.40) 81.31 ( ± 1.15)

OMLSA 44.97 ( ± 1.52) 58.14 ( ± 1.63) 71.52 ( ± 1.44) 82.29 ( ± 1.14)

Temporal-NMF 49.70 ( ± 1.46) 61.79 ( ± 1.47) 73.48 ( ± 1.29) 83.05 ( ± 1.05)

SLF-NMF 48.92 ( ± 1.58) 60.84 ( ± 1.54) 70.95 ( ± 1.35) 79.21 ( ± 1.12)

CNMF 48.43 ( ± 1.47) 60.97 ( ± 1.46) 71.45 ( ± 1.12) 80.03 ( ± 0.97)

NMF-HMM 50.06 ( ± 1.72) 63.02 ( ± 1.61) 74.56 ( ± 1.32) 82.55 ( ± 0.88)

DNS baseline 54.22 ( ± 1.49) 66.46 ( ± 1.01) 77.58 ( ± 0.89) 86.18 ( ± 0.50)

textbfSeen 25 types of noise Noisy 73.65 ( ± 0.82) 81.36 ( ± 1.03) 87.64 ( ± 0.84) 92.48 ( ± 0.60)

Log-MMSE 71.96 ( ± 1.40) 80.13 ( ± 1.20) 87.04 ( ± 0.94) 92.08 ( ± 0.68)

OMLSA 73.86 ( ± 1.38) 81.58 ( ± 1.18) 87.90 ( ± 0.91) 92.45 ( ± 0.66)

Temporal-NMF 75.76 ( ± 1.34) 83.22 ( ± 1.09) 89.03 ( ± 0.88) 93.46 ( ± 0.58)

SLF-NMF 65.76 ( ± 1.58) 73.49 ( ± 1.33) 79.06 ( ± 1.18) 83.14 ( ± 1.04)

CNMF 76.23 ( ± 1.38) 84.12 ( ± 1.11) 89.55 ( ± 0.97) 91.06 ( ± 0.62)

NMF-HMM 81.49 ( ± 1.66) 87.02 ( ± 1.35) 90.28 ( ± 0.77) 91.84 ( ± 0.51)

DNS baseline 81.95 ( ± 1.76) 87.34 ( ± 1.15) 91.53 ( ± 0.75) 94.77 ( ± 0.53)
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6 � Conclusion
In this work, we proposed and analyzed an NMF-HMM-
based speech enhancement algorithm that applies the 
sum of the Poisson distribution, leading to the KL diver-
gence measure, as the observation model for each state 
of the HMM. The computationally efficient multiplicative 
update rule is used to conduct parameter updates during 
the training stage for this proposed method. Moreover, 
using the HMM, the temporal dynamic information of 
speech signals can be captured in this method. Further-
more, we detailed the derivation of the proposed NMF-
HMM-based MMSE estimator to conduct online speech 
enhancement. Parallel computation can be applied for 
the proposed estimator, so we can effectively reduce the 
time complexity during the online speech enhancement 
stage. With experiments, a suitable number of state basis 
vectors for the proposed NMF-HMM were found. Our 
experimental results also indicated that the proposed 
algorithm could outperform state-of-the-art NMF-based 
and unsupervised speech enhancement methods. In 
the future work, a DNN-based strategy can be consid-
ered to improve the accuracy of basis vector estimation. 
As a result, our algorithm can achieve a better speech 
enhancement performance.

Acknowledgements
This work was supported by Innovation Fund Denmark (Grant No.9065-00046).

Authors’ contributions
All authors participate in methodology discussion, experimental design, and 
paper writing. The authors read and approved the final manuscript.

Funding
Innovation Fund Denmark (Grant No.9065-00046).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 CREATE, Aalborg University, Rendsburggade 14, 9000 Aalborg, Denmark. 
2 Capturi A/S, Søren Frichs Vej 44D, 8230 Aarhus, Denmark. 

