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Abstract 

Oracle bone inscriptions (OBIs) are the earliest Chinese characters and reserve abundant historical information. OBIs 
are detected by locating their positions in digital images. This has been a foundational task in modern archeologi-
cal studies. Due to the development of deep neural networks(DNNs) in computer vision, detecting OBIs can be 
implemented by a more concise method instead of designing complicated hand-crafted features. However, exist-
ing models cannot perform well when noise areas are similar to some inscriptions. In this work, we present a simple 
but effective pseudo-label-based architecture for OBIs detection. Different from previous approaches, our method 
performs OBIs detection with the employment of information from multilabel annotations rather than single location 
information. We append a plug-and-play module that predicts the pseudo-label of an inscription after the backbone 
network for learning the particular structure prior to each inscription and brings this information to the backbone 
network by means of feature fusion. We make remarkable improvements on different backbone networks when using 
the proposed method on an OBIs detection dataset. The quantitative and qualitative results show that the proposed 
model can detect OBIs well and is an effective tool for assisting in the discovery and recognition of ancient writing.
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Introduction
Oracle bone inscriptions (OBIs) are the precursors of 
modern Chinese characters, recording a vast amount of 
information about ancestors who lived 3600 years ago. 
They represent the most significant historical relics for 
understanding the development of ancient society dur-
ing a specific dynasty and have become a foundational 
field of research in modern archeology. The detec-
tion of OBIs is an important part of ancient writing 

research. Detecting OBIs is to locate the position of 
OBIs in digital images. Given an image containing 
numerous inscriptions, detection algorithms provide 
an explicit representation of each inscription’s loca-
tion, typically in the form of bounding box coordinates. 
With the development of computer vision technology, 
more research for recognizing OBIs has flourished 
over the past decade, with a major spectrum of works 
using traditional visual feature-extraction modules 
such as the Hough transform and handmade Gabor 
kernel [1–4], and some other works treat an inscrip-
tion as an undirected graph composed of intersections 
and lines [5] and achieve this goal by topological and 
graph-based methods [6–9]. With the development of 
deep neural networks(DNNs) in the computer vision 
domain, especially in object detection tasks and opti-
cal character recognition, the detection of OBIs can 
be implemented by a more concise method instead of 
designing complicated hand-crafted features. Recent 
advances in OBIs detection follow the paradigm of 
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object detection, namely treating inscriptions carved in 
the bone as an object in a photo and utilizing YOLO-
like convolutional neural networks to address the task 
[10, 11]. These regressive models are sensitive to simple 
changes in the complicated heuristic processing such as 
anchor generation [12] and non-maximum suppression 
(NMS) [13] and suffer from the unbalanced of samples 
between different categories [14]. Another method to 
detect OBIs follows the schema of text detection, which 
regards all inscriptions as the same semantic area and 
generates a mask for segmenting inscriptions from one 
image [5, 15]. A mix-up augmentation strategy that 
leverages information from both majority and minor-
ity classes was proposed to alleviate the imbalanced 
data distribution problem [16]. However, the current 
research on detection tasks is still relatively limited and 
the performance of existing models will decrease when 
encountering a mass of noise areas resembling cer-
tain inscriptions, which is a normal case in digital OBI 
images.

In this paper, we contend that two unique properties 
of existing OBIs dataset need to be considered. First, as 
the origin of Chinese characters, OBIs have the same 
square-shaped font but lack legible and semantic rela-
tions which formed over a long-term evolution between 
each other. Another property is that the number of 
recorded OBIs is relatively smaller than that of modern 
Chinese characters, so utilizing the prior information of 
individual inscriptions is feasible and worth exploring.
Mainly taking these two properties into account, we pro-
pose a simple framework that utilizes pseudo-category 
labels and a supervised learning approach to capture the 
distinctive features of each inscription. The proposed 
models have fewer parameters compared to the previous 
one and also dispense with complex manual design pro-
cesses but achieve competitive results. The incorporation 
of pseudo-category labels empowers the segmentation-
based models with the ability to accurately identify the 
inscription area thus enhancing the model’s precision by 
1.9% and the recall by 1.8%. Consequently, this enables 
the model to effectively fulfill the task of detecting OBIs.

