
Hai et al. Journal of Cloud Computing (2022) 11:32
https://doi.org/10.1186/s13677-022-00311-8

RESEARCH

Cloud‑based bug tracking software defects
analysis using deep learning
Tao Hai1,2,3, Jincheng Zhou1,2*, Ning Li4,5, Sanjiv Kumar Jain6*, Shweta Agrawal7 and Imed Ben Dhaou8,9,10* 

Abstract 

Cloud technology is not immune to bugs and issue tracking. A dedicated system is required that will extremely error
prone and less cumbersome and must command a high degree of collaboration, flexibility of operations and smart
decision making. One of the primary goals of software engineering is to provide high-quality software within a speci-
fied budget and period for cloud-based technology. However, defects found in Cloud-Based Bug Tracking software’s
can result in quality reduction as well as delay in the delivery process. Therefore, software testing plays a vital role in
ensuring the quality of software in the cloud, but software testing requires higher time and cost with the increase of
complexity of user requirements. This issue is even cumbersome in the embedded software design. Early detection of
defect-prone components in general and embedded software helps to recognize which components require higher
attention during testing and thereby allocate the available resources effectively and efficiently. This research was
motivated by the demand of minimizing the time and cost required for Cloud-Based Bug Tracking Software testing
for both embedded and general-purpose software while ensuring the delivery of high-quality software products
without any delays emanating from the cloud. Not withstanding that several machine learning techniques have
been widely applied for building software defect prediction models in general, achieving higher prediction accuracy
is still a challenging task. Thus, the primary aim of this research is to investigate how deep learning methods can be
used for Cloud-Based Bug Tracking Software defect detection with a higher accuracy. The research conducted an
experiment with four different configurations of Multi-Layer Perceptron neural network using five publicly available
software defect datasets. Results of the experiments show that the best possible network configuration for software
defect detection model using Multi-Layer Perceptron can be the prediction model with two hidden layers having 25
neurons in the first hidden layer and 5 neurons in the second hidden layer.

Keywords:  Software defects, Prediction, Detection, Deep learning, Multi-layer perceptron

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
The ease and speed that comes with the use of software
has made it an indispensable tool in the daily lives of
humans. embedded software is used in a wide range of

sectors including health, finance, manufacturing, trans-
portation, and sales among others. The importance and
merits of software cannot be overemphasized- it makes
the decision-making process faster, increases productiv-
ity, makes manual processes automatic, and provides an
overall better customer experience. As more develop-
ments come around, software becomes more complex
in order to keep up with the ever-growing and changing
user requirements.

The proliferation of Internet of Things technology (IoT)
has put new requirements for the design of embedded
software. Three categories of devices are used in the IoT
ecosystem: Low-end, middle-end, and high-end devices

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: guideaaa@126.com; sanjivkj@gmail.com; imed.
bendhaou@utu.fi

1 School of Computer and Information, Qiannan Normal University
for Nationalities, 558000 Duyun, Guizhou, China
6 Electrical Engineering Department, Medi-Caps University, Indore,
Madhya Pradesh, India
9 Department of Computing, University of Turku, 20500 Turku, Finland
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00311-8&domain=pdf

Page 2 of 14Hai et al. Journal of Cloud Computing (2022) 11:32

[1]. Low-end devices encapsulate a set of microcon-
trollers that typically have a limited RAM (capacity less
than 50kB) and a flash memory that doesn’t exceed 250kB
in size. There are three types of low-end devices: 8-bit,
16-bit, and 32-bit architecture. Several real-time oper-
ating systems have been developed for low-end devices:
RIOT, Contiki, tinyOS, freeRTOS, Zepher, etc., [2].

For IoT system, the principal goal of software engineer-
ing is to produce and deliver effective and efficient soft-
ware within the specified timeframe and budget. There
are various non-functional features of software which can
be used to determine its quality. The most important fea-
ture to consider here is its reliability [3, 4]. To assess its
reliability, the amount of defects in the software have to
be detected and calculated. So the lower the number of
defects, the more reliable the software is. Non-functional
software features that can be used to assess software
quality are reliability, security, maintainability, and scal-
ability. Scalability measures the greatest workloads that
the system can handle while still meeting performance
criteria. Reliability, This quality feature describes the
likelihood that the system or its component will operate
without failure for a certain amount of time under preset
conditions. It is represented as a percentage of likelihood.
The security criterion ensures that any data included
within the system or its components is safe from malware
assaults or unauthorized access. The time necessary for
a solution or its component to be corrected, updated to
improve performance or other attributes, or adapted to a
changing environment is defined as maintainability There
are several factors which could cause defects in software
but the most common are the misinterpretation, incom-
pleteness or unimplementation of the requirements [5].

Embedded systems are prone to security attacks,
opaque, and less controllable from the end-user. Find-
ing bugs in embedded software received scant attention
by the research communities. The reasons as narrated in
[6] are, among other things, the proliferation of embed-
ded devices and the lack of forensic tools for low-end
devices. The widely used approaches for the analysis of
the embedded software are by obtaining device firmware,
and static and dynamic firmware analyses.

