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Human performance on the traveling
salesman problem

J. N. MAcGREGOR and T. ORMEROD
Loughborough University of Technology, Loughborough, England

Two experiments on performance on the traveling salesman problem (TSP) are reported. The TSP
consists of finding the shortest path through a set of points, returning to the origin. It appears to be
an intransigent mathematical problem, and heuristics have been developed to find approximate so­
lutions. The first experiment used lO-point, the second, 20-point problems. The experiments tested
the hypothesis that complexity of TSPs is a function of number ofnonboundary points, not total num­
ber of points. Both experiments supported the hypothesis. The experiments provided information on
the quality of subjects' solutions. Their solutions clustered close to the best known solutions, were
an order of magnitude better than solutions produced by three well-known heuristics, and on aver­
age fell beyond the 99.9th percentile in the distribution of random solutions. The solution process
appeared to be perceptually based.

The Euclidean version ofthe traveling salesman prob­
lem (TSP) consists of finding the shortest closed path
(tour) through a set of points in the plane. That is, the
shortest path must be found which passes through every
point and returns to the origin. The problem has become
a classic in the field ofcombinatoric optimization and has
accumulated a vast body ofresearch in the fields ofman­
agement science and operations research. Complexity
theory classifies the problem as "hard" and as "NP­
complete." The distinction between easy and hard prob­
lems is based on the time that it would take an algorithm
to solve a problem with n objects. A problem is "easy" if
there exists an algorithm that can solve any instance of it
in polynomial time (i.e., in a time proportional to nk, where
k is some integer). The TSP is "hard" because the time
that even the most efficient known algorithms require in
order to solve it grows exponentially as a power of n. By
way of comparison, an algorithm solving in time n3

would take about .001 sec for a problem with 10 objects,
operating at a rate of one instruction per microsecond.
An algorithm operating in time 2n would take roughly the
same time. But for a problem of 100 objects, the former
would take about 1.0 sec, whereas the latter would need
1015 centuries (Barton, Berwick, & Ristad, 1987).

A problem is classed as NP, or nondeterministic poly­
nomial, if there are nondeterministic algorithms which
may solve it in polynomial time. Such algorithms may be
thought ofas operating in two stages-in the first, guess­
ing at a solution, and in the second, checking whether or
not the solution is correct. Roughly speaking, NP is the
class of problems in which correct or optimal solutions
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are hard to find but easy to check. NP problems classi­
fied as "complete" have the additional important prop­
erty that each NP-complete problem is quickly reducible
to every other NP-complete problem. This means that if an
algorithm can be found that solves anyone NP-complete
problem in polynomial time, then there exists a polyno­
mial time algorithm for every NP-complete problem, and
there are no "hard" problems. Alternatively, if it can be
proved that there is no polynomial time algorithm for one
NP-complete problem, then there is none for any ofthem,
and all will have been proved to be intransigent. Hun­
dreds of problems have now been proved to be NP-com­
plete, including the TSP. It has been suggested that the
question ofwhether or not there exist polynomial time al­
gorithms for solving NP-complete problems is one of the
most important unsolved problems in theoretical com­
puter science (Wilf, 1986).

In addition to its theoretical interest, the TSP has prac­
tical implications for problems as apparently diverse as
circuit-board drilling, X-ray crystallography, and the lay­
ing of ducting (Krolak, Felts, & Marble, 1971; Sangalli,
1992). Some practical problems that involve circuit­
board drilling, or laser movements in chip manufacture,
translate into TSPs of up to a million nodes (Sangalli,
1992). However, as noted above, no practical algorithm
has been discovered that is certain to find the optimal so­
lution to TSPs, and a guaranteed method-exhaustive
search-becomes increasingly impractical as the number
ofpoints (n) increases. The number ofpossible solutions
to a TSP increases by (n - 1)!/2 (if the direction of the
tour is ignored), so that in order to find all possible solu­
tions to a 20-node problem, a computer generating, say,
100 solutions per second would require in excess of 19
million years. The TSP therefore has a number of intrigu­
ing characteristics: it is easy to state, it is easy to repre­
sent, but it defies an economical general method ofsolu­
tion. This last factor has stimulated interest in developing
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approximate heuristic procedures, and many ingenious
procedures have been designed and compared. In order
to find "reasonable" solutions, such heuristic procedures
generally need to perform in the order ofn3 calculations.
An approximate solution of a 20-node problem would
therefore require some 8,000 calculations (Golden, Bodin,
Doyle, & Stewart, 1980).

Given the characteristics of the problem, it would be
of interest to know how well human subjects perform on
TSPs. However, although the TSP can be presented eas­
ily to human subjects, it appears to have received little at­
tention as a topic of psychological research. Our litera­
ture search failed to identify any published articles that
directly addressed human performance on the problem.
The only published studies to our knowledge that used
human participants did so in an effort to improve machine
solutions, not to investigate human performance per se
(Krolak et al., 1971; Michie, Fleming, & Oldfield, 1968).
The former study, for example, used computer proce­
dures to initially organize the data into clusters. The
clusters were then presented to human operators for con­
nection into a completed tour. The results suggested that
humans may have been quite skilled in their role, in that
the human-computer procedure produced high-quality
solutions in relatively short times (Krolak et al., 1971).

It appeared to us that the TSP might provide an inter­
esting psychological task to explore. It seems that it may
be fundamentally a perceptual problem-solving task, in­
volving as it does the construction ofa visually represented
solution from a visually represented problem space. There
is also the suggestion from the Krolak et al. (1971) re­
sults that humans may be capable ofachieving reasonable
solutions with minimal cognitive load. The purpose of
the present research was, therefore, to collect some pre­
liminary information on human performance, and to in­
vestigate some factors that might affect the complexity
ofTSPs for human subjects.