Related works
Treating OBIs detection as a text detection task is 
rational. Many works that rely on deep networks have 
been proposed to address text detection problems. A 
prevalent approach in recent research involves incorpo-
rating additional learnable information into the network. 
This supplementary information, representing various 
patterns of latent features, can be readily acquired and 
proves advantageous for the primary detection task. We 
review a part of the work in the following section.

Regression‑based methods
There are a series of models that directly regress the 
boundary region of the text instances. The textBoxes 
series [17–19] applied a fully convolutional network to 
detect multi-oriented text via anchor-based quadrilat-
eral regression. EAST [20] is an anchor-free method, 
that applied different predicting heads for multi-oriented 
contour regression. There is a score map for determining 
the area of a text instance and a regression of geometry 
parameters for determining orientation. To locate curved 
texts better, recent works focused both on network struc-
ture and the representation of arbitrary-shaped text 
regions. LOMO [21] introduced three modules to refine 
the text localization of a direct regression result itera-
tively. The corner and category information were learned 
by their proposed refinement module. TextRay [22] for-
mulates the text contours in the polar coordinate system 
rather than widely used Cartesian coordinates and learns 
the geometric parameters of the text boundary. TESTR 
[23] follows DETR [24]’s bipartite matching design and 
trains the whole model using the labels of control point 
coordinate, query classification, and character recogni-
tion. ABCNet series [25, 26] and FCENet [27] calculate 
another parameterized representation of the text con-
tour, specifically, the former used cubic Bezier curves to 
parameterize curved texts and predicted their control 
points with proposed BezierAlign module. The latter 
proposed the Fourier contour embedding (FCE) method, 
which is a new representation of text contour based on 
Fourier transformation theory. In addition to predict-
ing the pixelwise classification map, this model regresses 
Fourier signature vectors for generating curves with arbi-
trary shapes.

OBIs detection with regression-based methods followed 
a routine and simple paradigm. Frequently used convolu-
tional backbones with classification and regression head 
were utilized to directly predict bounding box priors and 
post-processing algorithms subsequently restrained the 
number of outputs to generate coordinates for each image. 
Previous works have tested many popular networks and 
obtained mediocre quantitative results [1, 11]. However, it 
is worth noting that the representation is much simpler for 
OBIs than for scene texts and bounding box coordinates 
are accurate enough for an inscription’s location.

Segmentation‑based methods
Methods based on segmentation algorithms implic-
itly encode text regions with per-pixel masks and then 
transform the mask components into bounding boxes 
by some post-processing algorithms. DBNet [28] 
replaced the binarization operation with an approxi-
mate differentiable function and predicted masks for 
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both the text region and text border via the proposed 
adaptive scale fusion. CRAFT [29] modeled the rela-
tionships between different individual characters by 
affinity boxes and is supervised by both region map and 
affinity map therefore it can focus only on intra and 
inter-character information. The CRAFT algorithm pre-
dicted character-level bounding boxes for input images 
which is different from other works. Some recent works 
[30, 31] addressed this problem by cooperating with an 
attention mechanism [32], and using a convolutional 
network to extract hidden features that need to opti-
mize as signals of foreground text, then a subsequent 
transformer architecture served as a post-processing 
module to get final parameterization of each text region.

The segmentation-based method for detecting OBIs 
adopted the ideas from CRAFT because the inscrip-
tions in an image are independent and lack linguistic 
meaning. Liu et  al. [5] followed the label generation 
mode as CRAFT and combined the hourglass network 
[33] with the progressive post-processing algorithm as 
their main design. The proposed segmentation-based 
detector avoided the demand for anchors and could 
learn character spatial regions. Lin et  al. [34] also 
designed an oracle radical extraction and recognition 
framework based on the segmentation-based method.