A defect is essentially an error or flaw which pre-
vents the software from meeting its requirements [7].
It is impossible to create a software that is 100% defect-
free, so the only way to curb this ∼ is to detect and fix as
many defects as can be detected before the final product
is delivered to the users. A vital stage in the production
of software to ensure its quality is the phase of software
testing. The early detection of the defective software
components assist the software quality assurance teams
in identifying the units to prioritize during the testing
phase [8]. However, there are challenges associated with

this stage of production. The high cost, long duration and
limited resources prevent the intensive testing of every
software component [9]. It is crucial to create smart tools
capable of detecting software components that are defec-
tive in the testing phase [10, 11] . The prediction and
detection of software defects is a fast-developing field
in the research community. Software defect detection is
the development of models to be used in the early test-
ing process to pinpoint which components in the soft-
ware are defective [12, 13]. It is an automatic approach
which greatly enhances the testing process [14]. A survey
conducted by GitLab revealed that in the software devel-
opment process, the testing phase consumes the most
time and causes the most delays [15]. According to the
World Quality Report 2019-2020, the software testing
phase takes up almost 30% of the entire software project
costs [16]. A software defect is a coding fault that results
in inaccurate or unexpected output from a software pro-
gramme that does not fulfil actual requirements. Human
aspect, communications failure, unrealistic development
timetable, poor design login, faulty debuggers, poor cod-
ing methods, poor tools, lack of version control, and
bugged 3rd party tools are the primary causes of software
errors. Early defect detection tests are a cost-effective
and accurate method of developing secure, resilient soft-
ware. As defects or vulnerabilities go undiscovered, they
generate a never-ending costs in terms of cost-to-fix or
remediation.

The primary contribution of this research is the design
of a software defect detection model using the Multi-
Layer Perceptron Neural Network, a deep learning tech-
nique to improve its accuracy in detecting defects. This
research also provides an evaluation of the performance
of the proposed model, and uses it as a base model to
assess the approach of other deep learning techniques. In
summary, the contributions of this research include:

1.	 To examine deep learning and machine learning
approaches used in software defect detection.

2.	 To identify public software defect datasets which can
be used to train the software defect detection models

3.	 To propose a detection model using the Multi-Layer
Perceptron Neural Network

4.	 To examine the performance of the proposed model
and present its experimental results.

The remainder of our paper is organized as follows. Sec-
tion 2 provides a literature review of the software defect
development. Section 3 illustrates the main concepts that
will be used in the proposed system. The performance
evaluation of the proposed system are introduced in Sec-
tion 4. In Section 5, the results are analysed. Finally, we
conclude the paper in Section 6.

Page 3 of 14Hai et al. Journal of Cloud Computing (2022) 11:32 	

Literature review
The development of a software defect detection model
with high accuracy has proven to be a herculean task.
Over the past decade, several approaches have been pro-
posed, but most of them have not been able to meet the
standards in their accuracy of predicting and detecting
the defects [17, 18]. According to [19], the introduction
of network computing technologies like cloud com-
puting has provided users all around the world with an
affordable and flexible network-based service provision
scheme. This storage service allows users to outsource
their large local data to cheaper remote storage servers,
reducing cost and protecting the integrity of the data.
The blockchain has proven to be effective in preventing
the leakage of data in 5G environments. Unnecessary
reliance on a Trusted Third Party and the burden of sig-
nificant overhead are some of the challenges the block-
chain has mitigated, allowing the secure generation and
sharing of watermarked content [20]. As a result of the
widespread adoption of network storage services, there
are emerging performance and security issues that affect
the scalability. The high cost, reliance on third parties
and repeated auditing of data are also challenges faced
by the existing data auditing mechanism. To resolve this,
a blockchain-based deduplication scheme was proposed
to help check the data integrity and credibility of audit
results in [21]. Deep learning, designed from hierarchical
structure comprising multiple neural layers, has the abil-
ity to extract and learn information for generation of the
reconstruction features from the input data through neu-
ral processing layer-by-layer. It has a wide range of uses
including language understanding, visual recognition and
threat detection in a network [22]. In [23], an efficient
attribute-based scheme was proposed to prevent the
breach of privacy of the access subject in the process of
decision-making through the introduction of a state-of-
the-art hash-based binary search tree. Renewable energy
sources (RES) are of vital importance in modern power
systems, but they are easily affected by the environment.
Most dispatching mechanisms depend on centralized
organizations, but the authors in [24] tried to resolve
this by proposing a blockchain-based scheme to dispatch
energy for RES systems.

Deep learning is a hot topic in computing, but build-
ing an effective deep learning model is a very challenging
task, as a result of its dynamic nature, and the differences
in real-world data and problems. In [25], a comprehen-
sive review of deep learning techniques was presented,
considering different types of real-world tasks like unsu-
pervised or supervised, and their real-world application
areas. Kantardzic [26] presented the state-of-the-art
techniques for the analysis and extraction of informa-
tion from massive amounts of data in high-dimensional

data spaces, as well as an extensive view on software
tools. Han and Kamber [27] and Han et al. [28] revealed
how deep learning techniques have been used to solve a
wide range of real-world problems with great success. In
[29], the theoretical bases for the Multi-Layer Perceptron
Neural Network was presented for the backpropagation
learning algorithm and the architecture. The MLP model
comprises of the input layer, hidden layer, and the output
layer. The nodes in the MLP model are activated through
the Sigmoid function by the Weka 3.8.6 tool, which is
used to test software defect prediction models with vary-
ing configurations for MLP networks [30]. In [31], various
metric-based bug datasets were collected and assessed in
order to acquire a common set of source code metrics.
The primary aim was to show how effective the dataset
is in bug prediction. Cetiner and Sahingoz [32] presented
a comparative and comprehensive analysis about deep
learning and machine learning-based software defect
prediction models through the comparison of 10 different
learning algorithms on public datasets. The experimental
results revealed that the proposed model showed high
accuracy in the prediction of software defect and there-
fore, increased the quality of the software. [33] presented
an Intelligent Cloud enabled Internet of Everything infra-
structure as a first step in combining these two broad
sectors and offering important services to end users. The
Wind Driven Optimization Technique is used to enhance
energy usage by clustering the different IoT networks.
Rajput et al. [34] proposed a reference model for assisting
diabetics in remote areas The concept enhances commu-
nications and interactions between patients and physi-
cians. The current study’s analysis goal is to analyze the
risk variables and the correlations that exist among these
risk factors.For prediction, Naive Bayes, SVM, random
forest, logistic regression, decision tree and KNN classi-
fiers are employed. Rupa et al. [35] A blockchain-based
cloud-integrated IoT solution is offered, which can aid in
the detection of intruders via virtual surveillance. The key
feature of this technique is that it may work in regions
where monitoring and control is difficult, and data is
saved in a tamper-proof blockchain environment