Received: 24 January 2022   Accepted: 22 August 2022

References
	1.	 J. Li, L. Deng, Y. Gong, R. Haeb-Umbach, An overview of noise-robust 

automatic speech recognition. IEEE/ACM Trans. Audio Speech Lang. 
Process. 22(4), 745–777 (2014)

	2.	 P.C. Loizou, Speech Enhancement: Theory and Practice (CRC Press, Boca 
Raton, 2013)

	3.	 Y. Xu, J. Du, L.-R. Dai, C.-H. Lee, An experimental study on speech 
enhancement based on deep neural networks. IEEE Signal Process. Lett. 
21(1), 65–68 (2013)

	4.	 I. Cohen, S. Gannot, in Springer Handbook of Speech Processing. Spectral 
enhancement methods (Springer, Berlin, Heidelberg, 2008) p. 873–902

	5.	 S. Boll, Suppression of acoustic noise in speech using spectral subtrac-
tion. IEEE Trans. Acoust. Speech Signal Process. 27(2), 113–120 (1979)

	6.	 K.B. Christensen, M.G. Christensen, J.B. Boldt, F. Gran, in Proc. IEEE Int. Conf. 
Acoust., Speech, Signal Process. Experimental study of generalized subspace 
filters for the cocktail party situation (IEEE, Shanghai, 2016), p. 420–424

	7.	 J.R. Jensen, J. Benesty, M.G. Christensen, Noise reduction with optimal 
variable span linear filters. IEEE/ACM Trans. Audio Speech Lang. Process. 
24(4), 631–644 (2015)

	8.	 Y. Ephraim, H.L. Van Trees, A signal subspace approach for speech 
enhancement. IEEE Trans. Speech Audio Process. 3(4), 251–266 (1995)

	9.	 F. Jabloun, B. Champagne, Incorporating the human hearing properties 
in the signal subspace approach for speech enhancement. IEEE Trans. 
Speech Audio Process. 11(6), 700–708 (2003)

	10.	 J. Lim, A. Oppenheim, All-pole modeling of degraded speech. IEEE Trans. 
Acoust. Speech Signal Process. 26(3), 197–210 (1978)

	11.	 Y. Ephraim, D. Malah, Speech enhancement using a minimum-mean 
square error short-time spectral amplitude estimator. IEEE Trans. Acoust. 
Speech Signal Process. 32(6), 1109–1121 (1984)

	12.	 Y. Ephraim, D. Malah, Speech enhancement using a minimum mean-
square error log-spectral amplitude estimator. IEEE Trans. Acoust. Speech 
Signal Process. 33(2), 443–445 (1985)

	13.	 A. Hussain, M. Chetouani, S. Squartini, A. Bastari, F. Piazza, in Progress in 
nonlinear speech processing. An overview, Nonlinear speech enhancement 
(Springer, Berlin, Heidelberg, 2007), p. 217–248

	14.	 Y. Xu, J. Du, L.-R. Dai, C.-H. Lee, A regression approach to speech enhance-
ment based on deep neural networks. IEEE/ACM Trans. Audio Speech 
Lang. Process. 23(1), 7–19 (2014)

	15.	 M.S. Kavalekalam, J.K. Nielsen, J.B. Boldt, M.G. Christensen, Model-based 
speech enhancement for intelligibility improvement in binaural hearing 
aids. IEEE/ACM Trans. Audio Speech Lang. Process. 27(1), 99–113 (2018)

	16.	 S. Srinivasan, J. Samuelsson, W.B. Kleijn, Codebook-based bayesian speech 
enhancement for nonstationary environments. IEEE Trans. Audio Speech 
Lang. Process. 15(2), 441–452 (2007)

	17.	 M.S. Kavalekalam, J.K. Nielsen, L. Shi, M.G. Christensen, J. Boldt, in Proc. 
European Signal Processing Conf. Online parametric NMF for speech 
enhancement (IEEE, Rome, 2018), p. 2320–2324

	18.	 Q. He, F. Bao, C. Bao, Multiplicative update of auto-regressive gains for 
codebook-based speech enhancement. IEEE/ACM Trans. Audio Speech 
Lang. Process. 25(3), 457–468 (2016)

