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Abstract At a glance, one can tell that there are more indi-
vidual fruits in a pile of 100 apples than in a pile of 20 water-
melons, even though the watermelons take up more space.
People’s ability to distinguish between such nonsymbolic nu-
merical magnitudes without counting is derived from the ap-
proximate number system (ANS). Individual differences in
this ability (ANS acuity) are emerging as an important predic-
tor in research areas ranging from children’s understanding of
arithmetic to adults’ use of numbers in judgment and decision
making. However, ANS acuity must be assessed through
proxy tasks that might not show consistent relationships with
this ability. Furthermore, practical limitations often confine
researchers to using abbreviated measures of this ability,
whose reliability is questionable. Here, we developed and
tested several novel ANS acuity measures: a nonsymbolic
discrimination task designed to account for participants’
lapses in attention; three estimation tasks, including one task
in which participants estimated the number of dots in a briefly
presented set, one in which they estimated the ratio between
two sets of dots, and one in which they indicated the correct
position of a set of dots on a “number-line” anchored by two
sets of dots, as well as a similar number-line task using sym-
bolic numbers. The results indicated that the discrimination

task designed to account for lapses in participants’ attention
holds promise as a reliable measure of ANS acuity, considered
in terms of both internal and test–retest reliability. We urge
researchers to use acuity measures whose reliability has been
demonstrated.
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Numeracy and individual differences

A growing body of literature has demonstrated that individual
differences in numeric ability predict a diverse range of life
outcomes. People who are better at math achieve higher edu-
cational attainment, better health, and greater economic suc-
cess (Adelman, 2006; Blanton & Kaput, 2005; Bynner &
Parson, 2009; National Council of Teachers of Mathematics,
2000; National Research Council, 2001, National Mathemat-
ics Advisory Panel, 2008; Peters, Meilleur, & Tompkins,
2013; Reyna, Nelson, Han, & Dieckmann, 2009; Smith,
McArdle, & Willis, 2010). It has been estimated that numer-
acy issues in the United Kingdom cost £2.4 billion (about U.S.
$4 billion) per year in lost productivity (Callaway, 2013).
Moreover, people with greater numeric ability perform better
on a diverse set of judgment and decision-making tasks (Pe-
ters, 2012; Peters, Hart, Tusler, & Fraenkel, 2014; Peters et al.,
2006; Sinayev & Peters, 2015).

Numeric ability, however, is not limited to symbolic math
ability (Peters & Bjalkebring, 2015; Peters, Slovic, Västfjäll,
& Mertz, 2008; Schley & Peters, 2014). Rather, it is a collec-
tion of interrelated perceptual and cognitive skills that allow
individuals to transform, evaluate, and use numeric informa-
tion. These faculties not only include understanding of sym-
bolic numbers and fluency with arithmetic and higher-order
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mathematics, but also include the ability to evaluate and com-
pare nonsymbolic numerical magnitudes (e.g., [ ::: ] vs. [ :::: ];
Cordes, Gelman, Gallistel, & Whalen, 2001; Dehaene,
Dehaene-Lambertz, & Cohen, 1998; Kaufman, Lord, Reese,
& Volkmann, 1949; Taves, 1941; Whalen, Gallistel, &
Gelman, 1999). In this article, we are primarily concerned
with measures of this latter component of numeric ability:
the ability to evaluate nonsymbolic numerical magnitudes—
the approximate number system (ANS).

Nonsymbolic numerical magnitudes

Sets, such as this set of dots [ ::: ], have a particular numerical
magnitude, in this case “6.” The numerical magnitudes of sets
are nonsymbolic. As humans, we have the ability to represent
these numerical magnitudes exactly using words (e.g., “six”)
or symbols (e.g., “6”). However, similar to the way we can
perceive the length of two lines and tell which is longer with-
out considering their precise length in inches, we have the
ability to perceive and compare the numerical magnitudes of
sets using analog (continuous) representations of numerical
magnitude, without assigning a verbal or symbolic label to
those perceived magnitudes. People are able to compare and
evaluate the nonsymbolic numerical magnitudes of sets rang-
ing up to many hundreds of items without counting (Taves,
1941), and without necessarily linking these values to a sym-
bolic number (Kaufman et al., 1949). For example, one can
often tell at a glance which of two bunches of grapes has more
fruit, without needing to establish exactly how many grapes
are in each bunch. Humans are not alone in this skill (Dehaene
et al., 1998). The ability to perceive nonsymbolic numerical
magnitudes of such sets is ubiquitous in the animal kingdom,
having been seen for such diverse creatures as rats (Meck &
Church, 1983), chickens (Rugani, Regolin, & Vallortigara,
2007), monkeys (Cantlon & Brannon, 2006), and beluga
whales (Abramson, Hernández-Lloreda, Call, & Colmenares,
2013).

It is well established that the perception of nonsymbolic
numerical magnitudes obeys Weber’s law (Cordes et al.,
2001; Dehaene et al., 1998; Mechner, 1958; Meck & Church,
1983; Whalen et al., 1999). As is typically the case for mag-
nitude perception (see Kingdom & Prins, 2010), nonsymbolic
numerical magnitudes are not perceived exactly. Rather, the
numerical magnitudes perceived from a nonsymbolic numer-
ical stimulus (e.g., a set of dots) are approximate, with a nor-
mal or quasi-normal distribution around a mean value, which
may itself be biased. Consequently, the ability of the ANS to
distinguish between the numbers of items in two sets is de-
pendent on the amount of overlap between the distributions of
the numerical magnitudes perceived from these sets. Accord-
ing to Weber’s law, discriminability (and thus the “width”—
i.e., standard deviation—of the implicit perceived magnitude

distributions) is proportional to the stimulus magnitude. Con-
sistent with this, the overlap in the distributions of any two
perceived numerical magnitudes is thought to depend on their
ratio (or log distance), rather than on the arithmetic distance
between them.

To illustrate, consider a common scenario in which a par-
ticipant in a psychology study is shown two sets of dots and
asked to say which is more numerous. The overlap of the
numerical magnitudes that the participant would perceive
from 13 and 10 dots is thought to be the same as the overlap
of the numerical magnitudes that the participant would per-
ceive from 130 and 100 dots, because the numbers have the
same ratio. This leads to both size and distance effects in
nonsymbolic numerical magnitude discrimination. Within
the same range, it is easier to distinguish nonsymbolic numer-
ical magnitudes that are more distant from each other than to
distinguish those that are closer together (distance effect: it is
easier to distinguish 13 from 10 dots than to distinguish 12
from 11 dots), because increasing the arithmetic distance also
increases the ratio. Also, it is easier to distinguish smaller than
to distinguish larger nonsymbolic numerical magnitudes at the
same distance (size effect: it is easier to distinguish 13 from 10
dots than to distinguish 83 from 80 dots), because the ratio
between the smaller-valued pair is bigger than the ratio be-
tween the larger-valued pair, despite having the same arith-
metic distance. Consequently, numerical magnitude judg-
ments conducted by the ANS yield standard psychophysical
functions (Whalen et al., 1999; see Kingdom & Prins, 2010),
such that the likelihood that an individual will successfully
discriminate between two numerical magnitudes increases
curvilinearly from chance to asymptote at or near 100 % ac-
curacy as the ratio of the larger to the smaller numerical mag-
nitude increases. Similarly, reaction times decrease with the
comparison ratio. Neuro-activation patterns analogous to
these analog numerical magnitudes have been detected in
humans via neuroimaging (Piazza, Izard, Pinel, Le Bihan, &
Dehaene, 2004) and in monkeys via single-cell recordings
(Nieder & Miller, 2003, 2004).

We note that debate exists regarding the nature of the mech-
anism underlying nonsymbolic numerical magnitude judg-
ments. Some researchers posit tally-like systems that, via var-
ious methods, essentially “count” the items in a perceived set
(e.g., Dehaene & Changeux, 1993; Meck & Church, 1983).
Others note that continuous-extent features such as individual
item size, total area, and density are confounded with numer-
ical magnitude, such that the total number of items in a set can
be deduced from sufficient continuous-extent information
(e.g., given that the total area of a set of items is 4 cm2 and
the average area of an item is 0.33 cm2, there must be 12
items). These researchers posit that various perceptual quanti-
ty cues are integrated to yield numerical magnitude perception
(Gebuis & Reynvoet, 2012). Whatever the mechanism,
mounting evidence exists that numerical magnitude
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information is extracted from sets automatically and without
conscious effort, and this perceived numerical quantity infor-
mation can influence our actions separately from other quan-
tity information (e.g., total area; for a review of the infant
literature, see Cantrell & Smith, 2013). For example, nonsym-
bolic numerical magnitude has been shown to have a Stroop-
like impact on people’s ability to respond to area information,
facilitating area responses when the area quantity (total area)
and numerical quantity (total number of dots) are congruent,
and inhibiting area responses when the area and numerical
quantities are incongruent (Hurewitz, Gelman, & Schnitzer,
2006). The present article is agnostic as to the process by
which numerical magnitude assessments are made. We focus
instead on the precision of these assessments. The precision
with which one can perceive nonsymbolic numerical magni-
tudes will henceforth be referred to as ANS acuity.

Individual differences in ANS acuity

The ability of the ANS to make numerical magnitude discrim-
inations is thought to vary among individuals, such that some
individuals can make faster and more accurate judgments with
smaller ratios than other individuals can (Halberda &
Feigenson, 2008). Again, as is typically the case for perceived
magnitudes, this ANS acuity is defined by an individual’s
“Weber fraction.” The ANS obeys Weber’s law (Halberda,
Mazzocco, & Feigenson, 2008; Whalen et al., 1999), which
is often interpreted as implying that the ratio between the
standard deviation and the mean of a magnitude estimate
(SD/M, its “coefficient of variation,” or CV) is constant. Put
simply, the standard deviation of the distribution around an
estimatedmagnitude is proportional to that magnitude’s mean.
That proportion is, by definition, the Weber fraction (w) of the
perceiver’s ANS. After accounting for bias, this w (equivalent
to the constant CV) determines the variability in the represen-
tation of a particular numerical magnitude, the amount of
overlap between any two represented numerical magnitudes,
and how likely it is and how quickly it is that an individual will
be able to tell two nonsymbolic numerical magnitudes apart.
There are competing accounts regarding the mechanism un-
derlying these behavioral phenomena (e.g., logarithmically
compressed numerical magnitude representations with con-
stant variability: Dehaene, Izard, Spelke, & Pica, 2008;
Siegler & Opfer, 2003; or linearly spaced numerical magni-
tude representations with proportionally increasing variabili-
ty: Cordes et al., 2001; Cantlon, Cordes, Libertus, & Brannon
2009; Gallistel & Gelman, 2000; Whalen et al., 1999). How-
ever, in all accounts, the smaller an individual’s w, the better
that individual is at discriminating between nonsymbolic nu-
merical magnitudes, because the numerical magnitude percep-
tions overlap less.