Proposed method
Multi‑Layer Perceptron (MLP)
Multi-Layer Perceptron (MLP) is one of the supervised
learning models used in deep learning [25]. MLP neural
networks have been used to solve a variety of complex
and diverse real-world problems with great success [26].
This section describes the different aspects of an MLP.
This model is made up of three types of layers which are
input layer, hidden layer, and output layer [27]. The MLP
neural network consists of one or more hidden layers
between the input layer and the output layer. Each layer is

Page 4 of 14Hai et al. Journal of Cloud Computing (2022) 11:32

made up of small units called neurons. The artificial neu-
rons function similarly to biological neurons where the
neurons receive inputs from other neurons, process them
and produce an output.

Tools
Weka 3.8.6 tool was used to train and test the software
defect prediction models with different configurations for
Multi-layer Perceptron neural network. Weka uses Sig-
moid function as the activation function of all the nodes
in the MLP neural network [29]. Sigmoid function can be
defined as follows,

The Sigmoid function performs better in classification
problems with linearly non- separable classes [11]. The
sigmoid function may be exploited in complex classifi-
cation functions because it provides non-linear bounds
when coupled with a non-linear framework. The kernel
function is better suited for the classification tasks with
linearly non-separable classes because the sigmoid func-
tion is homogeneous, continuous, and differentiable
everywhere and its derivative can be defined in terms of
itself. Furthermore, The Sigmoid function accepts any
real number as input and returns a value in the range of 0
to 1 as output. Figure 1 illustrates the Sigmoid function.

During the learning phase, the weights are adjusted
using the gradient descent approach. Gradient descent
algorithm is an adoption in traditional back propagation
in which the network weights are shifted along the nega-
tive gradient of the response surface together with learning
rate and momentum. A response to the learning issues is
a weighted combination that minimize the error function.
Weights are updated during the learning process using the

(1)f (x) =
1

1+ e−x

following formulas [19]. ‘w’ refers to the weight assigned
to a connection. ‘ � w’ denotes change in weight ‘w’ and it
is calculated using (2).Gradient is determined using the
back propagation algorithm. The next value of weight ‘w’ is
denoted by ‘wnext ’ and it is calculated using (3).

The learning rate and momentum are applied to update
the weights during the learning process. The learning rate
and momentum were assigned fixed values.

Learning rate is a hyper parameter that indicates how
well the model should react differently to the predicted
error each time the system model weights are adjusted.
Momentum can help to expedite training, and learning
rate plans can aid in the optimization process. Accord-
ing to the problem, the momentum and the learning rate
both are allocated definite values in order to achieve sta-
ble convergence.

Datasets
This study considered using public datasets to train and
verify the proposed software defect detection model. Fur-
thermore, the literature suggests exploring and using new
datasets for developing software defect detection models.
Therefore, this research also considered investigating and
using new software defect datasets to train and test the
proposed model. Five different public datasets formed
by [31] were selected as one of the main concerns of this
study is to use new software defect datasets. Three data-
sets were selected from Tera-Promise and two datasets
were selected from GitHub Bug Repository. The datasets
selected from Tera-Promise are Xalan 2.6, Velocity 1.5
and Poi 3.0. Netty 3.6.3 and mcMMO 1.4.06 are the two
datasets chosen from GitHub Bug Repository. The prop-
erties of the selected datasets that include the number
code metrics found in the original dataset, the number
of code metrics calculated using OSA, total number of
instances, number of defective instances and number of
non-defective instances are illustrated in Table 1.

Proposed WORKFLOW
The workflow used for proposing a software defect pre-
diction model using MLP is illustrated in Fig. 2. The pro-
posed workflow mainly consists of four steps. First step
is dataset selection. The second step is generation of the
prediction model using a specific MLP network config-
uration. Training and testing the generated prediction
model using training and test datasets is performed in
third step. The final stage involves performance evalua-
tion of the software defect prediction model.

(2)
�w = −learning rate × gradient +momentum×�wprevious

(3)wnext = w +�w

Fig. 1  Sigmoid function

Page 5 of 14Hai et al. Journal of Cloud Computing (2022) 11:32 	

According to [28] there are no hard and fast guide-
lines for deciding the ideal number of hidden layers and
the ideal number of neurons in each layer. Therefore,
this research conducted an experiment with 4 different
network configurations on the five selected datasets to
determine the best possible number of hidden layers and
the number of neurons in each hidden layer. The follow-
ing guidelines were followed when deciding the combina-
tion of the number of hidden layers and the number of
neurons in each hidden layer.

–	 The experiment was conducted setting the number of
hidden layers to 2 and 3

–	 The number of neurons in each hidden layer was
selected between the number of neurons in the input
layer (60) and the number of neurons in the output
layer (2)

–	 The number of neurons was gradually decreased
from the first hidden layer to the last hidden layer.

Performance evaluation
This study utilized k-fold cross-validation approach.
Furthermore, the value of k was set to 10 and therefore,
10-fold cross validation was used to get an evaluation
result and estimate of the error.

In 10-fold cross validation, the original dataset is
divided into equal sizes of 10 sub datasets randomly
[28]. The training and testing are repeated 10 times for
a selected dataset. Figure 3 illustrates the procedure of
10-fold cross validation.