It might initially appear that the complexity of TSPs
would simply be a function of the number ofpoints to be
connected. However, an early proofabout the optimal so­
lution suggests that this might not be the case. The points
making up a TSP can be considered as a convex set (the
convex hull), and it has been shown that the optimal path
for every Euclidean TSP connects adjacent points on the
boundary ofthe convex hull in sequence, though the path
may pass through interior points between adjacent bound­
ary points (Flood, 1956). Figure I illustrates a solution
which violates this principle (bottom) and one which
conforms to it (top). Clearly a mechanism that finds op­
timal paths must adhere to this principle, and for such a
mechanism there would be no uncertainty about the
order in which to connect boundary points, regardless of
how many there were. If human performance followed
the same principle, at least approximately, then the com­
plexity of a TSP should depend not so much on the total
number ofpoints, but on the number of nonboundary, or
interior, points. The first experiment was designed to test
this hypothesis.

Figure 1. Two possible solutions to a Traveling Salesman Problem.
The bottom solution violates a principle which has to be met in find­
ing the optimal solution.

Measurement Issues
In addition to testing the preceding hypothesis, the ex­

periment was designed to collect information on the
quality ofhuman solutions. This raised certain measure­
ment issues. One apparent measure of solution quality is
the length of the path, but this is unsuitable for compar­
ing performances across problems, since path lengths
may vary depending on the geometry of specific prob­
lems. One of the basic measures that appears in the op­
erations research literature for comparing the perfor­
mances of algorithms takes the difference between a
given solution path length and the optimal path length,
expressed as a percentage of the optimal path length. If
the optimal is unknown, the best known solution is used
as a surrogate (Golden et al., 1980). This measure is suit­
able for comparing different algorithms on the same
benchmark problems, but it may be less suitable for com­
paring performances across problems, because it makes
no allowance for variation in the density or sparsity of
solutions close to the optimal for different problems.

A second approach, more familiar to psychology, is to
express subjects' path lengths as standard scores based
on the mean and standard deviation of the population of
all possible path lengths, estimated from a random sam­
ple. This approach also has difficulties. It assumes that
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the parent population approximates a normal distribu­
tion, whereas we know that it will differ from normality
in some specific respects. It will not be continuous, for
example, though the very large number ofsolutions may
ameliorate this concern. It will also have a strict upper
and lower bound. Generally, the shape of the population
distribution will be unknown.

To get some idea of the quality of human solutions,
both of these imperfect approaches were adopted here. In
addition, the results of the experimental subjects were
compared with solutions generated by three heuristic
procedures. The heuristics used were the Nearest Neigh­
bor algorithm, the Largest Interior Angle algorithm (Nor­
back & Love, 1977), and a variation of a Convex Hull
heuristic described by Golden et al. (1980), using a cheap­
est insertion criterion (CHCI). These three were used be­
cause their rules might be employed by human subjects
and might conceivably form the basis ofa model ofhuman
performance. In addition, some Convex Hull-based ap­
proaches have been found to produce optimal or near­
optimal solutions with a high degree of reliability.

The algorithms used the following rules: For the Near­
est Neighbor method, an initial point is selected as the
start of the path. Define this as the leading point. The
unconnected point closest to the leading point is then
added to the path, and it becomes the leading point. This
is repeated until all points have been added, at which
time the leading point is connected to the starting point
to complete the tour. Both the Largest Angle and the
Convex Hull methods begin by connecting the points on
the boundary of the hull into an initial subtour. An in­
formal analogue of these procedures is to think of the
points as pegs in a board and the path as a rubber band
stretched around the pegs. Initially, then, the band will
touch all pegs on the boundary of the convex hull. Next,
the segment of the band which is "closest" to an uncon­
nected peg is then stretched in to incorporate that peg.
This is repeated until the band winds around all of the
pegs. The two heuristics differ in how they identify the
"closest" unconnected point. With the Largest Angle
method, after the boundary points have been connected
into an initial subtour, the points i,j in the subtour and k
not in the tour are found for which the angle i, k,j is max­
imal, and k is inserted between i and j. This step is re­
peated until all points are in the tour. With the version of
the Convex Hull heuristic used here, the insertion rule
was to find the i, j, k, for which the distance (i,k) +
(k,j) - (i,j) is minimal, and insert k between i and j
(cheapest insertion). This is repeated until all points are
in the tour.

It will be noted that the Nearest Neighbor algorithm
can produce different tours, depending on which point is
selected as the starting point. Both the Largest Angle and
the Convex Hull approaches, on the other hand, typically
yield a single tour. (There is a minor exception to this: If
2 or more points are tied for insertion at the same stage
in a solution, then pursuing all possible solution options
may produce several different paths.)

EXPERIMENT 1

Method
Subjects

The 58 subjects were students at Loughborough University of
Technology.

Materials
Six TSP problems with 10points were generated, with the num­

ber of interior points varying from I to 6. The problems were cre­
ated in the following way: The coordinates of the points on the
boundary ofthe hull were initially determined from the vertices of
the regular polygon with that number of sides, using polar coordi­
nates with a radius of 80 mm. For example, for 4 points on the
boundary ofthe hull, the coordinates were determined from the in­
terior angles 45°, 135°,225°, and 315°. Some irregularity was then
introduced by adding to each angle a value selected randomly from
the range of +5° to -5°. Once the points on the boundary of the
hull had been determined, polar coordinates for the interior points
were generated randomly with the constraint that they fell within
40 mm of the center of the original regular polygon. Once 10
points had been generated for each problem, the polar coordinates
were converted to rectangular coordinates centered on the coordi­
nates (140, 90). These will be referred to as the basic problems. A
seventh 10-point problem, taken from the operations research lit­
erature, was also included (Dantzig, Fulkerson, & Johnson, 1959).
This Dantzig problem was used because it represents a benchmark
test, one that many relatively effective heuristics fail to solve. The
problem had 5 interior points.

