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Abstract 

Cloud technology is not immune to bugs and issue tracking. A dedicated system is required that will extremely error 
prone and less cumbersome and must command a high degree of collaboration, flexibility of operations and smart 
decision making. One of the primary goals of software engineering is to provide high-quality software within a speci-
fied budget and period for cloud-based technology. However, defects found in Cloud-Based Bug Tracking software’s 
can result in quality reduction as well as delay in the delivery process. Therefore, software testing plays a vital role in 
ensuring the quality of software in the cloud, but software testing requires higher time and cost with the increase of 
complexity of user requirements. This issue is even cumbersome in the embedded software design. Early detection of 
defect-prone components in general and embedded software helps to recognize which components require higher 
attention during testing and thereby allocate the available resources effectively and efficiently. This research was 
motivated by the demand of minimizing the time and cost required for Cloud-Based Bug Tracking Software testing 
for both embedded and general-purpose software while ensuring the delivery of high-quality software products 
without any delays emanating from the cloud. Not withstanding that several machine learning techniques have 
been widely applied for building software defect prediction models in general, achieving higher prediction accuracy 
is still a challenging task. Thus, the primary aim of this research is to investigate how deep learning methods can be 
used for Cloud-Based Bug Tracking Software defect detection with a higher accuracy. The research conducted an 
experiment with four different configurations of Multi-Layer Perceptron neural network using five publicly available 
software defect datasets. Results of the experiments show that the best possible network configuration for software 
defect detection model using Multi-Layer Perceptron can be the prediction model with two hidden layers having 25 
neurons in the first hidden layer and 5 neurons in the second hidden layer.
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Introduction
The ease and speed that comes with the use of software 
has made it an indispensable tool in the daily lives of 
humans. embedded software is used in a wide range of 

sectors including health, finance, manufacturing, trans-
portation, and sales among others. The importance and 
merits of software cannot be overemphasized- it makes 
the decision-making process faster, increases productiv-
ity, makes manual processes automatic, and provides an 
overall better customer experience. As more develop-
ments come around, software becomes more complex 
in order to keep up with the ever-growing and changing 
user requirements.

The proliferation of Internet of Things technology (IoT) 
has put new requirements for the design of embedded 
software. Three categories of devices are used in the IoT 
ecosystem: Low-end, middle-end, and high-end devices 
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[1]. Low-end devices encapsulate a set of microcon-
trollers that typically have a limited RAM (capacity less 
than 50kB) and a flash memory that doesn’t exceed 250kB 
in size. There are three types of low-end devices: 8-bit, 
16-bit, and 32-bit architecture. Several real-time oper-
ating systems have been developed for low-end devices: 
RIOT, Contiki, tinyOS, freeRTOS, Zepher, etc., [2].

For IoT system, the principal goal of software engineer-
ing is to produce and deliver effective and efficient soft-
ware within the specified timeframe and budget. There 
are various non-functional features of software which can 
be used to determine its quality. The most important fea-
ture to consider here is its reliability [3, 4]. To assess its 
reliability, the amount of defects in the software have to 
be detected and calculated. So the lower the number of 
defects, the more reliable the software is. Non-functional 
software features that can be used to assess software 
quality are reliability, security, maintainability, and scal-
ability. Scalability measures the greatest workloads that 
the system can handle while still meeting performance 
criteria. Reliability, This quality feature describes the 
likelihood that the system or its component will operate 
without failure for a certain amount of time under preset 
conditions. It is represented as a percentage of likelihood. 
The security criterion ensures that any data included 
within the system or its components is safe from malware 
assaults or unauthorized access. The time necessary for 
a solution or its component to be corrected, updated to 
improve performance or other attributes, or adapted to a 
changing environment is defined as maintainability There 
are several factors which could cause defects in software 
but the most common are the misinterpretation, incom-
pleteness or unimplementation of the requirements [5].