Dataset
We use an open-access OBIs dataset provided by the Key 
Laboratory of the Ministry of Education for Oracle Infor-
mation Processing, Anyang Normal University [11]. This 

dataset comprises 9,154 images meticulously annotated 
with bounding box details, primarily emphasizing the 
detection task. Following the structure of certain opti-
cal character recognition datasets introduced in recent 
years [35–37], which maintain a ratio of 4:1:5 between the 
training set, validation set, and testing set respectively, 
we partitioned all images into three subsets. Specifically, 
3688 images were allocated for training, 900 images for 
validation, and 4566 images for evaluating the perfor-
mance of models. The partition mode leads to a relatively 
strict ratio between training samples and testing samples 
and requires a model to have greater capabilities. Specifi-
cally, we just divided the dataset by the order of file names 
without considering other properties of images. This data-
set is used to train the proposed models and accomplish 
the task of detecting OBIs. In addition, we chose another 
dataset [2] which is made of different separate OBIs to 
obtain pseudo-category information. This dataset includes 
images of a single inscription which are clipped manually 
from rubbing images and these images of a single inscrip-
tion were divided into 125 categories. We use this dataset 
to train a 34-layer ResNet model and obtain the pseudo-
labels. We also test this ResNet, which can achieve 98% 
classification accuracy, guaranteeing label availability.

Method
Model architecture
First, we present the complete pipeline of our proposed 
method, which is illustrated in Fig.  1. The models we 
used in this paper are general and composed of a 

Fig. 1  Illustration of our proposed method comprises a U-shape Feature Extractor, a Pseudo Category Module, and a Region Predicting Module. 
The output of the Pseudo Label Module will be merged with the initial feature map, while the Region Predicting Module generates a pixel-level 
mask for inscriptions
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downsampling module D(·) and an upsampling module 
U(·) , which serve as feature extractors in our work. Given 
an image I ∈ R

H×W×3 , a model encodes it to a high-
dimension feature map F = U(D(I)) ∈ R

H×W×d . After 
obtaining the feature map, we append two prediction 
modules for our purpose, that is, we regard these models 
as latent state extractors rather than end-to-end net-
works, and the outputs of these backbone networks are 
high dimensional codes of each image. First, a pseudo-
label predicted branch fp(·) which is composed of stand-
ard 3  ×  3 convolutional layers, batch-norm layers, 
nonlinearity activation layers, and residual connections 
propagates forward it to a prediction mask 
Mpc = fp(F) ∈ R

H×W×d that each vector of a location 
represents the probability of an individual character. This 
mask has two effects. We use it to supervise the model 
for understanding the particular structure of inscriptions 
and we add it to the feature map obtained by backbones 
in an element-wise manner as a fusion to introduce the 
useful structure information to the original feature, 
namely F′

= F+Mpc . Then a region predicted branch 
fr(·) propagates forward this fusion feature F′ to the final 
outputs Mr = fr

(

F
′
)

∈ R
H×W

which is the final prediction of the model and has the 
same shape as the input image. In this predicted mask 
each magnitude of a pixel represents the probability of 
the inscription area. The region predicting branch has a 
relatively simple design with sequential transposed con-
volution layers, batch-norm layers, and a Sigmoid activa-
tion function for numerical stability. Finally, the region 

map and pseudo-label map generated beforehand will be 
used to optimize these two outputs.

Specifically, we choose three encoder-decoder struc-
ture neural networks as our backbones: UNet, U 2Net and 
Hourglass-Net [33, 38, 39]. This kind of neural network is 
composed of a module that downsamples an input image 
to a low-resolution feature map as a latent representa-
tion of the relevant image and a module whose function 
is to upsample the feature map to the output mask which 
has the same shape as the input image and is used for 
supervision.