The problems were drawn on separate II X 8.5 in. sheets. Fig­
ure 2 shows the problem with 6 interior points on the bottom and
the Dantzig problem on the top, with their optimal paths. The co­
ordinates for all of the problems are given in the Appendix.

Figure 2.1\vo of the problems used in Experiment 1with the points
connected by the shortest paths.
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Design
Each subject was tested on each problem. Three different orders

of presentation were used. In one, the problems were presented in
the order 6, 5, 4, ... , I interior points. In a second, this order was
reversed. In the third, problems were presented in the random
order 3, 5, 2, 6, I, and 4 interior points. In each case the Dantzig
problem was presented last.

Procedure
Data was collected in a classroom setting. Each subject was

given a booklet ofproblems with a single page of instructions. The
instructions indicated that for each problem the subjects should se­
lect a starting point and then draw what they thought to be the
shortest path from the starting point, passing through each point
and returning to the starting point. Subjects were asked to indicate
the starting point and direction oftravel for each problem. No time
limit was imposed, but the instructions indicated that a maximum of
5 min should be taken per problem. Subjects handed in their book­
lets when finished, and times were recorded to the nearest minute.

Results

Ten subjects left one or more of the problems incom­
plete by failing to incorporate 1 or more points, and these
cases were excluded from analysis. A further 3 completed
protocols were randomly eliminated to leave a total of45
cases, 15 from each order. Path lengths for subjects' so­
lutions were obtained and provided the primary data for
analysis. Times to complete the seven problems varied
from 6 to 25 min, with an average of 13 min. There were
no effects oforder on either path length or solution times,
and the results were collapsed across the three orders.

Quality of Solutions
Standard score approach. For each ofthe basic prob­

lems a random sample of 100 solutions was generated,
and the sample means and standard deviations were used
to convert subjects' path lengths to standard scores. The
main results appear in Table 1, which shows, for each prob­
lem, the minimum, mean, and maximum path lengths
observed over the 45 subjects. Conversion of the standard
scores to percentiles shows that minimum path lengths
were on the average beyond the 99.99th percentile; mean
path lengths, beyond the 99.97th percentile; and maxi­
mum path lengths, beyond the 99.45th percentile. By this
reckoning, average best and worst performances were
within roughly halfa percentile point ofeach other. Ofthe
270 solutions to the basic problems, the very worst was

Table 1
Minimum, Mean, and Maximum Path Lengths Produced by
Subjects in Experiment 1, and the Corresponding z Values

Number of
Subjects' Path Lengths

Interior Minimum Mean Maximum

Points Score z Score z Score z

I 530.89 4.75 535.14 4.71 582.32 4.31
2 566.22 4.51 586.11 4.32 697.14 3.27
3 559.55 4.12 574.99 3.95 647.73 3.15
4 595.30 4.32 617.94 3.99 665.00 3.31
5 558.15 4.08 575.15 3.80 638.52 2.77
6 528.51 3.49 548.83 3.11 613.33 1.93

Dantzig 758.66 3.45 787.21 3.15 870.24 2.29

at the 97th percentile. The results for the Dantzig prob­
lem are shown at the foot of Table 1. The problem had 5
interior points and was drawn to a larger scale than the
others, and consequently produced much longer path
lengths. The results are by and large consistent with those
of the basic problems, with percentiles of 99.94, 99.84
and 97.86, for minimum, mean, and maximum path
lengths, respectively.

Percentage over optimal approach. The three heu­
ristics described previously were used with each of the
problems. For the Nearest Neighbor heuristic, all possi­
ble starting points were used. The optimal solutions for
the six basic problems were found by using TRAVEL, a
system of programs designed to produce provably good
solutions to TSPs (Boyd, Pulleyblank, & Comuejols,
1987). TRAVEL can identify the lower bound of an op­
timal solution, so that ifa solution is found that equals the
lower bound, it must be the optimal solution. For the
Dantzig problem, the optimal solution was already known.

The path lengths produced by the subjects and the
heuristics for each problem were converted to a percent­
age over the optimum. The main results are shown in Ta­
ble 2. The table shows the percentage over the optimum
ofthe best solution produced by the subjects and each of
the three heuristics. It will be recalled that the CHCI and
Largest Angle procedures produce only one solution per
problem, while the human subjects and Nearest Neigh­
bor procedure can produce a variety of solutions. To re­
flect this, the table also shows the percentage over the
optimum for the subjects' mean and the Nearest Neigh­
bor mean (the latter was the average of the path lengths
produced by using every possible starting point).

Problem Complexity
Following the principle that good patterns have fewal­

ternatives (Garner, 1970) a first approximation to a mea­
sure of the difficulty ofproblems is the variety of differ­
ent solutions generated. The numbers ofdifferent subject
solutions for the problems were 3, 10, 12, 18, 15, and 25
for the problems with 1,2,3,4, 5, and 6 interior points, re­
spectively. The Dantzig problem, with 5 interior points,
generated 20 different solutions. The correlation be­
tween number of interior points and number of different
solutions was r = .94 (p < .01). The number ofdifferent
solutions may be a somewhat crude measure, in that it
does not distinguish between solutions that differ slightly
and those that differ radically. For this reason, a second
measure was used, based on the response uncertainty as­
sociated with all possible pairwise connections between
the 10 points of a problem. For each problem, the num­
ber of subjects connecting each pair of points was tabu­
lated, and the resulting frequencies were converted to
probabilities. These were used to calculate the uncer­
tainty in bits associated with each connection, which
were then summed to provide total response uncertainty
for each problem. To illustrate the calculation, imagine
that 3 subjects produced paths for a 5-node problem, with
2 subjects connecting the nodes in the sequence 1,2,3,
4, 5, 1, the third in the sequence 1, 2, 3, 5, 4, 1. The re-
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Table 2
Optimal Path Length and Percentage Above the Optimal for