ANS acuity, objective numeracy, and judgments

Evidence also exists that individual and group differences in
ANS acuity predict performance on tasks that involve num-
bers. For example, ANS acuity has been found to increase
throughout childhood. Ten-month-olds typically cannot dis-
criminate between the numerical magnitudes of two sets
whose ratio is lower than 2/1 (e.g., 30 vs. 15 dots; w = 1),
but 12-month-olds are able to discriminate numerical magni-
tudes whose ratio is as low as 3/2 (e.g., 30 vs. 20 dots; w = .5;
see Cantrell & Smith, 2013, for a review). This acuity con-
tinues to increase through grade school (Halberda &
Feigenson, 2008). These acuity increases parallel improve-
ments in symbolic and language-based numerical understand-
ing, since older children have more acute representations and
better skills at counting and arithmetic tasks than younger
children.

This correlation between ANS acuity and numerical skill is
also seen within age groups. Better ANS acuity has been
linked to better math skills in kindergarten (Gilmore,
McCarthy, & Spelke, 2010) and to better performance on
standardized tests of mathematical ability from kindergarten
through sixth grade (Halberda et al., 2008), although the re-
sults in the literature have been mixed. Some researchers have
attributed these mixed results to methodological issues (Chen
& Li, 2014; De Smedt, Noel, Gilmore, & Ansari, 2013), with
a recent meta-analysis indicating that the true correlation be-
tween ANS acuity and symbolic mathematical ability may be
small (r = .2) among children and adults who have received
formal mathematical education (Chen & Li, 2014). As a re-
sult, a much larger sample size is required than is typical for
such studies, and this lack of power may explain the mixed
results. It has also been suggested that a critical period may
exist in which a child’s ability to estimate nonsymbolic nu-
merical magnitudes aids the development of early numeric
abilities (e.g., learning the values of symbolic numbers), after
which math skills may develop separately from the ANS (De
Smedt et al., 2013). In this case, correlations between ANS
acuity and math ability in adults would be the result of past,
rather than current, cognitive interdependence. However, re-
cent research has demonstrated that practicing arithmetic with
estimated nonsymbolic numerical magnitudes (set of dots)
transfers to gains in symbolic arithmetic in educated adults
(Park & Brannon, 2013, 2014). This finding indicates that
ANS acuity remains connected to adults’ higher-order numer-
ic abilities, such as understanding of symbolic numbers and
mathematics.

The connection between ANS acuity and other numerical
skills can be explained by a mapping between analog numer-
ical magnitudes based on ANS perceptions and symbolic
numbers. Humans, unlike other animals, have resources be-
yond the ANS to help them evaluate number. People can rep-
resent numbers verbally (e.g., the word “ten”) and with other
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symbols (e.g., “10”), and do so with much greater precision
than the ANS can achieve. Using symbols, we can, for exam-
ple, accurately judge numbers’ ordinality with near 100 %
success, irrespective of the ratios between them (e.g., we can
determine that 9 > 8, 99 > 98, and 9,999 > 9,998). However,
evidence also exists that people do not rely solely on learned
algorithmic or look-up-table procedures when evaluating
symbolic numbers. Rather, people map these symbolic num-
bers to analog numerical magnitudes like those perceived by
the ANS, and thereby invoke the same sorts of comparison
processes used for analog numerical magnitude evaluation
when considering symbolic numbers (Dehaene, Bossini, &
Pascal, 1993; Moyer & Landauer, 1967). For example, people
show distance effects when making judgments about symbol-
ic numbers, even though such effects would result from nei-
ther look-up-based nor sequential-count-based comparison
processes (Moyer & Landauer, 1967). One could, therefore,
predict that performance on tasks involving symbolic numbers
might be influenced by multiple processes, including individ-
ual differences in ANS acuity and the accuracy of the
mapping between symbolic numbers and numerical magni-
tudes. In addition, higher-order mathematical skills, like those
taught in schools, build off an understanding of symbolic
numbers, which (as we discussed above) is linked to analog
numerical magnitude representations.

Motivation of the present study

Assessments of mathematical skill are well understood, since
they are similar to math tests one might take at school. Indeed,
multiple researchers have worked to create short question-
naires that capture the distribution of this skill in a population
(e.g., Cokely, Galesic, Schulz, Ghazal, & Garcia-Retamero,
2012; Lipkus, Samsa, & Rimer, 2001; Weller et al., 2013).
However, metrics of individual differences in ANS acuity
are less well investigated. Some tasks used to assess individual
differences in ANS acuity have used symbolic numbers as the
stimuli, rather than nonsymbolic numerical magnitudes (e.g.,
Holloway & Ansari, 2009; Peters et al., 2008; Sekuler &
Mierkiewicz, 1977), even though the ANS does not directly
perceive the values of symbolic numbers from the world.
Rather, people learn to map symbolic numbers to analog nu-
merical magnitudes stored in or generated from memory (see
Dehaene & Cohen, 1998). Thus, performance on tasks involv-
ing symbolic numbers is likely influenced by multiple pro-
cesses, including those reviewed above (e.g., ANS acuity
and the exactness of symbolic-number mapping). Further-
more, practical limitations may lead researchers to make
trade-offs between speed, accuracy, and reliability when
choosing ANS acuity measures, leading them to use brief or
abbreviated measures, whose reliability is not well
established. For example, although two-option forced choice

discrimination tasks are well regarded by psychophysicists for
their ability to assess acuity in magnitude perception (King-
dom & Prins, 2010), such tasks typically require hundreds if
not thousands of trials in order to attain good reliability. In
contrast, the two-option forced choice task used by Halberda
et al. (2008) had only 80 test trials, which may severely limit
its reliability (Lindskog, Winman, Juslin, & Poom, 2013).
Moreover, that task did not account for the rates at which
participants have lapses in attention during such highly repet-
itive tasks (traditionally called the lapse rate; see Kingdom &
Prins, 2010), causing them to give a response that is not based
on the stimuli. This inattention can severely bias w estimates
(Prins, 2012).

Furthermore, a widely used metric of ANS acuity is the
“size” of the numeric distance effect (NDE: the increase in
reaction time or decrease in accuracy for distinguishing values
that are close to each other relative to those more distant from
each other; see Price, Palmer, Battista, & Ansari, 2012, for a
discussion). The NDE size metric has recently come under
fire, with several studies questioning both its reliability and
its ability to distinguish individual differences in ANS acuity
(Gilmore, Attridge, & Inglis, 2011; Holloway&Ansari, 2009;
Inglis & Gilmore, 2014; Lindskog et al., 2013; Maloney,
Risko, Preston, Ansari, & Fugelsang, 2010; Price et al.,
2012; Sasanguie, Defever, Van den Bussche, & Reynvoet,
2011). The measure is further complicated by the common
use of symbolic magnitudes in the task, which may explain,
in part, why NDE size has not reliably been shown to assess
ANS acuity (it remains unclear whether it is a reliable measure
of people’s ability to discriminate symbolic numbers).

In light of these facts, we believe it necessary to establish
reliable ANS acuity metrics. In this article, we present five
potential assessments of individual differences in ANS acuity
and, unlike prior studies, report these assessments’ reliability.
One assessment is a nonsymbolic discrimination task similar
to that introduced by Halberda et al. (2008; see also Lindskog
et al., 2013). Relative to these previous studies, we expanded
the number of trials in order to increase reliability and to
include a specific mechanism to gauge participants’ attention
to the task. Measuring the rate of participants’ lapses in atten-
tion should allow us to separate the effects of effort from those
of performance. Specific measures of such inattention are a
new addition to the ANS measurement literature. The next
three assessments are based on individual differences in per-
formance on nonsymbolic estimation tasks developed by
Chesney and Matthews (2012). Prior work with these tasks
had only considered them in terms of group-level performance
rather than as tools to detect reliable individual differences in
ANS acuity. The final measure concerns the mapping of
symbolic numbers, based on a task originally developed by
Siegler and Opfer (2003). Thus, in the two studies of the
present article, we go beyond the prior literature by (1) devel-
oping a metric that separates the effects of attention from
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performance, (2) evaluating a variety of short (and thus, easy
to implement) methods thought to gauge ANS acuity in terms
of internal (split-half) reliability and intertask correlations, and
(3) providing evidence of test–retest reliability for the more
promising measures. Thus, our studies provide useful tools to
aid researchers in selecting valid ANS acuity measures whose
reliability has been established and that best balance measure
reliability and participant time.

One task is a 5- to 10-min, two-option, forced choice dot-
discrimination task, specifically designed to allow calcula-
tions of w that account for the participant's lapse rate (i.e.,
the rate at which a participant’s attention to the task lapses)
and to maximize the discriminability of ws found for average
adults (typically estimated at about .11 or .22; Cordes et al.,
2001; Halberda & Feigenson, 2008; Inglis & Gilmore, 2014;
Lindskog et al., 2013; Pica, Lemer, Izard, & Dehaene, 2004;
Price et al., 2012; Whalen et al., 1999). The next three tasks
are 2- to 5-min estimation tasks, in which participants are
asked to explicitly estimate the numerical magnitudes of dot
sets. In the dot-line task, participants indicate the correct po-
sitions of dot sets on a “number-line” anchored by one dot on
the left and a large set of dots on the right. In the dot-ratio task,
participants estimate the ratio of two dot sets (e.g., :/:: → “1/
2”; see Matthews & Chesney, 2015, and Matthews, Chesney,
&McNeil, 2014, for discussions of nonsymbolic ratio percep-
tion). In the dot-number task, participants estimate the number
of dots with a symbolic number that they think equals the
number of dots displayed (e.g., :: → “4”). We note that the
dot-ratio and dot-number tasks involve a symbolic number
component that has the potential to interfere with these tasks’
ability to assess ANS acuity, despite the stimuli being non-
symbolic (sets of dots).

The final task was a 1- to 3-min symbolic-mapping
(SMAP) task originally developed by Siegler and Opfer
(2003), in which symbolic numbers were placed on a line.
Accuracy on such tasks has been related to how much one
values numeric objects (identified with symbolic numbers;
e.g., a gamble in which you have a 50 % chance to win $9;
Schley & Peters, 2014). Similar to the dot-ratio and dot-
number tasks, the SMAP task involves a symbolic number
component. As a result, performance on this task is likely
influenced by more complex mechanisms, including the accu-
racy of analog numerical magnitude representations (Siegler
& Opfer, 2003)—which are based on analog numerical mag-
nitude perceptions (Dehaene et al., 1993; Dehaene & Cohen,
1998)—and the exactness of the mapping between symbolic
numbers and these analog magnitudes. In addition, SMAP
responses may be influenced by higher-order math skills,
since values can be placed relatively accurately using a repeat-
ed bisection process. For example, one can place 80 on a 0–
300 line by dividing both the upper anchor value (300) and the
line by 2 twice, first to find the location of 150 and then to find
75, and finally by placing 80 slightly to the right of this

location. Indeed, such bisection methods are used by grade
school children (Barth & Paladino, 2011), and educated adults
should be able to place such symbolic numbers relatively lin-
early on a number line (Siegler & Opfer, 2003). The correla-
tion of SMAP performance with ANS acuity, therefore, may
be attenuated by the use of these additional mechanisms.