Embedded systems are prone to security attacks, 
opaque, and less controllable from the end-user. Find-
ing bugs in embedded software received scant attention 
by the research communities. The reasons as narrated in 
[6] are, among other things, the proliferation of embed-
ded devices and the lack of forensic tools for low-end 
devices. The widely used approaches for the analysis of 
the embedded software are by obtaining device firmware, 
and static and dynamic firmware analyses.

A defect is essentially an error or flaw which pre-
vents the software from meeting its requirements [7]. 
It is impossible to create a software that is 100% defect-
free, so the only way to curb this ∼ is to detect and fix as 
many defects as can be detected before the final product 
is delivered to the users. A vital stage in the production 
of software to ensure its quality is the phase of software 
testing. The early detection of the defective software 
components assist the software quality assurance teams 
in identifying the units to prioritize during the testing 
phase [8]. However, there are challenges associated with 

this stage of production. The high cost, long duration and 
limited resources prevent the intensive testing of every 
software component [9]. It is crucial to create smart tools 
capable of detecting software components that are defec-
tive in the testing phase [10, 11] . The prediction and 
detection of software defects is a fast-developing field 
in the research community. Software defect detection is 
the development of models to be used in the early test-
ing process to pinpoint which components in the soft-
ware are defective [12, 13]. It is an automatic approach 
which greatly enhances the testing process [14]. A survey 
conducted by GitLab revealed that in the software devel-
opment process, the testing phase consumes the most 
time and causes the most delays [15]. According to the 
World Quality Report 2019-2020, the software testing 
phase takes up almost 30% of the entire software project 
costs [16]. A software defect is a coding fault that results 
in inaccurate or unexpected output from a software pro-
gramme that does not fulfil actual requirements. Human 
aspect, communications failure, unrealistic development 
timetable, poor design login, faulty debuggers, poor cod-
ing methods, poor tools, lack of version control, and 
bugged 3rd party tools are the primary causes of software 
errors. Early defect detection tests are a cost-effective 
and accurate method of developing secure, resilient soft-
ware. As defects or vulnerabilities go undiscovered, they 
generate a never-ending costs in terms of cost-to-fix or 
remediation.

The primary contribution of this research is the design 
of a software defect detection model using the Multi-
Layer Perceptron Neural Network, a deep learning tech-
nique to improve its accuracy in detecting defects. This 
research also provides an evaluation of the performance 
of the proposed model, and uses it as a base model to 
assess the approach of other deep learning techniques. In 
summary, the contributions of this research include: 

1.	 To examine deep learning and machine learning 
approaches used in software defect detection.

2.	 To identify public software defect datasets which can 
be used to train the software defect detection models

3.	 To propose a detection model using the Multi-Layer 
Perceptron Neural Network

4.	 To examine the performance of the proposed model 
and present its experimental results.

The remainder of our paper is organized as follows. Sec-
tion 2 provides a literature review of the software defect 
development. Section 3 illustrates the main concepts that 
will be used in the proposed system. The performance 
evaluation of the proposed system are introduced in Sec-
tion 4. In Section 5, the results are analysed. Finally, we 
conclude the paper in Section 6.
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Literature review
The development of a software defect detection model 
with high accuracy has proven to be a herculean task. 
Over the past decade, several approaches have been pro-
posed, but most of them have not been able to meet the 
standards in their accuracy of predicting and detecting 
the defects [17, 18]. According to [19], the introduction 
of network computing technologies like cloud com-
puting has provided users all around the world with an 
affordable and flexible network-based service provision 
scheme. This storage service allows users to outsource 
their large local data to cheaper remote storage servers, 
reducing cost and protecting the integrity of the data. 
The blockchain has proven to be effective in preventing 
the leakage of data in 5G environments. Unnecessary 
reliance on a Trusted Third Party and the burden of sig-
nificant overhead are some of the challenges the block-
chain has mitigated, allowing the secure generation and 
sharing of watermarked content [20]. As a result of the 
widespread adoption of network storage services, there 
are emerging performance and security issues that affect 
the scalability. The high cost, reliance on third parties 
and repeated auditing of data are also challenges faced 
by the existing data auditing mechanism. To resolve this, 
a blockchain-based deduplication scheme was proposed 
to help check the data integrity and credibility of audit 
results in [21]. Deep learning, designed from hierarchical 
structure comprising multiple neural layers, has the abil-
ity to extract and learn information for generation of the 
reconstruction features from the input data through neu-
ral processing layer-by-layer. It has a wide range of uses 
including language understanding, visual recognition and 
threat detection in a network [22]. In [23], an efficient 
attribute-based scheme was proposed to prevent the 
breach of privacy of the access subject in the process of 
decision-making through the introduction of a state-of-
the-art hash-based binary search tree. Renewable energy 
sources (RES) are of vital importance in modern power 
systems, but they are easily affected by the environment. 
Most dispatching mechanisms depend on centralized 
organizations, but the authors in [24] tried to resolve 
this by proposing a blockchain-based scheme to dispatch 
energy for RES systems.