Human and Heuristic Solutions, Experiment t

Number of Percentage Above Optimal

Interior Subject NN Subject NN
Points Optimal Minimum Minimum LA CHCI Mean Mean

I 530.89 0 0.0 0.0 0.0 0.8 0.0
2 566.22 0 0.0 0.0 0.0 3.5 0.0
3 559.55 0 0.0 5.3 2.1 2.8 6.6
4 595.30 0 0.0 11.5 204 3.8 10.0
5 558.15 0 4.0 6.1 1.0 3.0 9.1
6 528.51 0 5.9 2.9 0.0 3.8 10.0

Dantzig 758.66 0 0.6 3.0 2.7 3.8 lOA

Note-NN, Nearest Neighbor; LA, Largest Internal Angle; CHCI, Convex Hull, with cheapest
insertion criterion.

sulting frequency matrix would indicate that the points 1
and 2 were connected by all 3 subjects, as were the points
2 and 3, and 4 and 5, resulting in probabilities of 1.0 for
these connections. The points 1 and 5 were connected by
2 subjects, as were the points 3 and 4, yielding probabil­
ity values of .67 for these connections. Finally, the connec­
tions 1 and 4, and 3 and 5, were made only once, giving
probabilities of .33. The total uncertainty, H, associated
with the connections would then be found by entering
the observed probabilities into the Shannon formula,

k

H = LPi (-logz Pi)'
i=\

where k is the total number ofconnections made by sub­
jects.

Figure 3 (solid squares) shows the response uncer­
tainty for each problem plotted as a function ofthe num­
ber of internal points. The product-moment correlation
between uncertainty and the number ofinternal points for
the six basic problems was r = .93 (df = 4). The relation­
ship was significant beyond the .01 level (two-tail test).

(Adding the Dantzig problem, which had a response un­
certainty of 9.89 bits, did not substantially alter the re­
sults, and the correlation remained at r = .93, df= 5).

Other Findings
Individual differences. To test whether or not indi­

viduals systematically differed in their ability to solve the
problems, the path lengths for the subjects' solutions to
each of the six basic problems were ranked and the aver­
age Spearman rank-order correlation between each pair
ofrankings was obtained. The resulting average was .06
(n = 45), indicating virtually no correlation in subjects'
performances across different problems.

Order ofboundary points. The optimal path to a TSP
connects adjacent boundary points in order. The large ma­
jority ofsubjects' solutions displayed the same character­
istic. Three hundred and ten ofthe 315 solutions (98%) ad­
hered to this principle. The 5 exceptions were produced
by 5 different subjects, 3 in the case ofthe Dantzig prob­
lem and 1 each in the problems with 2 and 6 interior points.

Crossed arcs. Failure to connect boundary points in
order of adjacency automatically creates a solution with
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Figure 3. The response uncertainty to line connections as a function of the number of interior points.
(Closed squares show the results for the to-point problems; open squares, for the 20-point.)
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Figure 4. 1\vo different solutions to the same 20-point problem, the
one on the top with the minimum number of indents, the one on the
bottom with the maximum.

crossed arcs. However, crossed arcs can also occur when
boundary points are connected in order. There were no
such additional cases of crossed lines.

Number of indentations. If subjects are guided by
the global properties of the convex hull, they might ex­
hibit a preference not only for connecting points on the
boundary in sequence, but also for connecting adjacent
points on the boundary to each other. Any such prefer­
ence would tend to result in solutions with fewer rather
than more indentations. An indentation occurs whenever
an internal point is connected to a boundary point, and
solutions may vary in the number of indentations they
exhibit. It is possible to complete any TSP with only one
indentation, provided there are at least 3 boundary points
and 1 internal point. On the other hand, it is possible to

have as many indentations as there are boundary points,
provided there is a sufficient number of interior points.
Figure 4 illustrates two different solution paths to the
same problem, one with the maximum number of inden­
tations, the other with the minimum. Are subjects' solu­
tions more like the figure on the top than would be ex­
pected on the basis of the availability of indents in a
problem? The maximum number of indentations that a
problem can have is determined by the number ofbound­
ary points or the number of interior points, whichever is
less. In other words, if n is the number of points, and m
is the number of interior points, then the number of in­
dentations can vary from 1 to either m or n - m, which­
ever is less. The maximum indentations for the problems
with 1-6 interior points were therefore 1,2,3,4,5, and
4, respectively. If subjects have no particular preference
for connecting boundary points to each other, we would
expect the number of indentations produced to be pro­
portional to their availability within problems. If there
were such a preference, we would expect subjects' solu­
tions to have fewer indentations than this. The relevant
results are shown in Table 3. The first column gives the
number of possible indentations for five of the six basic
problems plus the Dantzig problem. (Since there are no
degrees offreedom for the problem with 1 interior point,
it has been omitted.) The second column shows the num­
ber of problems for which that number of indentations
is possible. Thus all six allowed 1 and 2 indentations,
five allowed 3, and so on. Only two problems allowed as
many as 5 indentations. Each of these frequencies was
then divided by the column total, to give the relative fre­
quencies shown in the third column, which are then ex­
pressed as a cumulative frequency distribution in col­
umn 4. Columns 5, 6 and 7 show the corresponding
empirical results. Column 5 shows the raw frequencies
ofeach solution type; column 6, the relative frequencies;
and column 7, the cumulative frequency distribution.
Comparison of entries from column 7 with those from
column 4 shows that 84% of subjects' solutions had two
or fewer indentations, compared with an expected value
of52%, based on the availability of this type ofsolution.
The largest absolute difference between corresponding
values from columns 4 and 7, DMAX ' provides the statis­
tic for the Kolmogorov-Smirnov test to test the signifi­
cance of the differences between the observed and ex­
pected distributions. The results indicated that subjects'
solutions had significantly fewer indentations than was