Furthermore, the process of 10-fold cross-validation
can be described as follows. In the first iteration, the
first subset of data is used as the testing dataset while
the rest of the 9 subsets of data are used as training
datasets. In the second iteration, the second subset of
data is used as the testing dataset while the remaining 9
sub datasets are used for training the model. This pro-
cess is repeated 10 times. It produces 10 results, and an
average result is computed as the final result. In k-fold

Table 1  Properties of the selected datasets

Data Source Dataset Number of metrics in
the original dataset

Number of metrics
calculated with OSA

Number of
instances

Number of
defective
instances

Number of
non-defective
instances

Tera-promise Xalan 2.6 22 60 885 411 (46.44%) 474 (53.56%)

Velocity 1.5 22 60 213 141 (66.29%) 72 (33.71%)

Poi 3.0 22 60 442 281 (63.57%) 161 (36.43%)

GitHub Bug Repository Netty 3.6.3 60 60 1143 271 (23.71%) 1072 (76.29%)

mcMMO 1.4.06 60 60 301 57 (18.94%) 244 (81.06%)

Fig. 2  Proposed workflow

Page 6 of 14Hai et al. Journal of Cloud Computing (2022) 11:32

cross validation, each subset of data is utilized one time
for testing and an equal number of times for training.

As illustrated in Fig. 4, a confusion matrix for the
binary classification problem produces 4 outcomes
which are True Positive (TP), False Negative (FN), False
Positive (FP) and True Negative (TN) [32].

–	 True Positive (TP) presents the number of positive
instances which were correctly predicted as positive
[1];

–	 False Negative (FN) presents the number of positive
instances which were incorrectly predicted as nega-
tive [1];

–	 False Positive (FP) presents the number of negative
instances which were incorrectly predicted as posi-
tive [1];

–	 True Negative (FN) presents the number of instances
which were correctly predicted as negative [1].

Therefore, True Positive (TP) and True Negative (FN)
reflect that the prediction has been made correctly
whereas False Positive (FP) and False Negative (FN) indi-
cate that the prediction has been made incorrectly.

The proposed configurations of MLP neural network
for software defect detection were evaluated using sev-
eral performance measures which are accuracy, precision,

recall, F-measure and ROC Area. The Weka tool provides
all these performance indicators. Some of the established
performance metrics applied for measurements are as
follows;

(4)Accuracy =
TP + TN

TP + TN + FP + FN

Fig. 3  10-fold cross-validation technique

Fig. 4  Confusion Matrix

Page 7 of 14Hai et al. Journal of Cloud Computing (2022) 11:32 	

The score of 1.0 reflects a perfect recall whereas the score
of 0.0 reflects the worst recall. A higher value of recall
means the prediction model has higher ability of detect-
ing true positives as positive.

The perfect precision is defined by the score of 1.0
whereas the worst precision is defined by the score of 0.0.
A higher value of precision reflects that the prediction
model shows a low rate of incorrectly classifying negative
instances as positive.

Since it is clear that neither recall nor precision can
give a complete measure on their own. F-Measure com-
bines both recall and precision into a single measure
by calculating the harmonic mean of them. Therefore,
F-Measure gives equal weights for both recall and preci-
sion which is more important when imbalanced data is
used for training.

Results analysis
This section analyses the experimental results obtained
for all MLP network configurations on the five selected
datasets. The performance of each MLP architecture was
evaluated using accuracy, precision, recall, F-Measure
and ROC Area. Table 2 illustrates the percentage of pre-
diction accuracy of each MLP network configuration on
each dataset.

The MLP model with two hidden layers and 25 and 5
neurons in the first and second hidden layers, respec-
tively, shows the highest prediction accuracy for Xalan
2.6, Velocity 1.5, Poi 3.0 datasets. However, the MLP
model with the same network configuration shows the
lowest prediction accuracy for Netty 3.6.3 dataset. The

(5)Recall =
TP

TP + FN

(6)Precision =
TP

TP + FP

(7)F −Measure =
2 ∗ Precision ∗ Recall

Precision+ Recall

MLP which consists of three hidden layers and 15 and
10 nodes in the first and second hidden layers respec-
tively and 5 nodes in the final hidden layer has per-
formed better with higher prediction accuracy in Netty
3.6.3 dataset. The average accuracy of this MLP model
is 78.2120%.

Table 3 shows the evaluation results including preci-
sion, recall and F-Measure for all considered MLP net-
work configurations on Xalan 2.6 dataset. The results
present the precision, recall and F-Measure for each
target class as well as the weighted average of per-class
values. According to the findings, in precision, recall
and F-Measure, the MLP model with two hidden lay-
ers and 25 and 5 neurons in each hidden layer has per-
formed well in both output classes when compared to
the other configurations of MLP neural network.

Table 4 presents the evaluation results on Velocity 1.5
dataset. It shows that in precision, the MLP with two
hidden layers and 15 and 5 neurons in first and second
hidden layers respectively performed well for the true
class whereas the MLP with two hidden layers and 25
and 5 neurons in each hidden layer performed well in
the false class. In recall, vice versa has happened for
true and false classes. However, when the weighted
average in recall and precision are considered, the MLP
with two hidden layers and 25 and 5 neurons in each
hidden layer performed well for Velocity 1.5 dataset.

The evaluation results of Poi 3.0 dataset are provided
in Table 5. According to the results, the MLP neural
network with two hidden layers and 25 and 5 neurons
in the first and second hidden layers respectively has
shown the best performance in recall, precision and
F-Measure in both true and false classes when com-
pared to other network configurations.