Deep learning is a hot topic in computing, but build-
ing an effective deep learning model is a very challenging 
task, as a result of its dynamic nature, and the differences 
in real-world data and problems. In [25], a comprehen-
sive review of deep learning techniques was presented, 
considering different types of real-world tasks like unsu-
pervised or supervised, and their real-world application 
areas. Kantardzic [26] presented the state-of-the-art 
techniques for the analysis and extraction of informa-
tion from massive amounts of data in high-dimensional 

data spaces, as well as an extensive view on software 
tools. Han and Kamber [27] and Han et al. [28] revealed 
how deep learning techniques have been used to solve a 
wide range of real-world problems with great success. In 
[29], the theoretical bases for the Multi-Layer Perceptron 
Neural Network was presented for the backpropagation 
learning algorithm and the architecture. The MLP model 
comprises of the input layer, hidden layer, and the output 
layer. The nodes in the MLP model are activated through 
the Sigmoid function by the Weka 3.8.6 tool, which is 
used to test software defect prediction models with vary-
ing configurations for MLP networks [30]. In [31], various 
metric-based bug datasets were collected and assessed in 
order to acquire a common set of source code metrics. 
The primary aim was to show how effective the dataset 
is in bug prediction. Cetiner and Sahingoz [32] presented 
a comparative and comprehensive analysis about deep 
learning and machine learning-based software defect 
prediction models through the comparison of 10 different 
learning algorithms on public datasets. The experimental 
results revealed that the proposed model showed high 
accuracy in the prediction of software defect and there-
fore, increased the quality of the software. [33] presented 
an Intelligent Cloud enabled Internet of Everything infra-
structure as a first step in combining these two broad 
sectors and offering important services to end users. The 
Wind Driven Optimization Technique is used to enhance 
energy usage by clustering the different IoT networks. 
Rajput et al. [34] proposed a reference model for assisting 
diabetics in remote areas The concept enhances commu-
nications and interactions between patients and physi-
cians. The current study’s analysis goal is to analyze the 
risk variables and the correlations that exist among these 
risk factors.For prediction, Naive Bayes, SVM, random 
forest, logistic regression, decision tree and KNN classi-
fiers are employed. Rupa et  al. [35] A blockchain-based 
cloud-integrated IoT solution is offered, which can aid in 
the detection of intruders via virtual surveillance. The key 
feature of this technique is that it may work in regions 
where monitoring and control is difficult, and data is 
saved in a tamper-proof blockchain environment

Proposed method
Multi‑Layer Perceptron (MLP)
Multi-Layer Perceptron (MLP) is one of the supervised 
learning models used in deep learning [25]. MLP neural 
networks have been used to solve a variety of complex 
and diverse real-world problems with great success [26].
This section describes the different aspects of an MLP. 
This model is made up of three types of layers which are 
input layer, hidden layer, and output layer [27]. The MLP 
neural network consists of one or more hidden layers 
between the input layer and the output layer. Each layer is 
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made up of small units called neurons. The artificial neu-
rons function similarly to biological neurons where the 
neurons receive inputs from other neurons, process them 
and produce an output.