In summary, four of the five tasks evaluated here use non-
symbolic stimuli, and as such participants must employ their
ANS in order to perceive the stimulus magnitudes from the
world. However, the responses for two of these four tasks
involve symbolic numbers, and thus invoke the mapping be-
tween symbolic numbers and analog numerical magnitudes.
The fifth task employs symbolic numbers as the stimuli.
Thus, responses may be influenced by ANS acuity through
these symbolic numbers’mappings to analog magnitudes, but
other mechanisms, such as line bisection, may interfere with
this connection. In Study 1 (N = 247), we examined the split-
half reliability of these measures and the correlations between
them. In Study 2 (N = 39), we investigated the test–retest
reliability of the dot-discrimination and SMAP tasks and the
most reliable of the nonsymbolic dot-estimation tasks (dot-
line) after a one-week delay. In addition to these potential
assessments of ANS acuity, we included tasks to evaluate
participants’ self-perceptions of their numeric skill (the Sub-
jective Numeracy Scale [SNS]; Fagerlin, Zikmund-Fisher,
Ubel, Jankovic, Derry, & Smith, 2007; Zikmund-Fisher,
Smith, Ubel, & Fagerlin, 2007) and their abilities with tradi-
tional mathematics (the Objective Numeracy Scale [ONS];
Weller et al., 2013). To our knowledge, this study is the first
to assess the correlations of individual differences in perfor-
mance on multiple nonsymbolic estimation tasks with Weber
fraction estimates as well as with symbolic number-line
placement in educated adults. To foreshadow our results,
the dot-discrimination task had both good internal reliability
and good test–retest reliability, with no detected practice ef-
fects. It also provides an assessment of ability separate from
that of effort.

Study 1

Method

Participants

The participants were 247 students at The Ohio State Univer-
sity (146 male, 101 female; mean age 19.0 years). They re-
ceived course credit and a small snack as token compensation.
One additional participant was excluded due to atypical be-
havior (e.g., distracted behavior, taking multiple snack breaks
midsession) and a belief that the focus of the study was par-
ticipants’ choice of snack.
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Procedure

Each participant completed a set of computer-based tasks in a
single 1-h session. All tasks were completed at desktop com-
puters with mouse and keyboard inputs and a 56-cm monitor
at a 16:9 aspect ratio. Participants were free to move their
heads and eyes throughout the study and typically sat 60 cm
from the monitor. Thus, the monitor typically subtended
44 deg of the participants’ visual field. They first completed
two numeracy measures: the SNS, then the ONS. Next, they
completed nonsymbolic estimation tasks developed by
Chesney and Matthews (2012)—specifically, the dot-line,
dot-ratio, and dot-number tasks described below. They then
completed a SMAP task using the symbolic numbers corre-
sponding to the numerical magnitudes of the stimuli used in
the dot-line, dot-ratio, and dot-number tasks). Finally, after a
short break, participants completed our dot-discrimination
task—a modified version of the task developed by Halberda
et al. (2008). They also completed several tasks unrelated to
the present article, described in the online supplement. The
tasks were ordered to minimize intertask interference. Demo-
graphic data, including self-reported SAT and ACT scores,
were collected.

Measures

Subjective numeracy scale Participants completed a self-
assessment of numeric ability (Fagerlin et al., 2007). In this
SNS, participants rated their self-perceived mathematical abil-
ity and preference for numbers on eight questions using six-
point scales. Scores reflect the mean of these responses, with
higher scores reflecting greater perceived ability. Scores on
this task typically have medium to large correlations with
objective tests of mathematical ability.

Objective numeracy scale Participants completed an ONS
(Weller et al., 2013; see Appendix 1). Scores reflect the total
number correct out of seven recorded responses. We note that
an eighth question was asked but not included in the score as
responses on it failed to record.

Dot-discrimination task We constructed the dot-
discrimination task using the custom options available for
the Panamath (2013) software (see Appendix 2 for the text
of the custom values file). This task included substantially
more trials than the version described by Halberda et al.
(2008): 312 trials rather than 80. However, more subtle chang-
es were also made, to enhance the task’s ability to assess
individuals’ ws. In particular, we increased the number of
different ratio levels presented from 4 to 13, and increased
the number of trials per ratio from 20 to 24. We also increased
controls on the size of the dots, to prevent participants from
successfully using dot size, area, or density to guess the

correct answer, as detailed below. We also displayed the yel-
low and blue dot sets on the left and right sides of the screen,
respectively, rather than intermingling them, to reduce the
likelihood that participants would give the wrong response
because they confused the response keys. Additionally, one
of the ratio levels—ratios of about 2.5 (e.g., 25 vs. 10, 30 vs.
12)—was large enough that adults should always be able to
respond correctly on these trials if they are paying attention:
Even 6-month-old infants are able to discriminate numerical
magnitudes at ratios of 2 (Xu & Spelke, 2000). Thus, these
large-ratio stimuli yielded “catch” trials, which allowed us to
estimate individual participants’ lapse rates (i.e., inattention
rates), on the basis of their proportions of errors on these trials.

Participants sat at a computer displaying a gray back-
ground, on which the experimental stimuli were presented: a
set of yellow dots on the left, and a set of blue dots on the right.
Both dot sets were contained within a 32 × 18 cm rectangular
space in the center of the screen, with a 3-cm gap between the
two sets. The participants’ task was to press a key to indicate
which set of dots was more numerous, “F” for yellow on the
left and “J” for blue on the right. Yellow and blue stickers
labeled with the appropriate letters were placed beneath the
screen on the left and right to serve as reminders of these
instructions.

Each yellow or blue set was composed of 10 to 30 dots.
The ratio between the numbers of dots in the paired sets was
drawn from one of 13 ratio “bins.” Each bin was a small range
of set ratios that allowed for exactly six possible instantiations
of the bin’s magnitude within the limits of 10–30 dots per set
(see Appendix 3). Thus, the numerical ratio between the two
dot sets was not well correlated to the total number of dots
presented (r = –.17) or the total area of the dots on the screen (r
= –.14). For example, Bin 12 had a mean ratio of 2 (larger/
smaller) and possible instantiations of 20 versus 10, 22 versus
11, 24 versus 12, 26 versus 13, 28 versus 14, and 30 versus 15
dots. The mean ratios of the first 12 bins were exponentially
spaced between 1.05 and 2, to maximize the task’s ability to
detect differences in performance functions within the expect-
ed w range. Additionally, the easy “catch” bin with a mean of
2.5 was included to detect lapse rates. In half the trials, the side
with more dots also had larger dots and a greater total area
than the other side (size congruent). For the other half of the
trials, the side with more dots had smaller dots with a smaller
total area (size incongruent). Also, there were six possible
“average dot sizes,” which limited the range of the diameter
of the dots in themore numerous set: 25, 30, 35, 40, 45, and 50
units. Average dot sizes of the less numerous set were adjusted
up or down from this to control for size and area congruency,
as noted above. Areas of individual dots were allowed to vary
randomly by up to 42 % of the average dot area, with the
average being maintained across the set. This maximum
42 % area variability corresponds to a maximum 19 % in-
crease in dot diameter. There were two trials per ratio bin,
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per size, per size congruency. This yielded 24 trials per ratio
bin, for a total of 312 trials. Trial order, ratio instantiation used,
and which side had more dots were randomly determined by
the program, but were based on the same default random seed
so that the same set was used for each participant.

Each trial was preceded by a white fixation cross in the
center of the screen. Participants then self-initiated each trial
by pressing the space bar. The fixation cross then disappeared,
and the two sets of dots appeared on the gray background for
200 ms, as is typical of this paradigm (Halberda et al., 2008).
The dots then vanished and were replaced by a 200-ms pre-
sentation of a single yellow-and-blue snow mask that covered
the rectangular area circumscribing the previous locations of
the two dot displays. The gray screen then remained empty
until the participant responded, at which point the pretrial
fixation cross would reappear, awaiting the participant’s com-
mand to start the next trial. Each participant completed ten
practice trials and then 312 test trials. No feedback was given
at any point during testing. Participants could respond imme-
diately after the yellow and blue dots were presented. Reaction
times were measured from this time point.

Dot-line task Participants completed a line placement task
using nonsymbolic stimuli (sets of dots). In this task, a set of
dots flashed on the screen, and participants estimated the
placement of its numerical magnitude on a line. For example,
if they saw a line anchored by one dot on the left and by three
dots on the right, a set of two dots should be placed in the
middle. Participants completed two practice trials, with feed-
back, in which they placed first three and then six dots on a
line anchored by one dot on the left and ten dots on the right.
After the participants indicated that they understood the task,
testing began. Participants were shown a 27.5-cm line an-
chored by one large dot on the left and 300 small dots on the
right (see Fig. 1). The total area of the one large dot was equal
to the total area of the 300 small dots. Participants self-
initiated each trial by pressing the space bar. After pressing
this bar, a fixation cross would appear for 500 ms; it was
immediately followed by a 501-ms presentation of a set of
dots, and then a 100-ms presentation of a mask composed of
unevenly spaced 1- to 3-mm thick black and white diagonal
stripes. We note that the speed of the stimulus presentation
prevented counting. Thus, participants needed to use their
ANS to estimate the numerical magnitudes of the stimuli.
Participants then clicked on the line where they thought the
dots should go. The line and its anchors remained on the
screen throughout each trial.

The dot sets were composed of 20, 40, 60, 80, 100, 120,
150, 180, 200, 220, 240, 260, 280, or 300 dots, for a total of 14
possible nonsymbolic numerical magnitudes. The continuous
extent of the dot sets was controlled in two different ways. On
half of the trials, the total area was allowed to vary, increasing
with the number of dots shown, but the average size of each

dot was held constant, equal to the average size of the dots in
the 300-dot anchor (area varied, dots constant: AVDC). On the
other half of the trials, the total area of the dots was held
constant, equal to the total area of the 300-dot anchor, but
the size of the dots varied, decreasing as set size increased
(area constant, dots varied: ACDV). Thus, continuous extent
did not consistently vary with numerical magnitude. Partici-
pants completed one trial per nonsymbolic numerical magni-
tude per continuous-extent control types, for a total of 28
trials. No feedback was given during testing. The small num-
ber of trials combined with this lack of feedback limited the
possibility that participants could learn which continuous-
extent strategy was viable for placing the stimuli. Moreover,
the lack of feedback meant that assessing whether a continu-
ous extent strategy could be used successfully to place a par-
ticular dot set would require that the participant assess the
numerical magnitude of the set. Thus, participants had to base
their responses on the perceived numerical magnitude of a set
if they were to be successful. Trials were presented in random
order. This task was typically completed in 2–5 min.