The results obtained for Netty 3.6.3 dataset with each
MLP model is presented in the Table 6. It is clear that
in precision, recall and F-Measure, the MLP with three
hidden layers having 15, 10 and 5 nodes from the first
hidden layer to the third hidden layer respectively has
well detected both true and false classes.

Table 2  Prediction accuracy results

Dataset H1=15, H2=5 H1=25, H2=5 H1=15, H2=10, H3=5 H1=30,
H2=15,
H3=5

Xalan 2.6 73.2203 75.2203 74.3503 72.8814

Velocity 1.5 75.1174 77.4648 75.1174 76.0563

Poi 3.0 72.8507 76.0181 73.9819 73.0769

Netty 3.6.3 80.4899 79.9650 81.7148 80.7524

mcMMo 1.4.06 84.7176 82.3920 83.0565 81.0631

Average Accuracy 77.2792 78.2120 77.6342 76.7660

Page 8 of 14Hai et al. Journal of Cloud Computing (2022) 11:32

Table 3  Results obtained for Xalan 2.6 dataset

MLP Model Precision Recall F-Measure

True False Weighted
Average

True False Weighted
Average

True False Weighted
Average

H1=15 0.779 0.707 0.740 0.591 0.854 0.732 0.672 0.774 0.727

H2=5

H1=25 0.796 0.731 0.761 0.635 0.859 0.755 0.706 0.790 0.751

H2=5

H1=15 0.774 0.725 0.748 0.633 0.840 0.744 0.696 0.778 0.740

H2=10

H3=5

H1=30 0.773 0.705 0.736 0.589 0.850 0.729 0.669 0.771 0.723

H2=15

H3=5

Table 4  Results obtained for Velocity 1.5 dataset

MLP Model Precision Recall F-Measure

True False Weighted
Average

True False Weighted
Average

True False Weighted
Average

H1=15 0.879 0.598 0.784 0.723 0.806 0.751 0.794 0.686 0.757

H2=5

H1=25 0.855 0.646 0.784 0.794 0.736 0.755 0.824 0.688 0.778

H2=5

H1=15 0.838 0.614 0.763 0.773 0.708 0.751 0.804 0.658 0.755

H2=10

H3=5

H1=30 0.852 0.624 0.774 0.773 0.736 0.761 0.810 0.675 0.765

H2=15

H3=5

Table 5  Results obtained for Poi 3.0 dataset

MLP Model Precision Recall F-Measure

True False Weighted
Average

True False Weighted
Average

True False Weighted
Average

H1=15 0.813 0.611 0.739 0.744 0.702 0.729 0.777 0.653 0.732

H2=5

H1=25 0.840 0.649 0.771 0.769 0.745 0.760 0.803 0.694 0.763

H2=5

H1=15 0.832 0.620 0.755 0.740 0.739 0.740 0.783 0.674 0.744

H2=10

H3=5

H1=30 0.805 0.619 0.737 0.762 0.677 0.731 0.782 0.647 0.733

H3=5

Page 9 of 14Hai et al. Journal of Cloud Computing (2022) 11:32 	

Table 7 illustrates the results of mcMMO 1.4.06 data-
set with all experimented MLP model configurations.
As per the findings, the MLP neural network with two
hidden layers, with 15 and 5 nodes in each hidden layer
has relatively high precision, recall and F-Measure in
both true and false classes when compared to other
MLP network configurations.

According to precision, recall and F-Measure, the MLP
neural network with three hidden layers, with 30 neurons
in the first hidden layer, 15 neurons in the second hid-
den layer and 5 neurons in the final hidden layer has not
shown higher performance in any of the datasets.

According to ROC Area results presented in Table 8,
the MLP neural network with two hidden layers and 25
neurons in the first hidden layer and 5 neurons in the

Table 6  Results obtained for Netty 3.6.3 dataset

MLP Model Precision Recall F-Measure

True False Weighted
Average

True False Weighted
Average

True False Weighted
Average

H1=15 0.620 0.844 0.791 0.458 0.913 0.805 0.527 0.877 0.794

H2=5

H1=25 0.597 0.847 0.788 0.476 0.900 0.800 0.530 0.873 0.791

H2=5

H1=15 0.646 0.856 0.806 0.506 0.914 0.817 0.567 0.884 0.809

H2=10

H3=5

H1=30 0.620 0.846 0.794 0.456 0.914 0.808 0.534 0.879 0.797

H2=15

H3=5

Table 7  Results obtained for mcMMO 1.4.06 dataset

MLP Model Precision Recall F-Measure

True False Weighted
Average

True False Weighted
Average

True False Weighted
Average

H1=15 0.622 0.887 0.837 0.491 0.930 0.847 0.549 0.908 0.840

H2=5

H1=25 0.542 0.877 0.814 0.476 0.910 0.824 0.495 0.893 0.818

H2=5

H1=15 0.568 0.875 0.817 0.439 0.922 0.831 0.495 0.898 0.822

H2=10

H3=5

H1=30 0.500 0.867 0.797 0.404 0.906 0.811 0.447 0.886 0.803

H2=15

H3=5

Table 8  ROC Area results

MLP Model Xalan 2.6 Velocity 1.5 Poi 3.0 Netty 3.6.3 mcMMO 1.4.06

H1=15, H2=5 0.808 0.801 0.794 0.754 0.774

H1=25, H2=5 0.822 0.794 0.816 0.777 0.756

H1=15, H2=10, H3=5 0.803 0.772 0.785 0.783 0.764

H1=30, H2=15, H3=5 0.791 0.766 0.766 0.789 0.749

Page 10 of 14Hai et al. Journal of Cloud Computing (2022) 11:32

second hidden layer has performed better in Xalan 2.6
and Poi 3.0 datasets in discovering between the defec-
tive and non-defective classes. For Velocity 1.5 dataset,
the MLP with two hidden layers having 15 nodes and 5
nodes respectively in the first and second hidden layers
has produced the highest ROC Area. Furthermore, the
MLP with three hidden layers with 15, 10 and 5 nodes
from the first hidden layer to the last hidden layer
respectively has shown a higher ROC Area on mcMMO
1.4.06dataset. The MLP with three hidden layers and 30
neurons in the first hidden layer, 15 neurons in the sec-
ond hidden layer and 5 neurons in the last hidden layer

has performed well with ROC Area value of 0.789 on
Netty 3.6.3 dataset.