Then we introduce them briefly and the sketches of their 
design are shown in Fig. 2. UNet used 3 × 3 convolutional 
layers, ReLU layers, and max pooling layers successively to 
extract the features of an image and used sequential inter-
polation layers to obtain the segmentation mask from this 
downsampled feature map. UNet was first proposed to 
address the problem of biomedical image segmentation, 
this method has shown great ability in pixel-level clas-
sification tasks and yielded good results. U 2Net replaced 
simple convolutional layers with an innovatively proposed 
Residual U-shape (RSU) block in both the encoder and 
decoder layers. The RSU block is a U-Net-like module and 
is stacked sequentially to build the whole cascaded model. 
U 2Net was used in salient object detection which involves 
discovering the main subject in a given image. Hourglass-
Net settled the problem of human pose estimation and was 
named for its use of using conv–deconv module whose 
shape is similar to an hourglass. The hourglass module can 
be stacked recursively to constitute a network and is set 
up as follows: convolutional layers and max pooling layers 

Fig. 2  The illustration of the major components of each backbone. a displays the entire architecture of U-Net, b displays the Residual U-Block 
that is proposed in U 2Net. c displays the hourglass module which is a subassembly of Hourglass-Net
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are used to process features down to a very low resolution. 
Then the following subassemblies implement upsampling 
and combining operations of features across scales.

Label preparation
Given an image of the oracle bone, annotations of the 
inscription region are described by a set of coordinates 
of two vertices and need to be converted into mask-type 
supervision. In this study, we create a region map to depict 
the location of each inscription and a pseudo-category map 
to incorporate individual information regarding different 
inscriptions into the model. Both the region and pseudo-
category maps are 2D arrays. Figure 3 shows the process of 
generating two maps for an image.

In the process of generating a region map, we employ an 
approximate probability density function of a two-dimen-
sional Gaussian distribution for each bounding box. This 
allows us to calculate the probability value of pixels within 
the bounding box, which is then utilized to generate a mask 
with the same shape as the image. The value of each pixel in 
the mask is calculated by the following formula:

where x ∈ [x1, x2], y ∈ [y1, y2] and x1, x2 are the upper-left 
and lower-right abscissa of a bounding box, and y1, y2 are 
the upper-left and lower-right ordinates of a bounding 
box. All coordinates should be normalized to [−1, 1] so 
that the mean of the Gaussian distribution is in the center 
of the region mask. A is a coefficient that expands the 
value for each pixel. This operation simulates a situation 

(1)G(x, y) =
A

2π�2
e
−

x2+y2

2�2 ,

in which the center of the area has a high value and the 
boundary has a relatively low value, which means that the 
center of an inscription is more important to focus on 
and that the peripheral area has less importance. At the 
top of Fig. 3, the color of gradually darker red means the 
center of an inscription (high value pixels) and the grad-
ual cold-tuning color indicates the boundary of an area 
(low value pixels)

In addition to generating a region map, we use a cate-
gory map to supervise an inscription’s individuality infor-
mation. First, we use a lite-scale ResNet [40] f (·) which 
was trained previously in the classification dataset men-
tioned before [2] to obtain the category of each inscrip-
tion. The process is as follows:

where I is an image of an inscription that was cropped 
from a rubbing and c is its predicted category. Then, for 
each rubbing image, we crop the inscriptions by using 
their coordinates and feed them into ResNet, which is 
trained on the classification dataset mentioned before to 
obtain their category labels. After obtaining these cate-
gory labels, we replace the probability value of each pixel 
whose value is greater than a threshold with the predicted 
category to obtain the category map. At the bottom of 
Fig.  3, different areas of the inscription have different 
colors since they are different inscriptions. This map is 
called a pseudo-category map because all categories are 
obtained by the output of a pre-trained neural network 
rather than labeling by archeological workers. The cat-
egory map provides more specific details of an area and 
introduces supervisory information on the shape and 
construction of different inscriptions.