Dot-ratio task The dot-ratio task was similar to the dot-line
task, except that participants were asked to give an explicit
symbolic ratio rather than to place dots on a line. We con-
structed 28 nonsymbolic ratios with the 28 dot stimuli de-
scribed for the dot-line task, displayed in a fractional relation-
ship to a 300-dot denominator (see Fig. 2). Participants initi-
ated each trial by pressing the space bar. After they pressed
this bar, a fixation cross appeared for 500 ms and was imme-
diately followed by a 501-ms presentation of a dot ratio, then a
100-ms presentation of a striped mask, like that described
above. Participants then needed to type in the ratio they saw
(e.g., 1/3). The 28 trials were presented in random order, one
trial for each possible nonsymbolic ratio stimulus. Prior to
testing, to ensure understanding of the task, feedback was
given on two practice trials for which participants were to give
ratios for three versus ten dots and six versus ten dots. No
feedback was given during testing. This task was typically
completed in 2–5 min.

Dot-number taskThe dot-number task was similar to the dot-
line and dot-ratio tasks, except that participants were asked to
provide an explicit symbolic estimate of the number of dots in
each set. The stimuli were the same 28 dot stimuli described
for the dot-line task. Participants initiated each trial by press-
ing the space bar. After pressing this bar, a fixation cross
appeared for 500 ms, which was immediately followed by a
501-ms presentation of a dot set, then a 100-ms presentation of
a striped mask. Participants then typed in the number of dots
that they saw (e.g., 100). The 28 trials were presented in ran-
dom order, one trial for each dot set. Prior to testing, to ensure
understanding of the task, feedback was given on two practice
trials in which participants were to estimate three and six dots.
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No feedback was given during testing. This task was typically
completed in 2–5 min.

SMAP task Participants completed a SMAP task in which
they placed the symbolic numbers 0, 20, 40, 60, 80, 100,
120, 150, 180, 200, 220, 240, 260, 280, and 300 on a 27.5-
cm line anchored by the symbolic numbers 0 and 300.

Participants initiated each trial by pressing the space bar,
which caused a digit to appear above the center of the line,
where it remained until a response was given via a mouse-
click on the line. A total of 15 trials, one for each value, were
presented in random order. No feedback was given during
testing. However, to ensure understanding of the task, feed-
back was given on two practice trials in which participants
placed the numbers 33 and 14 on a line anchored by 0 and
100. This task was typically completed in 1–3 min.

Results

Among the 247 participants, six (2 %) did not complete all of
the tasks due to early withdrawal or equipment failure: One
did not complete the three dot-estimation tasks or the SMAP
task, three did not complete the dot-discrimination task, and
two completed none of these tasks. An additional 22 partici-
pants (9 %) were found to be noncompliant on the dot-
discrimination task and/or the SMAP task. We described
how we identified noncompliant participants in detail below.
To better allow for comparisons of the effects, the analyses in
the text below refer to the subset of 219 participants (89 %;
128 male, 91 female, mean age = 18.9) who completed and
were compliant on all tasks, unless otherwise noted. However,
we also conducted parallel analyses that included data from all
of the participants whowere compliant on the tasks relevant to
the analysis in question, with similar results. These data are
available from the first author.

Data coding

Dot-discrimination task We used a maximum likelihood
model described by Halberda and Feigenson (2008) to esti-
mate the ws for each participant (see Appendix 4). Estimates
were found (a) using the full data set, (b) separately for the
subsets of size-congruent trials and size-incongruent trials,

Fig. 1 Line used to respond on
the dot-line task (1–300 dots),
with an example stimulus above:
100 dots, whose total area equaled
both the area of the 300 dots and
the area of the one large dot.

Fig. 2 Example stimulus used in the dot-ratio task: 100 versus 300 dots,
where the average dot size was held constant. A correct response would
be 1/3, 100/300, or any other equivalent fraction.
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and (c) separately for subsets found via a random split includ-
ing half of the trials in each bin for each size congruency type
(the same split was used for each participant). We estimated
these ws for each participant in two ways: assuming a lapse
rate of 0 (w0) and using an estimated lapse rate for each par-
ticipant (wL). Lapse rates were estimated from the partici-
pants’ error rates on the “catch” trials, the trials with ratios
between 2.4 and 2.6. As we discussed above, adults should
always get these trials correct if they were paying attention.
Thus, all errors on these trials could be attributed to random
answering resulting from a lapse in attention. Because inatten-
tive participants should choose by chance the correct answer
on half of these randomly answered lapsed trials, we estimated
each participant’s lapse rate as two times the proportion of
incorrect trials. Catch trials were only used once in the wL

calculation—to estimate the lapse rate—and not used again
with the rest of the trials in the subsequent maximum likeli-
hood calculation that corrected for that estimated lapse rate.
Otherwise, all data points were included in the analyses.

Dot-line, dot-number, dot-ratio, and SMAP tasks Re-
sponses on the dot-line and SMAP trials were converted to
the numerical value referenced by that position on the line. No
responses were missing or uncodeable. Responses to the dot-
number and dot-ratio tasks were converted to decimal num-
bers (e.g., “four” → 4; “1/4” → .25). For these two tasks,
0.4 % of responses were missing or uncodeable (e.g.,
“e30”). Task performance was scored on the basis of the
codeable responses. We calculated the R2 of the fit of the
responses to a linear function and the mean absolute distance
of the responses from the correct value (ADC) for each partic-
ipant on each of the dot-estimation tasks (dot-line, dot-num-
ber, and dot-ratio), for each of the two subsets of area con-
trolled trials (the subset of trials in which the total area varied
with the number of dots and dot size was constant [AVDC]
and the subset of trials in which the total area was held con-
stant and dot size varied [ACDV]). For each task, the R2 for
the two subsets were averaged to yield each participant’s mean
R2. The same was done for the ADCs. We also found the R2

and ADC of the responses to the 14 SMAP trials with stimulus
values ranging from 20 to 300. The trials in which the stimulus
was 0 were excluded, so that the stimulus values analyzed
would match those of the dot-estimation tasks.

Identifying noncompliant participants

Dot-discrimination task We identified 19 participants (8 %)
with lapse rates of 0.5 or greater to be noncompliant. A lapse
rate over 0.5 would indicate that the participant was inatten-
tive and answered randomly on more than half the trials. We
also identified as noncompliant participants whose w esti-
mates were greater than or equal to 1.0, either overall or for
any of the tested halves (18 participants, 7 %). The results

from prior research (Halberda et al., 2008) estimating w using
a similar task placed ws equal to 1.0 at more than seven stan-
dard deviations above the mean. A w of 1.0 would indicate
that a person cannot differentiate magnitudes at a ratio less
than 2:1. Recall that 12-month olds can discriminate magni-
tudes at 3:2 ratios (w ≤ 0.5; see Cantrell & Smith, 2013, for a
review). Thus,w estimates of 1.0 or greater indicated either an
abnormal ANS or, more likely among our college student
participants, sufficiently high lapse rates to constitute non-
compliance with the task. A great deal of overlap existed in
the participants identified by these exclusion criteria. Of the 18
participants excluded due to overly high w estimates, 16 also
had lapse rates greater than 0.5, with the remaining two par-
ticipants being near the cutoff, with lapse rates of 0.5 and 0.42.
Thus, converging evidence exists that both of these
methods—and our catch trials, in particular—were successful
at identifying noncompliant participants. On the basis of these
criteria, 21 participants of the 242 who completed this task
(9 %) were found to be noncompliant.

Estimation tasks Although estimation tasks similar to those
used here have been used in prior studies, these particular
versions of the estimation tasks are novel. As such, no data
are available in the literature as to what constitutes “normal”
adult performance. To best parallel the procedure used to de-
tect noncompliant participants on the dot-discrimination task,
we decided to exclude participants whose R2s were seven
standard deviations away from the mean based on the data
from all 244 participants who completed these tasks. Perfor-
mance was sufficiently variable on the dot-line, dot-number,
and dot-ratio tasks that R2s would have needed to be outside
the possible range to be seven standard deviations from the
mean. As such, no participants were identified as being non-
compliant on these tasks. Performance on the SMAP task was
less variable (N = 244,M = .951, SD = .094), and R2s less than
.29 were more than seven standard deviations below the mean.
This cutoff point identified two participants as noncompliant
on the SMAP task, one of whom was also identified as non-
compliant on the dot-discrimination task. These participants
were excluded from the final sample. Of interest, in a personal
communication, John Opfer (May 8th, 2015) suggested that
noncompliance can be established on symbolic number-line
tasks like our SMAP task simply by excluding participants
who do not show a statistically significant correlation between
the stimulus value and their response. According to this crite-
rion, R2s below .28 on the SMAP task would indicate non-
compliance, and the same two participants would be identi-
fied. Thus, converging evidence exists that a cutoff of seven
standard deviations does indeed detect noncompliance on the
SMAP task.

Final sample The final sample size was 219 after excluding
noncompliant participants. The mean estimated lapse rate was
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higher (lapse rate = 0.15, SD = 0.25, range = 0 to 1.25) among
the 242 participants who completed this task, including those
found to be noncompliant, than for the final sample of 219
(lapse rate = 0.08, SD = 0.12, range = 0 to 0.5). Excluded
participants also had significantly poorer scores on objective
numeracy and subjective numeracy than did those in the final
sample [ONS means: 3.36 (SD = 1.57) and 4.42 (SD = 1.60)
among the excluded and final participants, respectively, t(245)
= 3.33, p = .001, Cohen’s d = 0.67; SNS means: 4.15 (SD =
0.94) and 4.49 (SD = 0.84) among the excluded and final
participants, respectively, t(245) = 2.01, p = .046, Cohen’s d
= 0.40].

Performance and reliability

Objective numeracy and subjective numeracy tasks The
mean score on the seven question ONS task was 4.42 (SD =
1.60) and on the SNS task was 4.49 (SD = 0.84).