Tools
Weka 3.8.6 tool was used to train and test the software 
defect prediction models with different configurations for 
Multi-layer Perceptron neural network. Weka uses Sig-
moid function as the activation function of all the nodes 
in the MLP neural network [29]. Sigmoid function can be 
defined as follows,

The Sigmoid function performs better in classification 
problems with linearly non- separable classes [11]. The 
sigmoid function may be exploited in complex classifi-
cation functions because it provides non-linear bounds 
when coupled with a non-linear framework. The kernel 
function is better suited for the classification tasks with 
linearly non-separable classes because the sigmoid func-
tion is homogeneous, continuous, and differentiable 
everywhere and its derivative can be defined in terms of 
itself. Furthermore, The Sigmoid function accepts any 
real number as input and returns a value in the range of 0 
to 1 as output. Figure 1 illustrates the Sigmoid function.

During the learning phase, the weights are adjusted 
using the gradient descent approach. Gradient descent 
algorithm is an adoption in traditional back propagation 
in which the network weights are shifted along the nega-
tive gradient of the response surface together with learning 
rate and momentum. A response to the learning issues is 
a weighted combination that minimize the error function. 
Weights are updated during the learning process using the 

(1)f (x) =
1

1+ e−x

following formulas [19]. ‘w’ refers to the weight assigned 
to a connection. ‘ � w’ denotes change in weight ‘w’ and it 
is calculated using (2).Gradient is determined using the 
back propagation algorithm. The next value of weight ‘w’ is 
denoted by ‘wnext ’ and it is calculated using (3).

The learning rate and momentum are applied to update 
the weights during the learning process. The learning rate 
and momentum were assigned fixed values.

Learning rate is a hyper parameter that indicates how 
well the model should react differently to the predicted 
error each time the system model weights are adjusted. 
Momentum can help to expedite training, and learning 
rate plans can aid in the optimization process. Accord-
ing to the problem, the momentum and the learning rate 
both are allocated definite values in order to achieve sta-
ble convergence.

Datasets
This study considered using public datasets to train and 
verify the proposed software defect detection model. Fur-
thermore, the literature suggests exploring and using new 
datasets for developing software defect detection models. 
Therefore, this research also considered investigating and 
using new software defect datasets to train and test the 
proposed model. Five different public datasets formed 
by [31] were selected as one of the main concerns of this 
study is to use new software defect datasets. Three data-
sets were selected from Tera-Promise and two datasets 
were selected from GitHub Bug Repository. The datasets 
selected from Tera-Promise are Xalan 2.6, Velocity 1.5 
and Poi 3.0. Netty 3.6.3 and mcMMO 1.4.06 are the two 
datasets chosen from GitHub Bug Repository. The prop-
erties of the selected datasets that include the number 
code metrics found in the original dataset, the number 
of code metrics calculated using OSA, total number of 
instances, number of defective instances and number of 
non-defective instances are illustrated in Table 1.

Proposed WORKFLOW
The workflow used for proposing a software defect pre-
diction model using MLP is illustrated in Fig. 2. The pro-
posed workflow mainly consists of four steps. First step 
is dataset selection. The second step is generation of the 
prediction model using a specific MLP network config-
uration. Training and testing the generated prediction 
model using training and test datasets is performed in 
third step. The final stage involves performance evalua-
tion of the software defect prediction model.

(2)
�w = −learning rate × gradient +momentum×�wprevious

(3)wnext = w +�w

Fig. 1  Sigmoid function
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According to [28] there are no hard and fast guide-
lines for deciding the ideal number of hidden layers and 
the ideal number of neurons in each layer. Therefore, 
this research conducted an experiment with 4 different 
network configurations on the five selected datasets to 
determine the best possible number of hidden layers and 
the number of neurons in each hidden layer. The follow-
ing guidelines were followed when deciding the combina-
tion of the number of hidden layers and the number of 
neurons in each hidden layer.