Loss function
The total loss function can be expressed as a weighted 
sum of the value for the region map and the value for the 
pseudo-category map:

where Lr is the loss for the region map and Lpc is the loss 
for the pseudo-label map. �1 and �2 are set to different 
values because the region branch is the main task and the 
pseudo-branch should have a relatively weak effect on 
all the parameters. This task is essentially a binary clas-
sification for each pixel, hence, we apply focal loss, a bal-
anced binary cross entropy loss [41] for the region map to 
overcome the imbalance of the number of positives and 
negatives:

(2)c = f (I), c ∈ N, I ∈ R
H×W×3,

(3)L = �1Lr + �2Lpc,

(4)Lr = −α(1− pt)
γ log (pt)

Fig. 3  Process of label generation for region map and pseudo-label 
map. In Region Map, the color of red means the center 
of an inscription, and the color of cold tune means the boundary. In 
PseudoCls Map, each color represents a category
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where pt is an indicator function value that equals the 
model’s estimated probability for the positives and equals 
one minus probability for negatives, γ and α are proposed 
focusing hyperparameters. As for the pseudo-category 
map, we choose cross-entropy loss to measure the pre-
diction since the objective is to classify pixels into differ-
ent categories. The formula is as follows:

where M is the number of classes, pc is the probability 
for each class that is calculated by the model and yc is the 
target of this prediction.

Inference
In the inference period, we only use the final output of the 
region map to generate inscription bounding boxes since 
the information of the pseudo-label has been integrated 
into the whole model. The box formation process con-
sists of two steps: The region map is first binarized with 
a constant threshold to generate a binary map whose pix-
els only have two values of 1 or 0. Then connected areas 
are obtained from the binary map by a contour search-
ing algorithm [42]. These predicted connected areas are 
formed by the scoordinates of vertices and encircle the 
inscriptions that need to be detected.

Experiments
Implementation details
Our implementation is based on Python and PyTorch. In 
the training process, all the network parameters are ini-
tialized randomly and all the networks are trained from 
scratch instead of pretraining. For UNet and U 2Net, we 
use their original models and we stack three hourglass 
modules as Hourglass-Net. To keep the scale of the 
parameters close, we change the dimensions of the mid-
dle layers. We also modify the last output dimensions 
of these models for the sake of elementwise fusion. We 
use one NVIDIA A40 GPU to train each model with a 
batch size of 8. During training, the input image will be 
augmented by color jitter and directly resized to resolu-
tion of 512 × 512 and the settings are the same for predic-
tion and evaluation. Adam optimizer [43] is used to train 
all networks with a learning rate of 3e−4 in the begin-
ning and the learning rate is modified by an exponential 
warm-up function in each iteration. For the loss function, 
the hyperparameters α and γ in the focal loss are set to 
0.25 and 2.0, the weights of �1 and �2 in the total loss are 
set to 1 and 0.1, respectively.

(5)Lpc =

M
∑

c=1

yclog(pc),

Evaluation metrics
We first introduce the concept of the intersection over 
union (IoU). IoU describes the extent of overlap of arbi-
trary shapes that can be a measure of the similarity. For 
two plane figures, the IoU can be calculated by:

where Ainter is the area where two figures intersect and 
Aunion is the sum of the areas of two figures. It is obvi-
ous that the greater the region of overlap is, the greater 
the magnitude of the IoU and the more similar the two 
figures are.

To evaluate the matching quality between the predicted 
bounding boxes and the ground truth, we use three 
comprehensive evaluation indicators, the Precision(P), 
Recall(R) and F1 − score(F1) . The calculation formulas 
are as follows:

where TP, FP and FN are abbreviations for three terms: 
true positive, false positive, and false negative. The 
demarcation of samples depends on the IoU. Specifi-
cally, the bounding box is assigned to a true positive 
sample if the IoU value between a bounding box and a 
ground truth is larger than a threshold that is commonly 
set to 0.5 for impartiality, in the opposite case we assign 
a bounding box to a false positive sample and if a ground 
truth is not matched by any bounding box we assign it to 
a false negative sample.