Dot-discrimination taskMean w estimates and their correla-
tions are presented in Table 1. With a mean of 0.22 (SD =
0.06), our estimates of wL are consistent with past estimates
of adult ANS Weber fractions (Cordes et al., 2001; Inglis &
Gilmore, 2014; Lindskog et al., 2013; Price et al., 2012;
Whalen et al., 1999). We found large correlations between
the w0 estimates from commensurate halves for the different
size-congruency conditions (r = .79) and for the random split
(r = .81), indicating that this task had good reliability. This was
partially driven by the lapse rate rather than by the underlying
w. The correlation between the overall w0 and lapse rate was
quite high (r = .80, p < .001) and was greater than .71 for all
four of the w0 estimates for the various halves, indicating that
the w0 estimates of ANS acuity may have been biased by the
lapse rates. Nevertheless, the w estimates calculated on the
basis of the individual lapse rate estimates (wL) still showed
large correlations (r > .57) between commensurate halves,
with reliability greater than .73. [Note: We report reliability
here in terms of the Spearman–Brown coefficient, 2r/(1 + r),
because it yields a score similar to Cronbach’s alpha, but is
less susceptible to bias when assessing two variables, such as
with split-half reliability; Eisinga, Grontenhuis, & Pelzer,
2012.] Thus, performance on this task was reliable, and the
w estimates obtained from it were reliable, even after account-
ing for the lapse rate.

Dot-estimation tasks The mean R2s and ADCs for the three
dot-estimation tasks and the SMAP task, as well as the corre-
lations among them, are presented in Tables 2 and 3. Partici-
pants typically showed linear, but imprecise, performance on
all three dot-estimation tasks, with mean R2s near .7. Such
performance is consistent with the use of the ANS to assess
magnitudes and determine responses, with additional noise in
the responses potentially due to the task demands, possibly

including the use of symbolic numbers for estimates in the
dot-number and dot-ratio tasks. Of the three dot-estimation
tasks, only the dot-line task yielded consistently reliable per-
formance (Spearman–Brown ≥ .6). Adequate (Spearman–
Brown ≥ .6) to excellent (Spearman–Brown ≥ .9) reliability
was found when we correlated the ADC and R2 values be-
tween the two subsets of the dot-line task, and when we cor-
related the task’s meanR2s and meanADCs. Performance was
not as consistent for the dot-number or dot-ratio tasks. This
pattern seems likely due to the bounded nature of the dot-line
task, which helps ensure that participant responses are all on
the same scale and limits the degree to which participants can
provide answers that are extreme outliers. The scaling issue is
particularly relevant to the dot-number task, since it has been
found previously that people systematically underestimate the
cardinal value of dot sets (see Taves, 1941). Thus, a person
with extremely precise dot-number task responses (R2 = .95)
that were consistently underestimated by 50 % could have a
much poorer ADC score than a person whose answers were
much less precise (R2 = .7) but were unbiased. By comparison,
outliers are particularly problematic in the dot-ratio task. For
example, nine participants in the final sample gave responses
greater than 3.0 on the dot-ratio task, despite all of the stimulus
ratios being less than or equal to 1. When these participants
were dropped from consideration, the correlation between the
dot-ratio task’s R2 and ADC values increased considerably,
from –.33 to –.83, (p < .001, Spearman–Brown = .91), as did
the correlation between the ADCs found for the area-correlated
and area-constant trials, increasing from –.01 to .27 (p < .001,
Spearman–Brown = .42), whereas the correlation between the
R2s of the two different kinds of trials remained stable (.42 vs.
.44). Thus, removing outliers from consideration can improve
the reliability of the dot-ratio task, but the dot-line task was
reliable without such cleaning. Analyses of the R2s of the log-
arithmic fit yielded results similar to those of the linear fit and
are available from the first author.

SMAP task The SMAP task included a single trial for each of
the 14 stimulus values. Thus, to judge its internal reliability, we
split the task using every other value. Subset 1 included the trials
with the symbolic numbers 20, 60, 100, 150, 200, 240, and 280
as stimuli, whereas Subset 2 included the trials with the symbolic
numbers 40, 80, 120, 180, 220, 260, and 300 as stimuli. Partic-
ipants were typically both linear and extremely precise on the
task: Considering all trials, the mean R2 was .96 (SD = .05). This
performance is not consistent with the use of analog magnitudes
alone to assess stimulus values and determine responses: Re-
sponses were too accurate for values to have been placed solely
using the relative analog magnitudes mapped to stimulus values
and anchors, given that these analog magnitudes have ANS-like
acuity (see Dehaene et al., 1993; Dehaene & Cohen, 1998).
Simulations of 10,000 participants with w ranges like those de-
termined from the dot-discrimination task (M = 0.22, SD = 0.06)
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indicated that one should expect a mean R2 of .78 (SD = .14), if
the variability in analog numerical magnitude representations
was the only source of error, with no added noise from task
demands. This analysis indicates that our participants likely used
other strategies, such as line bisection, in addition to or instead of
analog magnitude comparisons to place the values on the line.
As we suggested earlier, this potential confound may compro-
mise this task’s validity as an assessment of ANS acuity. The
split-half reliability on this task was mixed, with small-to-
medium correlations between the subsets’ R2s (r = .31, p <
.001, Spearman–Brown = .47) and large correlations between
the subsets’ ADCs (r = .58, p < .001, Spearman–Brown =
.73). Additionally, the overall R2s and ADCs found for the

14 trials with stimulus values greater than 0 showed a large
correlation to each other (r = –.79, p < .001, Spearman–Brown
= .89).

Correlations between discrimination and estimation tasks

As is illustrated in Table 3, the mean R2s of all dot-estimation
and SMAP tasks are correlated with each other and with the
dot-discrimination task’s w0 estimates (based on a zero lapse
rate). Interestingly, they are also all correlated with the wL

estimates (based on individual lapse rate estimates), and to
the estimated lapse rate, despite the fact that wL and lapse rate
are not correlated with each other. This pattern suggests that

Table 1 Study 1: performance on
the dot-discrimination task (N =
219)

w0
↓ wL

↓

Overall, mean (SD) 0.27 (0.10) 0.22 (0.06)

Size-incongruent, mean (SD) 0.29 (0.12) 0.24 (0.09)

Size-congruent, mean (SD) 0.25 (0.10) 0.20 (0.06)

Size-incongruent & size-congruent w correlation .79*** .57***

Spearman–Brown reliability .88 .73

Random half 1, mean (SD) 0.27 (0.11) 0.22 (0.07)

Random half 2, mean (SD) 0.26 (0.11) 0.21 (0.07)

Random half w correlation .81*** .62***

Spearman–Brown reliability .90 .77

w0 refers to w estimates calculated assuming a 0 lapse rate; wL refers to w estimates calculated to account for
individual lapse rate estimates. Given ourN of 219, the critical r for an alpha of .05 is .133 (in other words, there is
a 50 % chance that a correlation of .133 will be detected at p < .05), and there is an 80 % chance (β = .2) that a
correlation of .188 will be detected. ↓ Lower scores indicate better performance/skill. *** p < .001

Table 2 Study 1: mean linear fits and mean absolute distance from correct (ADC) for performance on the four estimation tasks (N = 219)

Dot-Line Dot-Number Dot-Ratioo SMAP

Mean R2 ↑, mean (SD) .67 (.19) .73 (.14) .70 (.17) .96 (.05)!

R2 Subset 1, mean (SD) .69 (.24) .75 (.17) .77 (.17) .97 (.06)

R2 Subset 2, mean (SD) .66 (.20) .72 (.20) .62 (.24) .96 (.05)

Correlation of subset R2s .52*** .21** .42*** .31***

Spearman–Brown reliability .69 .35 .59 .47

Mean ADC ↓, mean (SD) 50 (17) 103 (24) .18 (.25) 14 (6)!

ADC Subset 1, mean (SD) 48 (21) 101 (23) .14 (.05) 13 (7)

ADC Subset 2, mean (SD) 52 (17) 105 (32) .23 (.49) 14 (7)

Correlation of subset ADCs .59*** .54*** –.01 .58***

Spearman–Brown reliability .74 .70 .02 .73

Correlation of mean R2 and mean ADC –.84*** –.15* –.33*** –.79***

Spearman–Brown reliability .91 .25 .50 .89

ADC refers to mean absolute distance from correct. For the dot tasks, Subset 1 refers to the 14 AVDC trials (trials in which area varied and dot size was
constant), whereas Subset 2 refers to the 14 ACDV trials (trials in which area was constant and dot size varied). For the SMAP task, Subset 1 refers to the
20, 60, 100, 150, 200, 240, and 280 trials, whereas Subset 2 refers to the 40, 80, 120, 180, 220, 260, and 300 trials. Given ourN of 219, the critical r for an
alpha of .05 is .133 (in other words, there is a 50% chance that a correlation of .133will be detected at p < .05), and there is an 80% chance (β = .2) that a
correlation of .188 shall be detected. o The reliability of the dot-ratio task improved for analyses excluding nine compliant outlier participants. See the
Dot-Estimation Tasks section of Study 1’s Performance and Reliability results for details. ↑Higher scores indicate better performance/skill. ↓Lower
scores indicate better performance/skill. ! For SMAP, we used the R2 and mean ADC of all 14 trials, rather than the average of the two subsets of seven
trials. * p < .05, ** p < .01, *** p < .001
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performance on all of the tasks was confounded to some
extent with individual differences in effort or attention, and
that these lapse rates from the dot-discrimination task may,
at least in part, account for these differences. Performance
on the dot-line task was the best overall predictor of the
estimation measures and was significantly correlated with
the dot-discrimination task’s wL (mean r = .30; see Tables 3
and 5). However, after the nine dot-ratio outlier partici-
pants were dropped from consideration, the correlations
of the dot-ratio task to the other metrics became similar
to those of the dot-line task, with significant small- to
medium-sized correlations with all the other measures, ex-
cepting only the dot-number ADC. The absolute values of
these rs ranged from .18 (dot-ratio ADC and lapse rate) to
.39 (dot-ratio R2 and dot-line R2). The correlations of the
SMAP task to the other potential measures was similar to
that of the dot-line task, although SMAP’s correlation to
wL was somewhat smaller (mean r = .21) than the dot-line
task’s (mean r = .30).