–	 The experiment was conducted setting the number of 
hidden layers to 2 and 3

–	 The number of neurons in each hidden layer was 
selected between the number of neurons in the input 
layer (60) and the number of neurons in the output 
layer (2)

–	 The number of neurons was gradually decreased 
from the first hidden layer to the last hidden layer.

Performance evaluation
This study utilized k-fold cross-validation approach. 
Furthermore, the value of k was set to 10 and therefore, 
10-fold cross validation was used to get an evaluation 
result and estimate of the error.

In 10-fold cross validation, the original dataset is 
divided into equal sizes of 10 sub datasets randomly 
[28]. The training and testing are repeated 10 times for 
a selected dataset. Figure  3 illustrates the procedure of 
10-fold cross validation.

Furthermore, the process of 10-fold cross-validation 
can be described as follows. In the first iteration, the 
first subset of data is used as the testing dataset while 
the rest of the 9 subsets of data are used as training 
datasets. In the second iteration, the second subset of 
data is used as the testing dataset while the remaining 9 
sub datasets are used for training the model. This pro-
cess is repeated 10 times. It produces 10 results, and an 
average result is computed as the final result. In k-fold 

Table 1  Properties of the selected datasets

Data Source Dataset Number of metrics in 
the original dataset

Number of metrics 
calculated with OSA

Number of 
instances

Number of 
defective 
instances

Number of 
non-defective 
instances

Tera-promise Xalan 2.6 22 60 885 411 (46.44%) 474 (53.56%)

Velocity 1.5 22 60 213 141 (66.29%) 72 (33.71%)

Poi 3.0 22 60 442 281 (63.57%) 161 (36.43%)

GitHub Bug Repository Netty 3.6.3 60 60 1143 271 (23.71%) 1072 (76.29%)

mcMMO 1.4.06 60 60 301 57 (18.94%) 244 (81.06%)

Fig. 2  Proposed workflow
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cross validation, each subset of data is utilized one time 
for testing and an equal number of times for training.

As illustrated in Fig.  4, a confusion matrix for the 
binary classification problem produces 4 outcomes 
which are True Positive (TP), False Negative (FN), False 
Positive (FP) and True Negative (TN) [32].

–	 True Positive (TP) presents the number of positive 
instances which were correctly predicted as positive 
[1];

–	 False Negative (FN) presents the number of positive 
instances which were incorrectly predicted as nega-
tive [1];

–	 False Positive (FP) presents the number of negative 
instances which were incorrectly predicted as posi-
tive [1];

–	 True Negative (FN) presents the number of instances 
which were correctly predicted as negative [1].

Therefore, True Positive (TP) and True Negative (FN) 
reflect that the prediction has been made correctly 
whereas False Positive (FP) and False Negative (FN) indi-
cate that the prediction has been made incorrectly.

The proposed configurations of MLP neural network 
for software defect detection were evaluated using sev-
eral performance measures which are accuracy, precision, 

recall, F-measure and ROC Area. The Weka tool provides 
all these performance indicators. Some of the established 
performance metrics applied for measurements are as 
follows;

(4)Accuracy =
TP + TN

TP + TN + FP + FN

Fig. 3  10-fold cross-validation technique

Fig. 4  Confusion Matrix
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The score of 1.0 reflects a perfect recall whereas the score 
of 0.0 reflects the worst recall. A higher value of recall 
means the prediction model has higher ability of detect-
ing true positives as positive.

The perfect precision is defined by the score of 1.0 
whereas the worst precision is defined by the score of 0.0. 
A higher value of precision reflects that the prediction 
model shows a low rate of incorrectly classifying negative 
instances as positive.

Since it is clear that neither recall nor precision can 
give a complete measure on their own. F-Measure com-
bines both recall and precision into a single measure 
by calculating the harmonic mean of them. Therefore, 
F-Measure gives equal weights for both recall and preci-
sion which is more important when imbalanced data is 
used for training.