	19.	 D.Y. Zhao, W.B. Kleijn, HMM-based gain modeling for enhancement of 
speech in noise. IEEE Trans. Audio Speech Lang. Process. 15(3), 882–892 
(2007)

	20.	 F. Deng, C. Bao, W.B. Kleijn, Sparse hidden Markov models for speech 
enhancement in non-stationary noise environments. IEEE/ACM Trans. 
Audio Speech Lang. Process. 23(11), 1973–1987 (2015)

	21.	 Y. Bengio et al., Learning deep architectures for AI. Found. Trends® Mach. 
Learn. 2(1), 1–127 (2009)

	22.	 G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep 
belief nets. Neural Comput. 18(7), 1527–1554 (2006)

	23.	 D. Wang, J. Chen, Supervised speech separation based on deep learn-
ing: an overview. IEEE/ACM Trans. Audio Speech Lang. Process. 26(10), 
1702–1726 (2018)

	24.	 Y. Wang, A. Narayanan, D. Wang, On training targets for supervised 
speech separation. IEEE/ACM Trans. Audio Speech Lang. Process. 22(12), 
1849–1858 (2014)

	25.	 A. Narayanan, D. Wang, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. 
Ideal ratio mask estimation using deep neural networks for robust speech 
recognition (IEEE, Vancouver, 2013), p. 7092–7096

	26.	 S.R. Park, J. Lee, A fully convolutional neural network for speech enhance-
ment. arXiv preprint arXiv:1609.07132. (2016)

	27.	 H. Jacobsson, Rule extraction from recurrent neural networks: Ataxonomy 
and review. Neural Comput. 17(6), 1223–1263 (2005)

	28.	 P.-S. Huang, M. Kim, M. Hasegawa-Johnson, P. Smaragdis, Joint opti-
mization of masks and deep recurrent neural networks for monaural 
source separation. IEEE/ACM Trans. Audio Speech Lang. Process. 23(12), 
2136–2147 (2015)

	29.	 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 
et al., in Proc. Advances in Neural Inform. Process. Syst. Generative adversarial 
nets (Communications of the ACM, US, 2014), p. 2672–2680



Page 15 of 15Xiang et al. EURASIP Journal on Audio, Speech, and Music Processing         (2022) 2022:22 	

	30.	 S. Pascual, A. Bonafonte, J. Serra, Segan: Speech enhancement generative 
adversarial network. arXiv preprint arXiv:1703.09452. (2017)

	31.	 M. Kolbæk, Z.-H. Tan, J. Jensen, Speech intelligibility potential of general 
and specialized deep neural network based speech enhancement sys-
tems. IEEE/ACM Trans. Audio Speech Lang. Process. 25(1), 153–167 (2016)

	32.	 Y. Xiang, C. Bao, A parallel-data-free speech enhancement method using 
multi-objective learning cycle-consistent generative adversarial network. 
IEEE/ACM Trans. Audio Speech Lang. Process. 28, 1826–1838 (2020)

	33.	 D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix 
factorization. Nature. 401(6755), 788–791 (1999)

	34.	 D.D. Lee, H.S. Seung, in Proc. Advances in Neural Inform. Process. Syst. Algo-
rithms for non-negative matrix factorization (Communications of the ACM, 
US, 2001), p. 556–562

	35.	 K. Shimada, Y. Bando, M. Mimura, K. Itoyama, K. Yoshii, T. Kawahara, Unsu-
pervised speech enhancement based on multichannel nmf-informed 
beamforming for noise-robust automatic speech recognition. IEEE/ACM 
Trans. Audio Speech Lang. Process. 27(5), 960–971 (2019)

	36.	 E.M. Grais, H. Erdogan, in Int. Conf. Digital Signal Process. Single channel 
speech music separation using nonnegative matrix factorization and spectral 
masks (IEEE, Corfu, 2011), p. 1–6