Correlations between performance on general numeracy
measures and discrimination and estimation tasks

The correlations of the discrimination and estimation tasks
to the SNS and ONS are presented in Table 4. As can be
seen, better performance on all of the other tasks was corre-
lated with higher ONS scores (average absolute rs ranging
from .12 to .38; see Table 5). Better ONS was also associ-
ated with lower lapse rates on the dot-discrimination task
(i.e., with greater attention, r = –.14). SNS was similarly
correlated with the various measures (average absolute rs
ranging from .11 to .27; see Table 5), although it was not
significantly correlated to lapse rates (r = –.08). These

results could mean that ONS relates only to possible con-
founding effects of effort on task performance, rather than to
underlying ANS acuity. However, correlations of ONS and
SNS to the dot-discrimination task’s w estimates changed
only slightly after accounting for the lapse rate. Furthermore,
regressing both lapse rate and wL on ONS, we found that

Table 3 Study 1: correlations between estimation and discrimination tasks (N = 219)

1 ↓ 2 ↓ 3 ↓ 4 ↑ 5 ↓ 6 ↑ 7 ↓ 8 ↑o 9 ↓o 10 ↑

1. w0
↓ –

2. wL
↓ .56*** –

3. Lapse rate ↓ .80*** –.02 –

4. Dot-line R2 ↑ –.32*** –.30*** –.17* –

5. Dot-line ADC ↓ .32*** .29*** .18** –.84*** –

6. Dot-number R2 ↑ –.30*** –.18** –.23*** .34*** –.28*** –

7. Dot-number ADC ↓ –.01 –.09 .05 .06 –.03 –.15* –

8. Dot-ratio R2 ↑o –.34*** –.26*** –.23*** .39*** –.34*** .22*** .07 –

9. Dot-ratio ADC ↓o .05 .04 .03 –.16* .15* .00 –.05 –.33*** –

10. SMAP R2 ↑ –.23*** –.18** –.16* .28*** –.31*** .22** –.138* .25*** –.07 –

11. SMAPADC ↓ .28*** .24** .18** –.38** .39*** –.22** –.07 –.31*** .132+ –.79***

ADC refers to the mean absolute distant from correct. Given our N of 219, the critical r for an alpha of .05 is .133 (in other words, there is a 50% chance
that a correlation of .133 will be detected at p < .05), and there is an 80 % chance (β = .2) that a correlation of .188 will be detected. ↑Higher scores
indicate better performance/skill. ↓Lower scores indicate better performance/skill. o Dot-ratio’s correlations to other tasks improved for analyses
excluding nine compliant outlier participants. See the Correlations Between Discrimination and Estimation Tasks section of Study 1’s Results for details.
+ p < .1, * p < .05, ** p < .01, *** p < .001

Table 4 Study 1: correlations between estimation and discrimination
tasks to numeracy assessments (N = 219)

SNS ↑ ONS ↑

ONS ↑ .50*** –

w0
↓ –.18** –.28***

wL
↓ –.19** –.26***

Lapse rate ↓ –.08 –.14*

Dot-line R2 ↑ .27*** .38***

Dot-line ADC ↓ –.27*** –.37***

Dot-number R2 ↑ .15* .24***

Dot-number ADC ↓ –.06 –.01

Dot-ratio R2 ↑ o .32*** .31***

Dot-ratio ADC ↓ o –.12+ –.08

SMAP R2 ↑ .17* .14*

SMAPADC ↓ –.29*** –.23***

ADC refers to the mean absolute distant from correct. Given ourN of 219,
the critical r for an alpha of .05 is .133 (in other words, there is a 50 %
chance that a correlation of .133 will be detected at p < .05), and there is
an 80 % chance (β = .2) that a correlation of .188 will be detected.
↑Higher scores indicate better performance. ↓Lower scores indicate better
performance. o Excluding nine compliant outlier participants changed the
dot-ratio’s R2 correlations with SNS and ONS slightly, and improved the
dot-ratio’s ADC correlations with both SNS and ONS: SNS × R2 : r =
.31*** ; SNS × ADC: r = –.25*** ; ONS × R2 : r = .26*** ; ONS × ADC: r
= –.25*** . + p < .1, * p < .05, ** p < .01, *** p < .001
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both factors predicted ONS independently (lapse rate: β =
–.15, t = –2.3, p = .022; wL: β = –.26, t = –4.0, p < .001).

Math SAT scores were obtained from 65 of the 219 partic-
ipants (30 %). Despite this low power, a significant, medium-
sized correlation existed between Math SAT scores and wL (w
estimates accounting for lapse rates; r = –.36, p = .003). How-
ever, for w0 estimates (estimates that did not account for lapse
rates), the correlation to Math SATwas neither significant nor
in the predicted direction (r = .11, p = .37). The only other
potential acuity measure that had a significant correlation with
Math SAT scores was the dot-ratio task (R2: r = .26, p = .03;
ADC: r = –.32, p = .01).

Discussion

The goal of Study 1 was to test the reliability of several
potential metrics of ANS acuity: a dot-discrimination task,
three tasks in which participants estimated nonsymbolic
numerical magnitudes, and a symbolic number-mapping
task. Performance on the tasks correlated with each oth-
er and showed similar patterns of correlation to the ob-
jective and subjective numeracy measures (see Tables 3,
4, and 5). This convergence indicates that the tasks tap
into the same cognitive construct(s), and thus may re-
flect individual differences in ANS acuity to greater and
lesser extents.

The present results replicated past findings that general
mathematical ability and ANS acuity are associated (Halberda
et al., 2008; see Chen & Li, 2014, for a review). Moreover, we
found correlations of ONS and SNS with the dot-
discrimination task’s w estimates that persisted even after ac-
counting for participants’ inattention to the task via the lapse
rate estimates. This finding further supports the conclusion
that correlations between acuity measures and general numer-
ic ability measures reflect, at least in part, a connection to
underlying ANS acuity, rather than to other factors that may
be captured in such tasks, such as effort or sustained attention.

Of the four dot tasks, the dot-discrimination task and dot-
line task were more reliable than the dot-number and dot-ratio
tasks. Both the dot-discrimination task and the dot-line task
achieved good internal reliability without the need to drop
outlier trials (average split-half reliabilities > .7; see Table 5).
In contrast, the dot-number task showed poor reliability (av-
erage split-half reliability = .53; see Table 5), and reliability on
the dot-ratio task was unacceptably low (average split-half
reliability = .30; see Table 5). It should be noted that, although
the stimuli were nonsymbolic on all four of these tasks, the
responses were symbolic on two of the tasks. In particular, the
dot-number and dot-ratio tasks required participants to re-
spond with symbolic Arabic numbers. Symbolic number un-
derstanding, thus, may have affected performance on these
tasks, reducing the reliability of their ANS acuity estimates.

Table 5 Study 1: overview of the reliability and intertask correlations of the discrimination and estimation tasks (N = 219)

Dot-Discrimination (wL) Dot-Estimation Tasks (R2 & ADC) SMAP

Dot-Line Dot-Number Dot-Ratio o

Time needed to complete task 5–10 min 2–5 min 2–5 min 2–5 min 1–3 min

Mean split-half reliability (Spearman–Brown) .74 .71 .53 .30 .60

Averaged Correlations

Dot-estimation tasks o .16 .19 .08 .14 .20

wL – .30 .04 .15 .21

ONS .26 .38 .12 .20 .18

SNS .19 .27 .11 .22 .23

Lapse rate .02 .17 .14 .13 .17

This table summarizes and simplifies the information in Tables 1, 2, 3, and 4 by averaging the results frommultiple measures. For the dot-discrimination
task, we report mean absolute correlations towL (Weber fraction estimates accounting for individual differences in the rate at which participants’ attention
lapsed during testing). For the three dot-estimation tasks, we report the mean of the correlations of the indicatedmeasures to theR2 s of the linear fit and to
the mean absolute distances from correct (ADCs). We similarly report the mean of the correlations to the SMAP R2 and ADC. For the purposes of
averaging measures and in this table only, correlations were reversed as appropriate, so that positive values indicate better performance predicting better
performance (e.g., the correlation of SNS and ADC was reversed in order to average it with the correlation of SNS and R2 ). Within-task measure
correlations (e.g., the correlation between the R2 and ADC of the dot-line task) are not included in these means. For example, in Table 3 we see that the
dot-line taskR2 ’s correlation to the dot-number and dot-ratioR2 s andADCswere .34, .06, .39, and –.16, and also that the dot-line task ADC’s correlation
to the dot-number and dot-ratio R2 s and ADCs were –.28, –.03, –.34, and .15. The .06 and –.03 are in the “wrong” direction, with worse performance on
one task predicting better performance on the other, so these were treated as negative, whereas the other values were treated as positive during the
averaging. The resulting mean of the eight corrected values is .19. Thus, the dot-line tasks’ overall correlation to the rest of the dot-estimation tasks is
listed as .19. o The reliability of the dot-ratio task and its correlation to other tasks improved for analyses excluding nine compliant outlier participants.
See the Dot-Estimation Tasks section under Performance and Reliability and the Correlations Between Discrimination and Estimation Tasks sections in
Study 1’s Results for details.
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Additionally, the symbolic ONS and SNSmeasures correlated
more strongly with the most reliable of the estimation tasks
(the dot-line task) than they did with the dot-discrimination
task.

The SMAP task showed the same pattern of correlations as
did the dot-estimation tasks, despite its use of symbolic stim-
uli. It showed better overall split-half reliability than did the
dot-number and dot-ratio tasks, though not as good as that of
the dot-line task. Moreover, it was more strongly correlated to
the dot-discrimination task’s wL than were the dot-number or
dot-ratio tasks, although again not as strongly as the dot-line
task. Thus, SMAP scores reflect ANS acuity to some extent.
However, given the present finding that SMAP performance
was better than could be achieved solely using analog mag-
nitudes with ANS-like acuity, combined with prior evidence
that participants used non-ANS-based strategies to bolster
their accuracy (Barth & Paladino, 2011), the reasons for the
connection between SMAP performance and ANS acuity re-
main unclear. It could be that the extent of the use of analog
magnitudes is sufficient to yield correlations between ANS
acuity and SMAP performance, despite the possible involve-
ment of other properties and processes, such as the accuracy
of the mapping between symbolic numbers and numerical
magnitudes and line bisection strategies. Alternatively, it
may be that analog magnitudes are not invoked during the
SMAP task, but that ANS acuity and SMAP are correlated
because both are correlated with overall numeric ability: In-
deed, controlling for ONS, the partial correlation of wL and
SMAP’s ADC was only .19 (p = .005), and the partial corre-
lation of wL and SMAP’s R2 was both not significant and not
in the predicted direction (r = .06, p = .356). It is also possible
that the correlation is due to both ANS acuity and placement
strategies (such as line bisection) drawing on the same under-
lying cognitive ability (such as the ability to perceive relative
proportions; Matthews & Chesney, 2015). Additional re-
search will be needed to understand the role of the ANS as
compared to other processes when using symbolic stimuli,
symbolic estimates, and line placements.

Of the tasks tested here, the dot-discrimination task ap-
peared to provide the most reliable assessment of individuals’
ws. It had the most consistently high split-half reliability of the
potential ANS measures tested, and it was predictive of better,
more linear performance in the other estimation tasks. This
reliability and predictive power was maintained even after
accounting for lapse rate. Moreover, it was the only task of
those tested able to separately assess aspects of effort and
acuity that appear to influence estimation performance. Esti-
mated lapse rates and wL (estimates of w that took lapse rates
into account) were not significantly correlated with each other,
yet they both were correlated to performance on the estimation
tasks. Both larger lapse rates and larger wLs predicted worse
estimation performance, suggesting roles for both ANS acuity
and effort in the estimation tasks. This ability to

simultaneously assess ANS acuity and task attention may
yield wider benefits to researchers than would an assessment
of ANS acuity alone, since it can serve as a measure of indi-
vidual differences in effort on the day of testing. This may
prove to be an important predictor for many tasks. Indeed,
although lapse rate is deliberately not a measure of ANS acu-
ity, it is, in fact, predictive of performance on the other ANS
acuity measures and on the ONS. Moreover, excluded partic-
ipants not only had poorer lapse rates, but also poorer ONS
and SNS scores, than those in the final sample. It appears that
both ONS scores and performance on ANS tasks (without
accounting for lapse rates) partially reflected participants’ ef-
fort on the day of testing.