ROC curves generated by the MLP with two hidden
layers and 25 neurons in the first hidden layer and 5 neu-
rons in the second hidden layer for true class of Xalan
2.6, Velocity 1.5, Poi 3.0, Netty 3.6.3 and mnMMO 1.4.06
datasets are presented in Figs. 5, 6, 7, 8 and 9 respectively.
X-axis in each plot represents False Positive rate while
Y-axis represents True Positive rate.

After analysing the results obtained for all perfor-
mance metrics including accuracy, precision, recall,
F-Measure and ROC Area as well as considering the

Fig. 5  ROC curve of Xalan 2.6

Fig. 6  ROC curve of Velocity 1.5

Page 11 of 14Hai et al. Journal of Cloud Computing (2022) 11:32 	

class imbalance issue existing in the datasets, this
study has discovered that the best possible network
configuration for software defect detection model
using MLP can be the prediction model with two hid-
den layers having 25 neurons in the first hidden layer
and 5 neurons in the second hidden layer. Figure 10
illustrates proposed MLP architecture.

Conclusion
The field of software engineering mainly focuses on
delivering high-quality software within a specified
budget and period. However, the defects found in the
software can cause delayed the delivery process while
reducing the quality of software. Therefore, early
detection of defects in the software being developed

Fig. 7  ROC curve of Poi 3.0

Fig. 8  ROC curve of Netty 3.6.3

Page 12 of 14Hai et al. Journal of Cloud Computing (2022) 11:32

and fixing before it is delivered to the end users is a
crucial task. Due to the complexity of user require-
ments as well as the infeasibility of producing defect-
free software, the software testing process requires
high cost and time to deliver quality software. Early

detection of defect prone modules in the software
being developed assists software quality assurance
teams to identify which modules require more atten-
tion during the testing process and thereby make use of
available resources for software testing efficiently and

Fig. 9  ROC curve of mcMMO 1.4.06

Fig. 10  Proposed architecture of MLP model for software defect prediction

Page 13 of 14Hai et al. Journal of Cloud Computing (2022) 11:32 	

effectively. Automation of early detection of defective
modules in software has been an active research area
for many years. With the evolution of different tech-
nologies, software defect detection has also become an
emerging research area. Various approaches includ-
ing statistical methods, machine learning techniques
and deep learning techniques have been applied for
software defect detection. This study dealt with the
investigation of one of the emerging areas in AI which
is deep learning for software defect detection. This
research analysed the performance of Multi-layer Per-
ceptron neural network, which is a supervised deep
learning technique for software defect detection. An
experiment with four different network configura-
tions of MLP neural network was conducted to pro-
pose the best possible MLP architecture among them
for software defect detection. The performance of the
four MLP neural network configurations was evalu-
ated using several metrics computed using a confu-
sion matrix. The used evaluation metrics are accuracy,
precision, recall, F-Measure and ROC area. Among the
MLP network configurations used for the experiment,
this study has discovered that the best possible net-
work configuration for the software defect detection
model using MLP can be the prediction model with
two hidden layers having 25 neurons in the first hidden
layer and 5 neurons in the second hidden layer. The
study concludes that the proposed MLP neural net-
work performs better on 3 out of 5 used datasets when
compared to the other network configurations. How-
ever, this study concludes that more empirical studies
should be conducted to assess the performance of the
proposed software defect detection model and thereby
help to refine it.

Acknowledgements
The authors express their appreciation to the Natural Science Basic Research
Program of Shaanxi Province, China.

Authors’ contributions
Conceptualization by Tao Hai; Methodology by Jincheng Zhou; Software by
Ning Li and Imed Ben Dhaou; Formal analysis by Imed Ben Dhaou and Sanjiv
Kumar Jain; Investigation by Tao Hai and Shweta Agrawal; Resources and data
collection by Imed Ben Dhaou and Sanjiv Kumar Jain; Writing by: Tao Hai,
Imed Ben Dhaou and Jincheng Zhou; Validation by: Ning Li and Imed Ben
Dhaou; Funding Acquisition by Ning Li; All authors read and approved the
final manuscript.

Funding
The project was supported by the Natural Science Basic Research Program of
Shaanxi Province No.2022JQ-689.

Availability of data and materials
The supporting data can be provided on request.

Declarations

Ethical approval and consent to participate
The research has consent for Ethical Approval and Consent to participate.

Consent for publication
The research has research consent by all authors and there is no conflict.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Computer and Information, Qiannan Normal University for Nation-
alities, 558000 Duyun, Guizhou, China. 2 Key Laboratory of Complex Systems
and Intelligent Optimization of Guizhou, 558000 Duyun, Guizhou, China.
3 Institute for Big Data Analytics and Artificial Intelligence (IBDAAI), Universiti
Teknologi MARA​, 40450 Shah Alam, Selangor, Malaysia. 4 School of Computer
Science, Baoji University of Arts and Sciences, 721016 Baoji, Shaanxi, China.
5 Faculty of Computer Science and Engineering, Xi’an University of Technol-
ogy, 710048 Xi’an, Shaanxi, China. 6 Electrical Engineering Department,
Medi-Caps University, Indore, Madhya Pradesh, India. 7 Institute of Advance
Computing, SAGE University, Indore, India. 8 Department of Computer Science,
Hekma School of Engineering, Computing, and Informatics, Dar Al-Hekma
University, 22246‑4872 Jeddah, Saudi Arabia. 9 Department of Computing,
University of Turku, 20500 Turku, Finland. 10 Higher Institute of Computer Sci-
ences and Mathematics, Department of Technology, University of Monastir,
5000 Monastir, Tunisia.