Results analysis
This section analyses the experimental results obtained 
for all MLP network configurations on the five selected 
datasets. The performance of each MLP architecture was 
evaluated using accuracy, precision, recall, F-Measure 
and ROC Area. Table 2 illustrates the percentage of pre-
diction accuracy of each MLP network configuration on 
each dataset.

The MLP model with two hidden layers and 25 and 5 
neurons in the first and second hidden layers, respec-
tively, shows the highest prediction accuracy for Xalan 
2.6, Velocity 1.5, Poi 3.0 datasets. However, the MLP 
model with the same network configuration shows the 
lowest prediction accuracy for Netty 3.6.3 dataset. The 

(5)Recall =
TP

TP + FN

(6)Precision =
TP

TP + FP

(7)F −Measure =
2 ∗ Precision ∗ Recall

Precision+ Recall

MLP which consists of three hidden layers and 15 and 
10 nodes in the first and second hidden layers respec-
tively and 5 nodes in the final hidden layer has per-
formed better with higher prediction accuracy in Netty 
3.6.3 dataset. The average accuracy of this MLP model 
is 78.2120%.

Table 3 shows the evaluation results including preci-
sion, recall and F-Measure for all considered MLP net-
work configurations on Xalan 2.6 dataset. The results 
present the precision, recall and F-Measure for each 
target class as well as the weighted average of per-class 
values. According to the findings, in precision, recall 
and F-Measure, the MLP model with two hidden lay-
ers and 25 and 5 neurons in each hidden layer has per-
formed well in both output classes when compared to 
the other configurations of MLP neural network.

Table 4 presents the evaluation results on Velocity 1.5 
dataset. It shows that in precision, the MLP with two 
hidden layers and 15 and 5 neurons in first and second 
hidden layers respectively performed well for the true 
class whereas the MLP with two hidden layers and 25 
and 5 neurons in each hidden layer performed well in 
the false class. In recall, vice versa has happened for 
true and false classes. However, when the weighted 
average in recall and precision are considered, the MLP 
with two hidden layers and 25 and 5 neurons in each 
hidden layer performed well for Velocity 1.5 dataset.

The evaluation results of Poi 3.0 dataset are provided 
in Table  5. According to the results, the MLP neural 
network with two hidden layers and 25 and 5 neurons 
in the first and second hidden layers respectively has 
shown the best performance in recall, precision and 
F-Measure in both true and false classes when com-
pared to other network configurations.

The results obtained for Netty 3.6.3 dataset with each 
MLP model is presented in the Table 6. It is clear that 
in precision, recall and F-Measure, the MLP with three 
hidden layers having 15, 10 and 5 nodes from the first 
hidden layer to the third hidden layer respectively has 
well detected both true and false classes.

Table 2  Prediction accuracy results

Dataset H1=15, H2=5 H1=25, H2=5 H1=15, H2=10, H3=5 H1=30, 
H2=15, 
H3=5

Xalan 2.6 73.2203 75.2203 74.3503 72.8814

Velocity 1.5 75.1174 77.4648 75.1174 76.0563

Poi 3.0 72.8507 76.0181 73.9819 73.0769

Netty 3.6.3 80.4899 79.9650 81.7148 80.7524

mcMMo 1.4.06 84.7176 82.3920 83.0565 81.0631

Average Accuracy 77.2792 78.2120 77.6342 76.7660
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Table 3  Results obtained for Xalan 2.6 dataset