Since the dot-discrimination task can be completed in 5–
10 min and can be instantiated easily using the readily avail-
able Panamath (2013) software, it offers a viable option for
researchers wanting to quickly assess individual differences in
ANS acuity. Among the estimation tasks, the dot-line task
showed the most promise. It was the only one of the three
dot-estimation tasks to show good (Spearman–Brown ≥ .7)
mean internal reliability and had small- to medium-sized cor-
relations with performance on the other estimation tasks, the
discrimination task, and the general numeracy assessments
(see Table 5). Although this task cannot be used to calculate
w estimates, it does require the use of ANS estimation, and it
shows the benefits of a bounded task in that it limits outlier
issues so as to enhance reliability. Moreover, it typically took
only 2–5 min to complete, making it quite practical to imple-
ment. The SMAP task also showed adequate overall reliability
(Spearman–Brown ≥ .6) and association with ANS acuity in a
1- to 3-min task. Moreover, it required no animation, and thus
can be conducted using paper and pencil. We continue our
evaluations of these tasks in Study 2.

Study 2

Study 1 addressed reliability within a single session. Although
ANS acuity is thought to be a stable cognitive trait, perfor-
mance at a single time point nonetheless may be influenced by
a variety of external factors, such as the participant’s motiva-
tion ormood on a given day, howmuch sleep she or he had the
night before, and so forth. Therefore, we conducted Study 2 to
examine test–retest reliability after a one-week delay. We
looked specifically at the dot-discrimination, dot-line, and
SMAP tasks, the measures showing the greatest internal reli-
ability in Study 1. We also included the SNS task and a longer
version of the ONS task at both time points. Test–retest cor-
relations should be large for the measure to be a useful indi-
cator of a stable cognitive trait (r > .5, Spearman–Brown >
.66). Thus, a much smaller sample was needed for Study 2. A
power analysis indicated that a final sample size of 29 was

2794 Atten Percept Psychophys (2015) 77:2781–2802



necessary to achieve an 80 % likelihood of successfully de-
tecting such large correlations.

Method

Participants The participants were a novel sample of 39 stu-
dents at Ohio State University (24 male, 15 female, mean age
22.0 years) who received course credit for their participation.
Of these, 36 completed both sessions, for a 92 % retention
rate.

Procedure Each participant attended two half-hour sessions
run about one week apart (mean time between sessions =
7.14 days, SD = 0.59). In each session, the participants com-
pleted four tasks in the following order: the SNS, the ONS, the
dot-line task, the SMAP task, and the dot-discrimination task.
All tasks were identical to those described in Study 1, except
that the ONS task included additional questions, a total of 18,
to match the extended version described in Peters,
Dieckmann, Dixon, Hibbard, and Mertz (2007). This same
18-item ONS task was used at both time points.

Results

ComplianceWe evaluated compliance using a method similar
to that used in Study 1. A participant was identified as non-
compliant if, in either session, his or her lapse rate was greater
than 0.5 or the w0 estimate was greater than 1. Out of the 36
participants who completed both sessions, four (11 %) were
found to be noncompliant on the dot-discrimination task.
These participants each had lapse rates greater than 0.5 in at
least one session, and two also had w0 estimates greater than 1
in at least one session. No participants were found to be non-
compliant on any other task, on the basis of the same criteria
used in Study 1. This yielded a final sample size of 32. We
note that parallel analyses including all participants yielded
similar conclusions. These results are available from the first
author. The final sample size of 32 placed the likelihood of
detecting our target correlation of .5 at 84 %.

General numeric ability measures We scored the SNS re-
sponse for each session in the same manner as for the SNS
task in Study 1. We also calculated an expanded ONS-18
score, which consisted of the number of correct responses
provided out of 18. The mean scores, test–retest correlations,
and reliabilities are reported in Table 6. As can be seen, these
tests demonstrated excellent test–retest reliability (Spearman–
Brown ≥ .9). However, we detected a large ONS practice
effect (the mean score increased from 12.8 to 13.5, Cohen’s
d = 0.55) via a paired-samples t test.

Dot-discrimination task We analyzed the data from the dot-
discrimination task using methods similar to those of Study 1,

except that we did not subdivide the data from the individual
sessions. Rather, for each of the two sessions, we found over-
all w0 estimates (ws calculated assuming a zero lapse rate; i.e.,
assuming that participants’ attention to the task never lapsed),
lapse rate estimates (i.e., the rate at which participants’ atten-
tion lapsed), and wL estimates (i.e.,w estimates accounting for
individual lapse rates). The mean ws and lapse rates for the
remaining sample are presented in Table 6, along with their
correlations. As can be seen, the calculations of w0 and wL

demonstrated good test–retest reliability (r > .78, Spearman–
Brown > .87). In contrast, the lapse rate estimate was less
reliable and varied considerably within individuals between
sessions (r = .41, Spearman–Brown = .58). Importantly, we
detected no practice effects. The meanws and lapse rates were
stable, on average, across sessions.

Dot-line task and SMAP task Using the same method de-
scribed in Study 1, we calculated the mean linear R2s and ADCs
for performance on the dot-line task and the SMAP task for each
of the two sessions. The mean R2s and ADCs are presented in
Table 6, along with their correlations between the two sessions.
As can be seen, both the R2 and ADC of the dot-line task
demonstrated good test–retest reliability (Spearman–Brown ≥
.86). However, we also detected a medium-sized practice effect
for ADC (Cohen’s d = 0.42); thus, participants improved on the
task with practice. The SMAP task likewise showed a statisti-
cally significant medium-sized practice effect for ADC
(Cohen’s d = 0.47) but showed lower test–retest reliabilities than
did the dot-line task (mean Spearman–Brown < .6).

We do note, however, that the SMAP task’s test–retest re-
liability may have been artificially deflated due to one partic-
ipant with atypically poor SMAP performance on the first day
of testing (R2 = .44, z = –4.84). We retained this participant in
the full sample, since they did not meet the criteria of non-
compliance: Their R2 was greater than .29, and there was a
statistically significant relationship between the stimuli and
their responses. However, when we conducted analyses ex-
cluding this participant from consideration, the reliabilities of
the SMAP’s R2 (r = .69, Spearman–Brown = .81) and ADC (r
= .65, Spearman–Brown = .79) became more similar to those
of the dot-line task, but the practice effect in SMAP perfor-
mance persisted [R2: t(30) = 2.53, p = .017, Cohen’s d = 0.51;
ADC: t(30) = 2.36, p = .026, Cohen’s d = 0.39].

Discussion

Performance on both the dot-discrimination task and the dot-
line task demonstrated good test–retest reliability. The test–
retest reliability of the SMAP task was shown to be suscepti-
ble to outliers (at least in small sample sizes such as that used
in Study 2), but demonstrated good test–retest reliability once
the compliant outlier participant was excluded from consider-
ation. However, given the significant practice effects seen in
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the dot-line and SMAP tasks, they may serve better as indica-
tors of individual differences within samples of naive partici-
pants. Participants with more task experience may increasing-
ly and differentially draw on other cognitive skills to place the
amounts on lines, and such improvements in task performance
may be misinterpreted as better underlying ANS acuity or
numerical-mapping ability.

General discussion

Recent work has suggested that ANS acuity may influence not
only academic success (Chen & Li, 2014; Halberda et al.,
2008), but also judgments and decisions in adults (Peters &
Bjalkebring, 2015; Peters et al., 2008; Schley & Peters, 2014).
As a result, there is a need for practical and reliable measures
of individual differences in people’s ability to estimate numer-
ical magnitudes—ANS acuity. However, concerns have been
growing regarding the reliability and validity of the available
ANS acuity measures (Gilmore et al., 2011; Holloway &
Ansari, 2009; Inglis & Gilmore, 2014; Lindskog et al.,
2013; Maloney et al., 2010; Price et al., 2012; Sasanguie
et al., 2011) and the need to separate measures of ANS acuity
from the mapping of symbolic numbers onto ANS-based rep-
resentations (Chesney & Matthews, 2012, 2013; Peters &
Bjalkebring, 2015; Schley & Peters, 2014). In the present
article, we set out to address some of these concerns. We have
presented several diverse, novel, and practical-to-implement
tasks that may serve as measures of ANS acuity, and report
assessments of their reliability.

Our findings replicated and extended work suggesting that
dot-discrimination tasks can serve as valid metrics of ANS
acuity. The currently popular short versions of this task (e.g.,
the 80-item task used by Halberda et al., 2008) may be

critically underpowered (Lindskog et al., 2013). However,
the 5- to 10-min version tested in the present article had suf-
ficient power to maintain good to excellent reliability. More-
over, unlike prior tasks (see Halberda et al., 2008; Lindskog
et al., 2013), we directly addressed the impact of individual
differences in the rates at which participants’ attention lapsed
during the task (lapse rates). Our dot-discrimination task in-
cluded specific trials to account for such individual differences
in attention. Once individual differences in attention (lapse
rates) were accounted for via our wL calculations, we were
able to use performance on this task to demonstrate, in Study
1, a medium-sized correlation between ANS acuity (wL) and
Math SAT scores (r = –.36, p = .003): Better ANS acuity
correlated with better SATMath scores. (Note: Given the con-
text, presumably all participants paid maximum attention
while taking the SAT.) In contrast, for ANS acuity estimates
that did not account for lapses in attention (w0), the correlation
with the Math SAT scores was neither significant nor in the
predicted direction (r = .11, p = .37). This increase in correla-
tion found by accounting for lapse rate was substantial, par-
ticularly considered in light of a recent meta-analysis that had
examined the relationship between general math ability and
ANS acuity in children and adults (Chen & Li, 2014). They
found a correlation of .20, with power analyses suggesting
that 191 participants would be needed to reliably detect such
effects. We note that this sample size is nearly three times the
number of participants who provided Math SAT scores in
Study 1 (N = 65), among whom the correlations of Math
SAT to w0 and wL were assessed. However, the large majority
of tasks included in Chen and Li’s (2014) meta-analysis had
assessed ANS acuity via methods that have been shown to be
less reliable indicators of ANS acuity than the dot-
discrimination task introduced in the present article (e.g.,
looking at overall accuracy or the size of the distance effect

Table 6 Study 2: test–retest reliability for the SNS, ONS, dot-discrimination task, dot-line task, and SMAP task (N = 32)

Session 1
Mean (SD)

Session 2
Mean (SD)

Session 1–2 Correlation Spearman–Brown Reliability Paired t Test, Session 1–2

SNS ↑ 4.50 (.89) 4.46 (.88) .90*** .95 0.65

ONS-18 ↑ 12.78 (2.74) 13.50 (2.51) .88*** .94 –3.13**

w0
↓ .23 (.10) .23 (.10) .78*** .88 0.10

wL
↓ .20 (.06) .20 (.08) .81*** .89 0.31

Lapse rate ↓ .05 (.09) .05 (.12) .41* .58 0.00

Dot-line R2 ↑ .61 (.22) .66 (.24) .76*** .87 –1.61

Dot-line ADC ↓ 56 (17) 51 (17) .75*** .86 2.40*

SMAP R2 ↑ o .94 (.11) .98 (.01) .36* .53 –1.97+

SMAPADC ↓ o 14 (8) 11 (4) .50*** .66 2.47*

ADC refers to the mean absolute distance from correct. Given our N of 32, the critical r for an alpha of .05 is .349 (in other words, there is a 50% chance
that a correlation of .349 will be detected at p < .05), and there is an 80 % chance (β = .2) that a correlation of .478 will be detected. ↑Higher scores
indicate better performance/skill. ↓Lower scores indicate better performance/skill. o The Spearman–Brown reliability of the SMAP task improved to .81
for R2 and .79 for ADC for analyses excluding one compliant outlier participant. See the Dot-Line Task and SMAP Task section of Study 2’s Results for
details. + p < .1, * p < .05, ** p < .01, *** p < .001
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on nonsymbolic discrimination tasks, rather than calculating
w).