Table 3
Expected and Observed Frequency, Relative Frequency, and Cumulative

Frequency of Indentations in Problem Solutions, Experiment 1

Frequencies

Number of Expected Observed

Indents Raw Relative Cumulative Raw Relative Cumulative

I 6 .26 .26 91 .34 .34
2 6 .26 .52 134 .50 .84
3 5 .22 .74 39 .14 .98
4 4 .17 .91 6 .02 1.00
5 2 .09 1.00 6 .00 1.00
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to be expected on the basis ofavailability (D M A X = 0.32,
p < .01).

Discussion

The experiment was designed to provide initial infor­
mation about the quality of human solutions to the TSP
and to test the hypothesis that problem complexity is in­
fluenced by the number of internal points rather than by
the total number of points making up a problem.

With respect to the quality of human solutions, the
present results suggest that they are of a high quality.
Comparison with a random sample indicated that the
present solutions formed a tight cluster in the upper tail
of the distribution. Mean performance fell beyond the
99.9th percentile, and on average, only half a percentile
separated the best and worst performances. These results
could be misleading, because we cannot be certain about
the shapes of the distributions of the solution popula­
tions. For this reason the results were examined in other
ways. Three heuristic procedures were used to generate
solutions, and the best human solutions were found to
comp~re.very favorably with the best solutions found by
a heuristic, For each of the six basic problems, at least 1
subject found the optimal solution, whereas no heuristic
found the optimal for every case. The Nearest Neighbor
procedure found the best solution for four of the six prob­
lems; the CHCI procedure, for three; and the Largest
Angle procedure, for two. Averaged across the six prob­
lems, the three heuristics produced solutions which were
1.65%, 1.10%, and 4.30% above the optimal, for the Near­
est Neighbor, CHCI and Largest Angle procedures, respec­
tively. The comparable human figure was 0.00%. Similar
results were obtained for the benchmark Dantzig prob­
lem. None of the heuristic procedures found the optimal
solution, while 3 of the human subjects did. The question
arises whether it is fair to use the best human performance
as a standard of comparison, and whether this creates a
false impression based on the performance ofone or two
exceptionally skilled individuals. The results dispel this
concern, since they indicate that subjects were by and
large equally gifted in generating good solutions. Gener­
ally, subjects' performances on one problem provided no
indication ofhow they would perform on the next. A mea­
sure of this is the average rank-order correlation of per­
formances across different problems, which at .06 was not
significantly different from zero. Thus, there was little or
no tendency for better or poorer performances to be as­
sociated with particular individuals. This is consistent
with the previous finding, that performances were tightly
clustered in the upper tail of the distribution of problem
solutions. With less than three percentile points separat­
ing the best and worst of 315 solutions, finding system­
atic individual differences was extremely unlikely.

It was hypothesized that the complexity ofTSPs would
be determined by the number of internal points rather than
the total number ofpoints. This raised the question ofhow
best to measure problem complexity from the present re­
sults. Using the response times for individual problems
was ruled out, since the group setting used for data col-

lection prevented measuring solution times for each in­
dividual problem. Following the principle that good pat­
terns have few alternatives (Garner, 1970; Pomerantz,
1981), two measures ofdifficulty were used. The first was
the number ofdifferent solution paths generated by sub­
jects, which correlated highly with the number of interior
points. However, this measure does not distinguish de­
grees of difference between solutions. A second mea­
sure, which does, was based on the response uncertain­
ties associated with all possible connections between
pairs of points. For the six basic problems, response un­
certainty increased significantly with the number of in­
terior points (r = .93), indicating that when the total
number of points is held constant, the complexity of a
TSP varies directly with the number of interior points.

Also consistent with the hypothesis was the fact that
~n almost eve~y case subjects connected boundary points
in order of adjacency. Of the 315 problem solutions, 310
(98%) were consistent with this principle. The results in­
dicated that almost no uncertainty existed for subjects
regarding the order ofconnection ofboundary points. Inad­
dition, subjects showed a preference for connecting adja­
cent boundary points together, and their solutions showed
significantly fewer indentations than would be expected.
. Never.theless, consideration of the number of possible
indentations for each problem raises another hypothesis
regarding problem complexity that could operate as an
alternative or as a supplement to the present hypothesis,
and one that cannot be ruled out here. In the present
problems, the number of possible indentations in a solu­
tion ranged from 1 to 5. In the problem with only 1 inte­
rior point, only one indentation was possible, whereas in
the two problems with 5 interior points the number of in­
d.entations in a solution could range from 1 to 5. It is pos­
Sible that the greater this range, the greater the potential
uncertainty associated with how to connect interior points
to the boundary. That is, the complexity ofTSPs may de­
pend on the maximum number of indentations.

In the present experiment, the maximum numbers of
indentations for the problems with 1, 2, 3, 4, 5, and 6 in­
terior points were 1,2,3,4,5, and 4, respectively. As can
be seen, the two variables were highly correlated, and the
dependent variable, response uncertainty, correlated al­
most as highly with the maximum number of indentations
(r = .85) as it did with the number of interior points (r =
.?3). !"- second experiment was conducted to try to dis­
tinguish the effects of these independent variables. The
experiment also provided an opportunity to measure per­
formance in TSPs with a larger number of nodes.

EXPERIMENT 2

Method
Subjects

The 29 subjects were students at Loughborough University of
Technology.