Received: 29 June 2022 Accepted: 25 July 2022

References
	1.	 Ojo MO, Giordano S, Procissi G, Seitanidis IN (2018) A review of low-end,

middle-end, and high-end iot devices. IEEE Access 6:70528–70554.
https://​doi.​org/​10.​1109/​ACCESS.​2018.​28796​15

	2.	 Silva M, Cerdeira D, Pinto S, Gomes T (2019) Operating systems for inter-
net of things low-end devices: Analysis and benchmarking. IEEE Internet
Things J 6(6):10375–10383. https://​doi.​org/​10.​1109/​JIOT.​2019.​29390​08

	3.	 Reddivari S, Raman J (2019) Software quality prediction: an investigation
based on machine learning. In: 2019 IEEE 20th International Conference
on Information Reuse and Integration for Data Science (IRI). IEEE, pp
115-122

	4.	 Liggesmeyer P, Trapp M (2009) Trends in embedded software engineer-
ing. IEEE Softw 26(3):19–25. https://​doi.​org/​10.​1109/​MS.​2009.​80

	5.	 Anajemba JH, Iwendi C, Razzak I, Ansere JA, Okpalaoguchi IM (2022)
A counter-eavesdropping technique for optimized privacy of wireless
industrial iot communications. IEEE Trans Ind Inform 18(9):6445–6454.
https://​doi.​org/​10.​1109/​TII.​2021.​31401​09

	6.	 Francillon A, Thomas SL, Costin A (2021) Finding Software Bugs in
Embedded Devices. Springer International Publishing, Cham, pp
183–197. https://​doi.​org/​10.​1007/​978-3-​030-​10591-4_​11

	7.	 Istqb glossary (2019). https://​gloss​ary.​istqb.​org/​en/​search/. Accessed 20
Mar 2022

	8.	 Iqbal A, Aftab S, Ali U, Nawaz Z, Sana L, Ahmad M, Husen A (2019)
Performance analysis of machine learning techniques on software defect
prediction using nasa datasets. Int J Adv Comput Sci Appl 10(5)

	9.	 Jiang P (2021) Research on software defect prediction technology based
on deep learning. In: 2021 2nd International Conference on Computing
and Data Science (CDS). IEEE, pp 104-107

	10.	 Iwendi C, Khan S, Anajemba JH, Bashir AK, Noor F (2020) Realizing an
efficient iomt-assisted patient diet recommendation system through
machine learning model. IEEE Access 8:28462–28474. https://​doi.​org/​10.​
1109/​ACCESS.​2020.​29685​37

	11.	 Samir M, El-Ramly M, Kamel A (2019) Investigating the use of deep neural
networks for software defect prediction. In: 2019 IEEE/ACS 16th Interna-
tional Conference on Computer Systems and Applications (AICCSA). IEEE,
pp 1-6

	12.	 Prabha CL, Shivakumar N (2020) Software defect prediction using
machine learning techniques. In: 2020 4th International Conference on
Trends in Electronics and Informatics (ICOEI)(48184). IEEE, pp 728-733

	13.	 Iwendi C, Khan S, Anajemba JH, Mittal M, Alenezi M, Alazab M (2020b)
The use of ensemble models for multiple class and binary class classifica-
tion for improving intrusion detection systems. Sensors 20(9). https://​
www.​mdpi.​com/​1424-​8220/​20/9/​2559

https://doi.org/10.1109/ACCESS.2018.2879615
https://doi.org/10.1109/JIOT.2019.2939008
https://doi.org/10.1109/MS.2009.80
https://doi.org/10.1109/TII.2021.3140109
https://doi.org/10.1007/978-3-030-10591-4_11
https://glossary.istqb.org/en/search/
https://doi.org/10.1109/ACCESS.2020.2968537
https://doi.org/10.1109/ACCESS.2020.2968537
https://www.mdpi.com/1424-8220/20/9/2559
https://www.mdpi.com/1424-8220/20/9/2559

Page 14 of 14Hai et al. Journal of Cloud Computing (2022) 11:32

	14.	 Tian Z, Xiang J, Zhenxiao S, Yi Z, Yunqiang Y (2019) Software defect
prediction based on machine learning algorithms. In: 2019 IEEE 5th
International Conference on Computer and Communications (ICCC). IEEE,
pp 520-525. https://​doi.​org/​10.​1109/​ICCC4​7050.​2019.​90644​12

	15.	 Why software testing remains a bottleneck – the new stack. https://​thene​
wstack.​io/​why-​softw​are-​testi​ng-​remai​ns-a-​bottl​eneck/. Accessed 25 Mar
2022

	16.	 Taking a new approach to reducing software testing costs | itproportal.
https://​www.​itpro​portal.​com/​featu​res/​taking-​a-​new-​appro​ach-​to-​reduc​
ing-​softw​are-​testi​ng-​costs/. Accessed 15 Feb 2022

	17.	 Akimova EN, Bersenev AY, Deikov AA, Kobylkin KS, Konygin AV, Mezentsev
IP, Misilov VE (2021) A survey on software defect prediction using deep
learning. Mathematics 9(11):1180