Our findings can aid researchers in selecting ANS acuity
measures that balance reliability and time commitments. In
light of our results, we make the following recommendations.
First, we recommend that the present article’s dot-
discrimination task, including its ability to assess and account
for lapse rates, be used as a reliable assessment of individuals’
ws, at the cost of 5–10 min of participant time. Second, re-
searchers who need to use a still shorter task might effectively
use a dot-line task in 2–5 min. However, this task does sacri-
fice reliability for time, and it is susceptible to practice effects.
Third, the SMAP task may be used as a practical metric of
ANS acuity when time is extremely limited or stimulus pre-
sentation cannot be controlled. The small-to-medium correla-
tions to wL demonstrated that SMAP does have a relationship
to ANS acuity. Moreover, it can be implemented using paper
and pencil in just a few minutes. However, like the dot-line
task, SMAP sacrifices reliability for time, and it is susceptible
to outliers (at least in small samples) as well as practice effects.
Additionally, SMAP does not involve the perception of nu-
merical quantities from the world, but rather may invoke an-
alog numerical magnitudes via the mapping of symbolic num-
bers to these quantities. This may be of concern to researchers
wishing to separate ANS acuity from symbolic-number un-
derstanding. In particular, SMAP scores have been associated
with decision performance (e.g., Peters & Bjalkebring, 2015),
but it is not clear whether such associations are due to ANS
acuity or symbolic-number understanding.

Finally, we recommend that researchers include metrics
that assess participants’ attention to tasks on a given day of
testing. As we demonstrated in Study 1, inattention can yield
poor performance on many tasks, including assessments of
ANS and math skill. Failure to take this inattention into ac-
count can artificially inflate correlations if participants are
inattentive to several or to all tasks in a study; it is also possi-
ble that inattention could artificially decrease correlations if
participants are attentive to one task but not to another. Fol-
lowing this advice would mean either using the dot-
discrimination task of the present article or developing alter-
native brief attention measures that can be used in conjunction
with other ANS measures.

This brings us to a potential concern regarding the viability
of the dot-discrimination task as a measure of individual dif-
ferences in ANS acuity: Inattention is not uncommon. In a
series of studies, Oppenheimer and his colleagues (2009)
found that 14 %–46 % of undergraduate participants failed
his instructional manipulation check (IMC), in which they
read a set of instructions that directed them to write “I read
the instructions” or make some similar mark of their attention
to the task. Moreover, 10 % failed the IMC twice in a row
when required to repeat the task until they gave the correct
response, and 4 % were still unsuccessful after three

repetitions. In our sample of undergraduates, 7 % were found
to be so inattentive on the dot-discrimination task that their w
estimates were implausibly high, and an additional 2 % were
identified as being noncompliant due to poor performance on
the catch trials. These data may raise the concern that our task
disproportionately excluded less able participants, particularly
given the result that the excluded participants had significantly
poorer scores on objective and subjective numeracy tasks than
did those in the final sample. We cannot be certain that this
correlation was entirely due to effort effects, and indeed, it is
quite plausible that participants might put less effort into tasks
that they find too difficult. Unfortunately, it is the nature of
discrimination tasks that they require sustained attention from
the participant. Reducing the number of trials yields losses in
reliability that do not appear to bematched by equivalent gains
in attention to the task. As we previously discussed, Halberda
et al.’s (2008) 80-trial discrimination task is so short that its
reliability is limited (Lindskog et al., 2013). Yet, despite its
having a quarter of the trials of the dot-discrimination task that
we presented here, some participants still fail to sustain atten-
tion on that task. In unpublished data from a sample of college
students (available from the first author), 4 % of participants
(as compared to 7 % in the longer task in the present article)
were identified as noncompliant on that 80-trial discrimination
task, on the basis of implausibly high w estimates. Individual
researchers will need to weigh the costs and benefits of reli-
ability and inattention to the task when developing future
studies.

Conclusions

Individual differences in ANS acuity have been suggested to
be an important predictor of human symbolic math ability,
judgments, and decisions. Unfortunately, ANS acuity is often
assessed with measures that are unreliable and underpowered;
some measures also focus on symbolic rather than nonsym-
bolic numbers, making it difficult to pinpoint the precise
mechanisms involved. These measures also fail to account
for differences in participants’ attention to the task on the
day of testing. This is problematic for the literature as a whole,
and particularly for research attempting to draw conclusions
about the nature of ANS acuity’s involvement in other cogni-
tive tasks. We recommend that future researchers assess ANS
acuity via tasks using nonsymbolic magnitudes and whose
reliability has been established. We offer the dot-
discrimination task described herein as a particularly viable
option, since it shows good reliability and stable w estimates.
It can also provide potentially important information regard-
ing the participants’ attention to the task.

Author note D.C. was at The Ohio State University, Department of
Psychology, and is now at St. John’s University, New York City, New
York. This research was supported by NSF Grant Number SES-1155924.
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Appendix 1

Appendix 2

Text of a custom option file for the Panamath (2013) software
to instantiate the dot-discrimination task presented here:

answer.ends.display = true
auto.next.trial.mode = false
avg.diameter.jitter = (25,19) (30,19) (35,19) (40,19) (45,

19) (50,19)
background.color = 128, 128, 128
backward.mask.on = true
backward.mask.time = 200
blank.mask.time = 250

block.by.trial.type = true
break.time = 15
breaks.on = false
character.one = BigBird
character.two = Grover
check.dots.fit.in.window = true
customized = true
debug.mode = false
display.between.trials = fixationcross
display.times = 200
dot.set.one.color = 255, 255, 0
dot.set.one.key = 70

1. Imagine that we roll a fair, six-sided die 1,000 times. Out of 1,000 rolls, how many times do you think the die 

would come up as an even number?

Answer: Half the time, 50%, any number between 490-510, 1:2

2. In the BIG BUCKS LOTTERY, the chances of winning a $10.00 prize are 1%. What is your best guess about 

how many people would win a $10.00 prize if 1,000 people each buy a single ticket from BIG BUCKS?

Answer: ___10__people 

3. In the ACME PUBLISHING SWEEPSTAKES, the chance of winning a car is 1 in 1,000. What percent of tickets 

of ACME PUBLISHING SWEEPSTAKES win a car?

Answer: ___.1__%, 

4. If the chance of getting a disease is 20 out of 100, this would be the same as having a __20__% chance of getting 

the disease.

5. Suppose you have a close friend who has a lump in her breast and must have a mammogram. Of 100 women like 

her, 10 of them actually have a malignant tumor and 90 of them do not. Of the 10 women who actually have a 

tumor, the mammogram indicates correctly that 9 of them have a tumor and indicates incorrectly that 1 of them does 

not have a tumor. Of the 90 women who do not have a tumor, the mammogram indicates correctly that 80 of them 

do not have a tumor and indicates incorrectly that 10 of them do have a tumor. The table below summarizes all of 

this information. Imagine that your friend tests positive (as if she had a tumor), what is the likelihood that she 

actually has a tumor?

Tested Positive Tested Negative Totals

Actually has a tumor 9 1 10

Does not have a tumor 10 80 90

Totals 19 81 100

Answer: __9___ out of __19___ 

6. A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the ball cost? 

Answer: __5___cents

7. In a lake, there is a patch of lilypads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover

the entire lake, how long would it take for the patch to cover half of the lake?

Answer: __47___days

Not recorded: If the chance of getting a disease is 10%, how many people would be expected to get the disease:

Out of 1000

Answer: __100___people
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Appendix 3

Appendix 4

For any given trial on the dot-discrimination task, an individ-
ual’s chance of answering correctly is equal to half the prob-
ability of their attention lapsing on that trial (Plapse * .5; they
will guess correctly half the time) plus the probability of them
attending to the trial (1 – Plapse) multiplied by the probability
of them answering correctly on trials they attend to (1 – Perror).

Pcorrect ¼ 1−Plapse

� �
1−Perrorð Þ� �þ Plapse*:5

� � ð1Þ

On trials to which a participant attends, the probability of
an error (Perror) is dependent on their ANS’s Weber fraction
(w) and on the two nonsymbolic numerical magnitudes in the
stimulus pair (n1 and n2):

Perror ¼ 1

2
*erfc

n1−n2j j
ffiffiffi
2

p
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

p

 !

: ð2Þ

Table 7 Comparison ratio “bins” used for the dot-discrimination task

Ratio Bin Minimum Value Maximum Value Mean Value

1 1.050 1.067 1.060

2 1.115 1.130 1.121

3 1.188 1.2 1.195

4 1.250 1.263 1.254

5 1.318 1.353 1.337

6 1.400 1.421 1.410

7 1.500 1.500 1.500

8 1.571 1.600 1.587

9 1.667 1.700 1.680

10 1.765 1.813 1.793

11 1.857 1.917 1.900

12 2.000 2.000 2.000

13 2.417 2.600 2.511
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We estimate the ws for a given participant using these
equations by calculating the probability of the participant’s
observed error pattern for the range of possible ws and finding
the w for which this probability is highest. Plapse is fixed at 0
when calculating w0 (assuming that the participant attended to
all trials). Plapse is set to the participant’s estimated lapse rate
(two times their error rate on the catch trials) when calculating
wL (taking into account individual differences in attention to
the task).
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