Materials
Seven TSP problems with 20 points were generated. The num­

bers of interior points for the problem were 4, 6, 8, 10, 12, 14, and
16. The corresponding maximum numbers of indentations were 4,
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6, 8, 10, 8, 6, and 4. The problems were created in a way similar to
that in Experiment I, except that some constraints were introduced
to prevent interior points from falling too closely together. As be­
fore, the coordinates ofthe points on the boundary ofthe hull were
initially determined from the vertices of the regular polygon with
that number of sides, using polar coordinates with a radius of
80 mm. Irregularity was again introduced by adding a value se­
lected randomly from the range of + 50to - 5° to each angle. Polar
coordinates for the interior points were generated randomly with
the constraint that they fell not further than 50 mm from and not
closer than 10 mm to the center of the original regular polygon.
Once 20 points had been generated for each problem, the polar co­
ordinates were converted to rectangular coordinates centered on
the coordinates (140, 90) and rounded to integer values. Each prob­
lem was drawn on a separate I I X 8.5 in. sheet. Figure 4 shows the
problem with 10 interior points with solutions showing the mini­
mum and maximum number of indentations.

Design
The design was similar to that of Experiment I, with each sub­

ject tested on each problem. Two different orders of presentation
were used, with the problems presented in the order of 14, 12,4,
10, 16, 8, and 6 interior points or in reverse order.

Procedure
The procedure was the same as in Experiment I.

Results
Nine subjects left one or more ofthe problems incom­

plete, and these cases were excluded from analysis, leav­
ing a total of 20 cases.

Quality of Solutions
Standard score approach. A random sample of 100

solutions was generated for each problem, and the sam­
ple means and standard deviations were used to convert
subjects' path lengths to standard scores. The main results
appear in Table 4, which shows,' for each problem, the
minimum, mean, and maximum path lengths observed
over the 20 subjects. Converting the standard scores to per­
centiles, all subjects' path lengths for each of the prob­
lems were beyond the 99.99th percentile.

Percentage over optimal approach. The TRAVEL
package was again used to generate solutions to the prob­
lems. For five problems, a proven optimal solution was
found. For the problems with 4 and 6 interior points, the
best solutions found were 2.4% and 1.2% above the

Table 4
Minimum, Mean, and Maximum Path Lengths Produced by
Subjects in Experiment 2,and the Corresponding z Values

Number of
Subjects' Path Lengths

Interior Minimum Mean Maximum

Points Score z Score z Score z

4 707.49 8.26 724.27 8.15 816.03 7.53
6 703.89 7.16 746.32 7.16 846.50 6.50
8 737.61 7.34 762.40 7.34 830.16 6.82

10 708.93 7.60 721.81 7.60 745.03 7.39
12 692.60 7.79 719.70 7.79 828.50 6.57
14 675.80 7.68 727.36 7.68 830.68 6.42
16 599.72 6.23 644.14 6.23 734.54 5.18

lower bound ofan optimal solution, respectively. There­
fore, the best solutions found in these cases mayor may
not be the optimal. For these two cases, the lower bound
was used as an estimate of the optimal solution.

The three heuristic algorithms described previously
were used with each ofthe problems, and the path lengths
produced by the subjects and the heuristics were con­
verted to a percentage over the optimal. The main results
are shown in Table 5. For each problem, the table shows
the percentage over the optimal solution of the best solu­
tion produced by the subjects and each of the three heu­
ristics. In addition, the table shows the percentage over
the optimal for the subjects' mean and the Nearest Neigh­
bor mean (the average ofthe path lengths produced using
each possible starting point).

Problem Complexity
The numbers of different solutions generated by sub­

jectswere 17,16,17,13,16, 14,and 18 for the problems
with 4, 6, 8, 10, 12, 14, and 16 interior points, respec­
tively. The number of different solutions did not corre­
late significantly with either the number of interior points
or the maximum number of indentations. These results
may reflect the problem with using the variety ofsolutions
as a measure ofcomplexity, in that many of the subjects'
different solutions were highly similar in both path length
and overall configuration.

With response uncertainty as the measure of com­
plexity, a pattern of results emerged that was more con­
sistent with those ofExperiment 1. The results are shown

Table 5
Minimum Observed Path Length and Percentage Above the Minimum for

Human and Heuristic Solutions, Experiment 2

Number of Percentage Above Optimal

Interior Optimal Subject NN Subject NN
Points Solution Minimum Minimum LA CHCI Mean Mean

4 703.81 3.0 4.1 3.1 2.5 5.4 8.4
6 703.89 1.2 1.2 20.1 5.3 7.3 8.8
8 725.31 1.7 3.3 13.7 5.8 5.2 9.4

10 698.83 1.4 0 6.0 4.8 3.3 9.5
12 688.33 0.6 0 23.4 3.6 4.6 7.1
14 663.61 1.9 1.5 10.0 4.4 9.6 15.4
16 593.81 1.0 15.0 0.8 0.05 8.5 21.7

Note-s-Nlv, Nearest Neighbor; LA, Largest Interior Angle; CHCI, Convex Hull, with cheapest
insertion criterion.
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in Figure 3 (open squares), which plots response uncer­
tainty against the number ofinternal points for each prob­
lem. The product-moment correlation between uncer­
taintyand the number of internal points was r = .79
(df = 5), significant beyond the .05 level (two-tail test).
The corresponding correlation between complexity and
the maximum number of indentations per problem was
not significant (r = - .56) and in fact in the direction op­
posite to what would be expected if the number of in­
dentations were associated with problem complexity.

Other Findings
Individual differences. Subjects' solutions for each

problem were ranked, and the average Spearman rank­
order correlation between each pair of rankings was ob­
tained. The result was an average Spearman coefficient
of .02 (n = 20), indicating again no correlation in sub­
jects' performances across different problems.