	37.	 K.W. Wilson, B. Raj, P. Smaragdis, in Proc Interspeech. Regularized non-neg-
ative matrix factorization with temporal dependencies for speech denoising 
(ICSA, Brisbane, 2008)

	38.	 S. Nie, S. Liang, H. Li, X. Zhang, Z. Yang, W.J. Liu, L.K. Dong, in Proc. IEEE Int. 
Conf. Acoust., Speech, Signal Process. Exploiting spectro-temporal structures 
using NMF for DNN-based supervised speech separation (IEEE, Shang-
hai, 2016), p. 469–473

	39.	 T.G. Kang, K. Kwon, J.W. Shin, N.S. Kim, NMF-based target source separa-
tion using deep neural network. IEEE Signal Process. Lett. 22(2), 229–233 
(2014)

	40.	 S. Nie, S. Liang, W. Liu, X. Zhang, J. Tao, Deep learning based speech sepa-
ration via nmf-style reconstructions. IEEE/ACM Trans. Audio Speech Lang. 
Process. 26(11), 2043–2055 (2018)

	41.	 A.W. Rix, J.G. Beerends, M.P. Hollier, A.P. Hekstra, in Proc. IEEE Int. Conf. 
Acoust., Speech, Signal Process. Perceptual evaluation of speech quality 
(PESQ)-a new method for speech quality assessment of telephone networks 
and codecs, vol. 2 (IEEE, Salt Lake City, 2001), p. 749–752

	42.	 C.H. Taal, R.C. Hendriks, R. Heusdens, J. Jensen, An algorithm for intel-
ligibility prediction of time-frequency weighted noisy speech. IEEE Trans. 
Audio Speech Lang. Process. 19(7), 2125–2136 (2011)

	43.	 T.T. Vu, B. Bigot, E.S. Chng, in Proc. IEEE Int. Conf. Acoust., Speech, Signal 
Process. Combining non-negative matrix factorization and deep neural 
networks for speech enhancement and automatic speech recognition (IEEE, 
Shanghai, 2016), p. 499–503

	44.	 N. Mohammadiha, P. Smaragdis, A. Leijon, Supervised and unsupervised 
speech enhancement using nonnegative matrix factorization. IEEE Trans. 
Audio Speech Lang. Process. 21(10), 2140–2151 (2013)

	45.	 G.J. Mysore, P. Smaragdis, B. Raj, in International conference on latent vari-
able analysis and signal separation. Non-negative hidden Markov modeling 
of audio with application to source separation (Springer, Malo, 2010), p. 
140–148

	46.	 Z. Wang, X. Li, X. Wang, Q. Fu, Y. Yan, in Proc. Interspeech. A DNN-HMM 
approach to non-negative matrix factorization based speech enhancement 
(ICSA, Pittsburgh, 2016), p. 3763–3767

	47.	 Y. Xiang, L. Shi, J.L. Højvang, M.H. Rasmussen, M.G. Christensen, in Proc. 
Interspeech. An NMF-HMM speech enhancement method based on Kullback-
Leibler divergence (ICSA, Shanghai, 2020), p. 2667–2671

	48.	 Y. Xiang, L. Shi, J.L. Højvang, M.H. Rasmussen, M.G. Christensen, in 
Proc. IEEE Int. Conf. coust., Speech, Signal Process. A novel NMF-HMM 
speech enhancement algorithm based on poisson mixture model 
(IEEE, Toronto, 2021), p. 721–725

	49.	 C. Févotte, J. Le Roux, J.R. Hershey, in Proc. IEEE Int. Conf. Acoust., Speech, 
Signal Process. Non-negative dynamical system with application to speech 
and audio (IEEE, Vancouver, 2013), p. 3158–3162

	50.	 C. Févotte, N. Bertin, J.-L. Durrieu, Nonnegative matrix factorization with 
the itakura-saito divergence: with application to music analysis. Neural 
Comput. 21(3), 793–830 (2009)

	51.	 C. Févotte, J. Idier, Algorithms for nonnegative matrix factorization with 
the β-divergence. Neural Comput. 23(9), 2421–2456 (2011)