	18.	 Iwendi C, Anajemba JH, Biamba C, Ngabo D (2021) Security of things
intrusion detection system for smart healthcare. Electronics 10(12).
https://​www.​mdpi.​com/​2079-​9292/​10/​12/​1375

	19.	 Xu Y, Ren J, Zhang Y, Zhang C, Shen B, Zhang Y (2020) Blockchain empow-
ered arbitrable data auditing scheme for network storage as a service.
IEEE Trans Serv Comput 13(2):289–300. https://​doi.​org/​10.​1109/​TSC.​2019.​
29530​33

	20.	 Xu Y, Zhang C, Zeng Q, Wang G, Ren J, Zhang Y (2021) Blockchain-ena-
bled accountability mechanism against information leakage in vertical
industry services. IEEE Trans Netw Sci Eng 8(2):1202–1213. https://​doi.​
org/​10.​1109/​TNSE.​2020.​29766​97

	21.	 Xu Y, Zhang C, Wang G, Qin Z, Zeng Q (2021) A blockchain-enabled
deduplicatable data auditing mechanism for network storage services.
IEEE Trans Emerg Top Comput 9(3):1421–1432. https://​doi.​org/​10.​1109/​
TETC.​2020.​30056​10

	22.	 Xu Y, Yan X, Wu Y, Hu Y, Liang W, Zhang J (2021) Hierarchical bidirectional
rnn for safety-enhanced b5g heterogeneous networks. IEEE Trans Netw
Sci Eng 8(4):2946–2957. https://​doi.​org/​10.​1109/​TNSE.​2021.​30557​62

	23.	 Xu Y, Zeng Q, Wang G, Zhang C, Ren J (2020b) An efficient privacy-
enhanced attribute-based access control mechanism. Concurr Comput
Pract Experience 32(5):e5556. https://​doi.​org/​10.​1002/​cpe.​5556

	24.	 Xu Y, Liu Z, Zhang C, Ren J, Zhang Y, Shen X (2022) Blockchain-based
trustworthy energy dispatching approach for high renewable energy
penetrated power systems. IEEE Internet Things J 9(12):10036–10047.
https://​doi.​org/​10.​1109/​JIOT.​2021.​31179​24

	25.	 Sarker IH (2021) Deep learning: a comprehensive overview on tech-
niques, taxonomy, applications and research directions. SN Comput Sci
2(6):1–20

	26.	 Kantardzic M (2011) Data mining: concepts, models, methods and algo-
rithms. Wiley, Hoboken

	27.	 Han J, Kamber M (2012) Data mining: Concepts and techniques. Elsevier
	28.	 Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques.

Elsevier
	29.	 Morariu D, Creţulescu R, Breazu M (2017) The weka multilayer percep-

tron classifier. International Journal of Advanced Statistics and IT &C for
Economics and Life Sciences 7(1)

	30.	 More data mining with weka (5.2: Multilayer perceptrons) - youtube.
https://​www.​youtu​be.​com/​watch?v=​mo2dq​HbLpQo. Accessed 28 Mar
2022

	31.	 Ferenc R, Tóth Z, Ladányi G, Siket I, Gyimóthy T (2020) A public unified
bug dataset for java and its assessment regarding metrics and bug
prediction. Softw Qual J 28(4):1447–1506

	32.	 Cetiner M, Sahingoz OK (2020) A comparative analysis for machine learn-
ing based software defect prediction systems. In: 2020 11th International
Conference on Computing, Communication and Networking Technolo-
gies (ICCCNT). IEEE, pp 1-7

	33.	 Sp RM, Bhattacharya S, Maddikunta PKR, Somayaji SRK, Lakshmanna K,
Kaluri R, Hussien A, Gadekallu TR (2020) Load balancing of energy cloud
using wind driven and firefly algorithms in internet of everything. J Paral-
lel Distrib Comput 142:16–26

	34.	 Rajput DS, Basha SM, Xin Q, Gadekallu TR, Kaluri R, Lakshmanna K, Maddi-
kunta PKR (2022) Providing diagnosis on diabetes using cloud computing
environment to the people living in rural areas of india. Journal of Ambi-
ent Intelligence and Humanized Computing 13(5):2829–2840

	35.	 Rupa C, Srivastava G, Gadekallu TR, Maddikunta PKR, Bhattacharya S
(2020) A blockchain based cloud integrated iot architecture using a

hybrid design. In: International Conference on Collaborative Computing:
Networking, Applications and Worksharing. Springer, pp 550-559

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/ICCC47050.2019.9064412
https://thenewstack.io/why-software-testing-remains-a-bottleneck/
https://thenewstack.io/why-software-testing-remains-a-bottleneck/
https://www.itproportal.com/features/taking-a-new-approach-to-reducing-software-testing-costs/
https://www.itproportal.com/features/taking-a-new-approach-to-reducing-software-testing-costs/
https://www.mdpi.com/2079-9292/10/12/1375
https://doi.org/10.1109/TSC.2019.2953033
https://doi.org/10.1109/TSC.2019.2953033
https://doi.org/10.1109/TNSE.2020.2976697
https://doi.org/10.1109/TNSE.2020.2976697
https://doi.org/10.1109/TETC.2020.3005610
https://doi.org/10.1109/TETC.2020.3005610
https://doi.org/10.1109/TNSE.2021.3055762
https://doi.org/10.1002/cpe.5556
https://doi.org/10.1109/JIOT.2021.3117924
https://www.youtube.com/watch?v=mo2dqHbLpQo

	Cloud-based bug tracking software defects analysis using deep learning
	Abstract
	Introduction
	Literature review
	Proposed method
	Multi-Layer Perceptron (MLP)
	Tools
	Datasets
	Proposed WORKFLOW

	Performance evaluation
	Results analysis
	Conclusion
	Acknowledgements
	References