Order of boundary points. As with the 1O-point prob­
lems, the large majority of subjects' solutions connected
the boundary points in order of adjacency, and only one
of the 140 solutions failed to adhere to this principle.

Crossed arcs. Additional crossed arcs occurred in
five solutions, four of them committed by 1 subject.

Number of indentations. Again, subjects produced
solutions with fewer indentations than would be ex­
pected if they had no preference for connecting adjacent
boundary points. The average number of indentations
for subjects' solutions was 1.98, less than half the ex­
pected mean of 4.11. Seventy-two percent of the solu­
tions exhibited 2 or fewer indentations, compared with
an expected frequency of 30%. The difference between
the obtained and expected distributions was significant
(D MAX = .42,p < .01).

Discussion

The experiment was designed to obtain further informa­
tion on human performance on TSPs, and to test whether
problem complexity is predicted better by the number of
interior points or by the maximum number ofindentations.

The maximum number ofindentations failed to corre­
late significantly with response uncertainty, while there
was again a positive correlation between the number of
interior points and complexity. However, the correlation
was weaker than in Experiment 1. From the nature of
subjects' solutions, it appeared that other factors might
have come into play. In particular, the proximity between
interior points may have played a greater part in deter­
mining connections than in the previous experiment, and
it may be that the larger number of interior points in the
present case provided more basis for figural factors of
this kind to operate. A post hoc regression analysis was
conducted in which the average distance between inte­
rior points was added as a second independent variable
to the number of interior points. This improved the pre­
diction of response uncertainty. The resulting multiple
correlation coefficient was .89, significant beyond the
.05 level. Taking into account the proximity of interior
points as well as their number therefore increased the

variance accounted for by about 17%. While the increase
itself was not significant, the results suggest that it may
be possible to identify factors in addition to the number
of interior points that affect the complexity of TSPs.

With respect to the quality of human solutions, the re­
sults corroborated those of the previous experiment.
Comparison with a random sample indicated again that
subjects' solutions formed a tight cluster in the upper tail
of the distribution, with all subjects' solutions falling
beyond the 99.99th percentile. The best human solutions
again compared favorably with the heuristics. Averaged
over the seven problems, the best human solutions were
1.5% above the optimum. The comparable figures for
the heuristics were 3.6%,4.1 %, and 11.0% above, for the
Nearest Neighbor, CHCI, and Largest Angle procedures,
respectively. Once again, the high quality of subject per­
formance could not be attributed to one or two especially
skilled individuals. The average rank-order correlation
of performances across different problems was virtually
zero and indicated no tendency for better or poorer per­
formances to be associated with particular individuals.

GENERAL DISCUSSION

The experiments were designed to test the hypothesis
that the complexity ofTSPs for human subjects is a func­
tion ofthe number of interior points rather than ofthe total
number of points. With response uncertainty as a mea­
sure of complexity, both experiments supported the hy­
pothesis. The results of the first experiment were also
consistent with an alternative hypothesis-that com­
plexity was determined by the maximum number of in­
dentations that a problem permitted-but the second
experiment failed to support this alternative, while con­
tinuing to support the original hypothesis. However, the
correlation between number of interior points and com­
plexity was weaker in the second experiment, where in­
terior points ranged from 4 to 16, than in the first, where
they ranged from 1 to 6. There was some indication that
increased proximity of interior points in the second ex­
periment may have operated as an additional factor in re­
ducing uncertainty. Nevertheless, the number of interior
points appears to be a relatively powerful determinant of
problem complexity. The correlation between interior
points and response uncertainty across the data from both
experiments combined was r = .90 (df= 11, P < .01).

The experiments were also attempts to obtain infor­
mation on the qualityofsubjects, solutions. No completely
satisfactory single measure ofquality was available, and
multiple approaches were consequently adopted. In the
first of these approaches, subjects' path lengths were
converted to standard scores, with population parameters
estimated from random samples of solutions. In the sec­
ond, a standard used in operations research was adopted,
expressing the obtained path lengths as a percentage above
the optimal solution. In the third approach, subjects' so­
lutions were compared with those ofheuristic algorithms
developed in the field of operations research. All three
approaches supported the conclusion that the subjects'
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solutions were of a high quality. The standard score ap­
proach indicated that solutions were clustered in the upper
tail of the distribution, on the average exceeding the
99.9th percentile. Compared with the optimal solutions,
subjects' minimum path lengths exceeded them on the av­
erage by three-quarters of a percent. As a point of refer­
ence, to reliably find solutions within 2% or 3% using
computational approaches requires fairly complex algo­
rithms performing in the order ofn3 computations (Golden
et aI., 1980). Subjects' minimum path lengths were sub­
stantially better than this. They were also substantially
better than the heuristics tested here, whose best path
lengths were 2.5%,2.5%, and 7.6% above the optimum
solutions, for the CHCI, Nearest Neighbor, and Largest
Angle procedures, respectively.

It is an open question whether or not subjects can con­
tinue to produce good solutions as problem complexity
increases. However, unpublished results reported by Lee
(1985) appear to extend the range ofthe present findings.
Lee's report provides coordinates for 14 randomly gen­
erated problems ranging from 10 to 60 nodes, together
with the best solution for each problem obtained from an
informal study involving 50 subjects. There were four
problems each of 10, 20, and 40 nodes, and two 60-node
problems. The number ofinternal points for the problems
ranged from 4 to 50. Unfortunately, one of Lee's results
appears likely to be an error. For 1of the 1O-nodeproblems
he reports that the best result for both human subjects
and the CHCI heuristic was 16% above the optimum. This
figure is extremely high compared with his other results
and the results found here. Reapplying the CHCI heuris­
tic to his coordinates indicated that it does in fact find the
optimum solution, so apparently his figure is an error. If
this suspect result is excluded, his results across the re­
maining 13 problems are highly consistent with those re­
ported here. A reanalysis of his problems indicated that
the best human solutions were better than the three heu­
ristics up to and including the 6O-nodeproblems. The av­
erage percent above the lower bound of the optimal so­
lution was 1.5 for the best human solutions, compared
with 2.7, 10.4, and 9.1 for the CHCI, Nearest Neighbor,
and Largest Angle heuristics, respectively. In addition,
Lee's results showed a fairly high correlation between
the number ofinterior points and the percentage over op­
timal for the human solutions across the 13 problems
(r = .84, df= 11, P < .01). In other words, percentage
above the optimal appears to have correlated with problem
complexity here. This may be because there were more
than a single problem for each level of the independent
variable, number of interior points, or because a much
wider range of interior points was used (4-50, compared
with 1-16 in our experiments).