MLP Model Precision Recall F-Measure

True False Weighted 
Average

True False Weighted 
Average

True False Weighted 
Average

H1=15 0.779 0.707 0.740 0.591 0.854 0.732 0.672 0.774 0.727

H2=5

H1=25 0.796 0.731 0.761 0.635 0.859 0.755 0.706 0.790 0.751

H2=5

H1=15 0.774 0.725 0.748 0.633 0.840 0.744 0.696 0.778 0.740

H2=10

H3=5

H1=30 0.773 0.705 0.736 0.589 0.850 0.729 0.669 0.771 0.723

H2=15

H3=5

Table 4  Results obtained for Velocity 1.5 dataset

MLP Model Precision Recall F-Measure

True False Weighted 
Average

True False Weighted 
Average

True False Weighted 
Average

H1=15 0.879 0.598 0.784 0.723 0.806 0.751 0.794 0.686 0.757

H2=5

H1=25 0.855 0.646 0.784 0.794 0.736 0.755 0.824 0.688 0.778

H2=5

H1=15 0.838 0.614 0.763 0.773 0.708 0.751 0.804 0.658 0.755

H2=10

H3=5

H1=30 0.852 0.624 0.774 0.773 0.736 0.761 0.810 0.675 0.765

H2=15

H3=5

Table 5  Results obtained for Poi 3.0 dataset

MLP Model Precision Recall F-Measure

True False Weighted 
Average

True False Weighted 
Average

True False Weighted 
Average

H1=15 0.813 0.611 0.739 0.744 0.702 0.729 0.777 0.653 0.732

H2=5

H1=25 0.840 0.649 0.771 0.769 0.745 0.760 0.803 0.694 0.763

H2=5

H1=15 0.832 0.620 0.755 0.740 0.739 0.740 0.783 0.674 0.744

H2=10

H3=5

H1=30 0.805 0.619 0.737 0.762 0.677 0.731 0.782 0.647 0.733

H3=5
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Table 7 illustrates the results of mcMMO 1.4.06 data-
set with all experimented MLP model configurations. 
As per the findings, the MLP neural network with two 
hidden layers, with 15 and 5 nodes in each hidden layer 
has relatively high precision, recall and F-Measure in 
both true and false classes when compared to other 
MLP network configurations.

According to precision, recall and F-Measure, the MLP 
neural network with three hidden layers, with 30 neurons 
in the first hidden layer, 15 neurons in the second hid-
den layer and 5 neurons in the final hidden layer has not 
shown higher performance in any of the datasets.

According to ROC Area results presented in Table 8, 
the MLP neural network with two hidden layers and 25 
neurons in the first hidden layer and 5 neurons in the 

Table 6  Results obtained for Netty 3.6.3 dataset

MLP Model Precision Recall F-Measure

True False Weighted 
Average

True False Weighted 
Average

True False Weighted 
Average

H1=15 0.620 0.844 0.791 0.458 0.913 0.805 0.527 0.877 0.794

H2=5

H1=25 0.597 0.847 0.788 0.476 0.900 0.800 0.530 0.873 0.791

H2=5

H1=15 0.646 0.856 0.806 0.506 0.914 0.817 0.567 0.884 0.809

H2=10

H3=5

H1=30 0.620 0.846 0.794 0.456 0.914 0.808 0.534 0.879 0.797

H2=15

H3=5

Table 7  Results obtained for mcMMO 1.4.06 dataset

MLP Model Precision Recall F-Measure

True False Weighted 
Average

True False Weighted 
Average

True False Weighted 
Average

H1=15 0.622 0.887 0.837 0.491 0.930 0.847 0.549 0.908 0.840

H2=5

H1=25 0.542 0.877 0.814 0.476 0.910 0.824 0.495 0.893 0.818

H2=5

H1=15 0.568 0.875 0.817 0.439 0.922 0.831 0.495 0.898 0.822

H2=10

H3=5

H1=30 0.500 0.867 0.797 0.404 0.906 0.811 0.447 0.886 0.803

H2=15

H3=5

Table 8  ROC Area results

MLP Model Xalan 2.6 Velocity 1.5 Poi 3.0 Netty 3.6.3 mcMMO 1.4.06

H1=15, H2=5 0.808 0.801 0.794 0.754 0.774

H1=25, H2=5 0.822 0.794 0.816 0.777 0.756

H1=15, H2=10, H3=5 0.803 0.772 0.785 0.783 0.764

H1=30, H2=15, H3=5 0.791 0.766 0.766 0.789 0.749
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second hidden layer has performed better in Xalan 2.6 
and Poi 3.0 datasets in discovering between the defec-
tive and non-defective classes. For Velocity 1.5 dataset, 
the MLP with two hidden layers having 15 nodes and 5 
nodes respectively in the first and second hidden layers 
has produced the highest ROC Area. Furthermore, the 
MLP with three hidden layers with 15, 10 and 5 nodes 
from the first hidden layer to the last hidden layer 
respectively has shown a higher ROC Area on mcMMO 
1.4.06dataset. The MLP with three hidden layers and 30 
neurons in the first hidden layer, 15 neurons in the sec-
ond hidden layer and 5 neurons in the last hidden layer 