	52.	 D. FitzGerald, M. Cranitch, E. Coyle, On the use of the beta divergence for 
musical source separation (IET digital library, Dublin, 2009)

	53.	 A.T. Cemgil, Bayesian inference for nonnegative matrix factorisation 
models. Computational intelligence and neuroscience. 2009, 1–17 (2009)

	54.	 D. Baby, J.F. Gemmeke, T. Virtanen, et al., in Proc. IEEE Int. Conf. Acoust., 
Speech, Signal Process. Exemplar-based speech enhancement for deep neural 
network based automatic speech recognition (IEEE, South Brisbane, 2015), 
p. 4485–4489

	55.	 P. Smaragdis, Convolutive speech bases and their application to super-
vised speech separation. IEEE Trans. Audio Speech Lang. Process. 15(1), 
1–12 (2006)

	56.	 L.E. Baum, An inequality and associated maximization technique in 
statistical estimation for probabilistic functions of Markov processes. 
Inequalities. 3(1), 1–8 (1972)

	57.	 I.-T. Recommendation, Perceptual evaluation of speech quality (PESQ): an 
objective method for end-to-end speech quality assessment of narrow-band 
telephone networks and speech codecs. Rec. ITU-T P (IEEE, US, 2001), p. 862

	58.	 J.S. Garofolo, L.F. Lamel, W.M. Fisher, J.G. Fiscus, D.S. Pallett, DARPA TIMIT 
acoustic-phonetic continous speech corpus CD-ROM. NIST speech disc 
1-1.1. NASA STI/Recon technical report n. 93, (1993)

	59.	 G. Hu, D. Wang, A tandem algorithm for pitch estimation and voiced 
speech segregation. IEEE Trans. Audio Speech Lang. Process. 18(8), 
2067–2079 (2010)

	60.	 A. Varga, H.J. Steeneken, Assessment for automatic speech recognition: II. 
NOISEX-92: a database and an experiment to study the effect of additive 
noise on speech recognition systems. Speech Commun 12(3), 247–251 
(1993)

	61.	 I. Cohen, B. Berdugo, Speech enhancement for non-stationary noise 
environments. Signal Process. 81(11), 2403–2418 (2001)

	62.	 I. Cohen, Noise spectrum estimation in adverse environments: improved 
minima controlled recursive averaging. IEEE Trans. Speech Audio Process. 
11(5), 466–475 (2003)

	63.	 P.D. O’grady, B.A. Pearlmutter, Discovering speech phones using convolu-
tive non-negative matrix factorisation with a sparseness constraint. 
Neurocomputing 72(1–3), 88–101 (2008)

	64.	 S. Braun, I. Tashev, in International Conference on Speech and Computer. 
Data augmentation and loss normalization for deep noise suppression 
(Springer, Petersburg, 2020), p. 79–86

	65.	 T. Gerkmann, R.C. Hendriks, Unbiased MMSE-based noise power estima-
tion with low complexity and low tracking delay. IEEE Trans. Audio 
Speech Lang. Process. 20(4), 1383–1393 (2011)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	A speech enhancement algorithm based on a non-negative hidden Markov model and Kullback-Leibler divergence
	Abstract 
	1 Introduction
	2 NMF-based speech enhancement method with KL divergence
	3 HMM-based signal models with the KL divergence
	3.1 Speech and noise signal models
	3.2 Noisy speech model

	4 Methods
	4.1 Offline NMF-HMM-based parameter learning
	4.2 Online speech enhancement using the MMSE estimator
	4.2.1 MMSE estimator for the NMF-HMM
	4.2.2 Online estimation of activation matrices


	5 Experimental results and discussion
	5.1 Experimental data preparation
	5.2 Analyses of the number of states and basis vectors
	5.2.1 HMM states analysis
	5.2.2 States and basis vector analysis for clean speech
	5.2.3 States and basis vector analysis for noise

	5.3 Overall evaluation

	6 Conclusion
	Acknowledgements
	References