Results and discussion
Quantitative results
To verify the effectiveness of our proposed model for 
modeling inscription instances, we compare the perfor-
mance of the detection results on the newly divided test 
set. Figure 4 shows the sizes of the different models and 
the results of our proposed methods alongside their cor-
responding baselines in the training set, validation set, 
and test set. Our proposed method has made obvious 
progress. As shown in Fig.  4a, the scale of each model 
is limited to 10 MB which means a relatively fair com-
parison and is for the purpose of being lightweight. As 

(6)IoU =
Ainter

Auniou
∈ [0, 1]

(7)P =
TP

TP + FP
,

(8)R =
TP

TP + FN
,

(9)F1 =
2× P × R

P + R
,
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shown in Fig. 4d UNet equipped with this classification 
branch achieves a 4% improvement in precision and a 
1.4% improvement in recall. Assisted by the classification 
branch, Hourglass-Net increases the magnitude of pre-
cision by 4.1% and increases the magnitude of recall by 
7.1%. Compared with the U 2Net baseline, the additional 
branch counterpart yields a better result in which the 
precision is improved by 1.9% and the recall is improved 
by 1.8% with only a few extra parameters. Note that the 
U 2Net, which is a competitive backbone network for 
detecting OBIs, has the smallest number of parameters 
but obtains the best results. Based on the experimental 

results, the newly introduced subtask that predicts the 
probable category of inscriptions endows unique sig-
nals of each inscription to models and renders superior 
results.

We also compare the results of our models and some 
regression models on the training, validation, and test 
sets, and show them in Table 1. According to the results, 
segmentation models equipped with our module achieve 
a higher index than RetinaNet which is trained from 
scratch. Compared with YOLO, which is pre-trained 
on the Large ImageNet dataset, our proposed methods 
have higher precision than YOLO. We also compared 

Fig. 4  a Shows the parameter size of different models, each color represents a series of backbone. b–d show the comparison of quantitative results 
between different models in the training set, validation set, and test set respectively, each color represents a metric
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the parameter sizes between regression models and our 
methods. Table 2 shows that our methods based on seg-
mentation are more lightweight than regression models 
but achieve comparable results. These results show the 

ability of our proposed methods and it is worth mention-
ing that our methods have much simpler implementation 
because of the removal of some heuristic algorithms such 
as anchor generation, anchor matching, and the NMS 
process which are indispensable in regression models.  

Qualitative results
To explore what the proposed module has learned and 
its effect, we illustrate the predicting results in some low-
resolution images with adjacent inscriptions and their 
corresponding outputs of the pseudo-label predicting 

Table 1  Comparative result between regression models and segmentation models with our proposed module

Bold represents the best test results

Precision Recall F1-Score

Train Val Test Train Val Test Train Val Test

RetinaNet [41] 60.5 57.3 56.1 62.3 56.4 55.4 61.4 56.9 55.4

YOLO [44] 47.6 44.1 46.3 47.2 45.6 46.9 47.4 44.8 46.6

YOLO(pre-train) 85.4 73.2 73.7 82.4 72.8 74.1 83.8 72.7 73.9
Hourglass(ours) 88.9 71.3 70.9 85.5 68.6 68.4 87.1 69.9 69.6

U2Net(ours) 92.7 73.8 74.1 89.4 72.1 72.5 91.0 72.9 73.4

UNet(ours) 91.6 71.9 71.5 88.6 70.3 69.8 90.1 71.1 70.6

Table 2  Parameters of models

RetinaNet YOLO Hourglass(ours) U2Net(ours) UNet(ours)

Param-
eter

121.5 MB 250.3 MB 6.6 MB 6.9 MB 5.9 MB

Fig. 5  Illustration of results and their relative pseudo-label mask. It can be seen that the proposed pseudo-label predicting module focuses 
on the region of inscriptions and generates different signals from the region of backgrounds



Page 9 of 12Fu et al. Heritage Science          (2024) 12:107 	

module in Fig.  5. As shown in the results of each first 
column, models can deal with low-resolution situations 
well. As shown in the heat maps of each second column, 
the areas of inscription have different values from that of 
strokes or background which means the proposed mod-
ule can focus on the region of inscriptions and generate 
different signals from the region of backgrounds. In the 
forward propagating process, this high-dimension fea-
ture map serves as a kind of prior information of inscrip-
tion and guides the next region predicting module to 
generate accurate results through the fusion of element-
wise adding operation.