has performed well with ROC Area value of 0.789 on 
Netty 3.6.3 dataset.

ROC curves generated by the MLP with two hidden 
layers and 25 neurons in the first hidden layer and 5 neu-
rons in the second hidden layer for true class of Xalan 
2.6, Velocity 1.5, Poi 3.0, Netty 3.6.3 and mnMMO 1.4.06 
datasets are presented in Figs. 5, 6, 7, 8 and 9 respectively. 
X-axis in each plot represents False Positive rate while 
Y-axis represents True Positive rate.

After analysing the results obtained for all perfor-
mance metrics including accuracy, precision, recall, 
F-Measure and ROC Area as well as considering the 

Fig. 5  ROC curve of Xalan 2.6

Fig. 6  ROC curve of Velocity 1.5
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class imbalance issue existing in the datasets, this 
study has discovered that the best possible network 
configuration for software defect detection model 
using MLP can be the prediction model with two hid-
den layers having 25 neurons in the first hidden layer 
and 5 neurons in the second hidden layer. Figure  10 
illustrates proposed MLP architecture.

Conclusion
The field of software engineering mainly focuses on 
delivering high-quality software within a specified 
budget and period. However, the defects found in the 
software can cause delayed the delivery process while 
reducing the quality of software. Therefore, early 
detection of defects in the software being developed 

Fig. 7  ROC curve of Poi 3.0

Fig. 8  ROC curve of Netty 3.6.3



Page 12 of 14Hai et al. Journal of Cloud Computing           (2022) 11:32 

and fixing before it is delivered to the end users is a 
crucial task. Due to the complexity of user require-
ments as well as the infeasibility of producing defect-
free software, the software testing process requires 
high cost and time to deliver quality software. Early 

detection of defect prone modules in the software 
being developed assists software quality assurance 
teams to identify which modules require more atten-
tion during the testing process and thereby make use of 
available resources for software testing efficiently and 

Fig. 9  ROC curve of mcMMO 1.4.06

Fig. 10  Proposed architecture of MLP model for software defect prediction
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effectively. Automation of early detection of defective 
modules in software has been an active research area 
for many years. With the evolution of different tech-
nologies, software defect detection has also become an 
emerging research area. Various approaches includ-
ing statistical methods, machine learning techniques 
and deep learning techniques have been applied for 
software defect detection. This study dealt with the 
investigation of one of the emerging areas in AI which 
is deep learning for software defect detection. This 
research analysed the performance of Multi-layer Per-
ceptron neural network, which is a supervised deep 
learning technique for software defect detection. An 
experiment with four different network configura-
tions of MLP neural network was conducted to pro-
pose the best possible MLP architecture among them 
for software defect detection. The performance of the 
four MLP neural network configurations was evalu-
ated using several metrics computed using a confu-
sion matrix. The used evaluation metrics are accuracy, 
precision, recall, F-Measure and ROC area. Among the 
MLP network configurations used for the experiment, 
this study has discovered that the best possible net-
work configuration for the software defect detection 
model using MLP can be the prediction model with 
two hidden layers having 25 neurons in the first hidden 
layer and 5 neurons in the second hidden layer. The 
study concludes that the proposed MLP neural net-
work performs better on 3 out of 5 used datasets when 
compared to the other network configurations. How-
ever, this study concludes that more empirical studies 
should be conducted to assess the performance of the 
proposed software defect detection model and thereby 
help to refine it.
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