To provide an intuitive comparison, we illustrate the 
partial results of the proposed method and their corre-
sponding baselines in figures. Figure  6, 7 and 8 display 
the prediction results of different networks for large reso-
lution images. In the zoom-in image of Fig.  6, our pro-
posed method can generate the result of an inscription 
whose strokes are very light. Figure 7 shows that the U 2
Net equipped with the proposed method has a better 
detection result than its initial edition and detects the 
pony-size inscription and ignores the area of cracks. Fig-
ure 8 shows the results for the HG-Net series. The pro-
posed method leads to more precise boundary detection. 
The pseudo-class branch based on novel supervision pro-
posed in this work can not only improve the utilization of 
the inscription’s features but also avoid disturbing noise 

areas and further improve detection accuracy. The mod-
els equipped with the proposed classification branch are 
more adept at partitioning the boundary in dense situa-
tions than basic models therefore detecting more inscrip-
tions with small areas and slender strokes. Moreover, the 
newly proposed models also reduce the crack area fault 
detection.

In Fig.  9, we display the predictions and labels with 
bounding boxes with different colors on images that have 
a mass of noisy areas. The yellow boxes are the ground 
truth bounding boxes and the pink boxes are the pre-
dicted bounding boxes. There are two effects that merge 
the features of the pseudo-label. The models have a bet-
ter capability to distinguish the area of each inscrip-
tion exactly. Additionally, the models can generate clear 
boundaries when the inscriptions are dense. Therefore 
it can be seen that the predictions do not appear in the 
crack areas and the pink predicted boxes overlap the yel-
low ground-truth boxes well.

Conclusion
The identification of inscriptions in rubbings has been 
a problem because of the noisy area of scratches and 
cracks. This paper applies computer vision technol-
ogy to detect traditional Chinese OBIs. We introduce 
a novel subtask that predicts the pseudo-category of 
individual OBIs. Under this subtask the pseudo-class 

Fig. 6  Qualitative comparison of U-Net series. Zooming in the figures offers a better view of the capability in a situation where inscriptions are very 
dense. Compared with the original U-Net, the proposed method can detect dense inscriptions more accurately
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Fig. 7  Qualitative comparison of U 2Net series. The zoomed-up figures offer a better view of the capability in a situation where inscriptions are 
in small size. Compared with the original U 2Net, the proposed method can detect inscriptions with a very small size better

Fig. 8  Qualitative comparison Hourglass-Net series. Zooming in on the figures offers a better view of the capability in a situation where inscriptions 
are very dense. Compared with the original Hourglass-Net, the proposed method has a greater ability to detect dense inscriptions
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predicting branch guides the model in understand-
ing the form prompt of different inscriptions and the 
proposed method provides unique information about 
inscriptions to its corresponding area predictor in a 
fusion manner and increases the likelihood of detec-
tion with an additional parameter. Experiments on a 
challenging dataset demonstrated that the proposed 
method which acts as a plug-and-play module is suit-
able for different backbone networks and recognizes 
inscriptions precisely in different situations. Addition-
ally, the establishment of an OBIs detection model can 
automatically generate corresponding visual labels for 
OBIs, facilitate the construction of a font database of 
OBIs, and play a positive role in developing archeol-
ogy. It is worth exploring more distinct OBIs proper-
ties to enhance the generalizability of deep learning 
based models. In the feature, the focus of our work will 
be exploring more methods that can utilize the infor-
mation of individual inscriptions and how to introduce 
useful information to the model effectively.
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