To return to the present findings-subjects' perfor­
mances showed a high degree of consistency in a num­
ber of respects. Almost invariably, subjects connected
boundary points in order of adjacency and, equally in­
variably, produced no crossed arcs. They also generated
solutions with relatively few indentations. These consis­
tent elements, together with the fact that proficiency ap-

pears to be equally distributed across individuals, suggest
that solutions are generated by a homogenous process or
set ofprocesses. However,none ofthe heuristics appeared
able to provide an adequate model of this process. From
what we observed, people complete the problem in a se­
quential way, in which the terminal node of one connec­
tion becomes the origin node of the next. Of the three
heuristics that we used, only the Nearest Neighbor ap­
proach operates in this way. This approach is similar to
human performance in another respect too, in that it can
produce a range of solutions to a single problem depend­
ing on the starting point selected. The other two heuris­
tics typically produce a single solution. However, the out­
put produced by the Nearest Neighbor heuristic was not
particularly close to the human results, and in this respect
the procedure does not appear able to provide an accu­
rate model of performance.

The spatial mode of presenting the TSP problem to
human subjects appears to be critical to performance,
and providing the equivalent information in a nonspatial
form, as a set ofcoordinates, for example, or as a matrix
of interpoint distances, is not likely to yield the same
quality of solutions, if any solution at all. Experimental
evidence for this assertion is provided by Polivanova
(1974), who investigated human subjects' performance
on route-finding tasks containing between 4 and 10
points. She found that performance with a spatial repre­
sentation was superior to performance with a tabulated
numerical form of the same task. TSPs may be easy for
people because people do not need to form an internal
representation of the task but simply use the display to
prompt potential solutions. The spatial form of presen­
tation of the TSPs may have allowed a form of display­
based problem solving (Larkin, 1989), where the current
state of the task can be read off from the display and used
to decide the next subgoaI. However, producing solutions
to TSPs through display-based problem-solving implies
a local processing strategy, whereby subjects judge the
next node to be connected on the basis of the spatial
properties ofadjacent nodes. This type oflocal process­
ing model is similar to the Nearest Neighbor approach,
and as such, it is unlikely to provide a good account of
observed performance. While human solutions are clearly
executed in a serial fashion, we believe that they are un­
likely to be generated through the serial application of a
display-based problem-solving process. The evidence pre­
sented here indicates that human subjects reach solutions
based upon the perception ofglobal spatial properties of
a TSp, and in particular, of the boundary of the convex
hull. Recently, Ormerod and Chronicle (1995) reported
evidence supportive ofthis view, from a recognition task
in which subjects were found to reliably distinguish be­
tween 100% and 90% optimal solutions for 1O-nodeprob­
lems in times of less than 2 sec. The ability to differen­
tiate between such close levels ofoptimality in such short
response times suggests some form of rapid overall pro­
cessing. There is some evidence that adding contextual
information may reduce the quality of subjects' solu­
tions. Buckmaster (1992) reported a pilot study in which
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subjects saw points that were superimposed on a map of
the United States and identified as U.S. cities. The added
geographical context appeared to reduce the quality of
subjects' solutions to approximately the level of the Near­
est Neighbor heuristic. It appears that the addition of
thematic information may have encouraged subjects to
adopt a local processing strategy.

The present results provided evidence that subjects fol­
Iowa convex hull approach in solving TSPs, but without
explaining why. One possibility is that the boundary of
the convex hull presents itself as the best figure, perhaps
providing a two-dimensional illustration of the law of
Pragnanz in the same way that soap bubbles illustrate it
in three (Attneave, 1982). The task of the TSP may hap­
pen to parallel what it is natural for the perceptual sys­
tem to do in any case when presented with an array of
dots. For example, Pomerantz reports an experiment in
which subjects were presented with dot patterns and were
asked to connect the dots in a manner that illustrated how
they perceived the patterns (Pomerantz, 1981). He re­
ported that subjects frequently connected the dots by
using the shortest possible paths. In other words, the
"natural" tendency of Pomerantz's subjects appears to
conform closely to the task requirements of the TSP. If
this were the case, the factors that make TSPs relatively
simple for human subjects may be exactly the same as
those which make other problems, such as the 9-dot prob­
lem, extremely difficult. If the boundary of the convex
hull dominated perception in the 9-dot problem, a subject
would presumably find it very difficult to extend lines
beyond the hull, as required for successful solution. This
is consistent with some explanations that have been of­
fered for the problem's difficulty (Maier, 1930; Scheerer,
1963), though not with all (Lung & Dominowski, 1985;
Weisberg & Alba, 1981).

Another possibility is that the apparent influence of
the boundary on solutions arises because the problem
"invites" such an approach. The overall form ofthe prob-

lem is essentially circular, and this may have suggested
types of solutions that best preserved this overall form.
Two versions of this type of explanation can be distin­
guished, one specific to the present type of stimuli, one
general to any TSP task. With regard to the specific ver­
sion, the points in the problems used here were fairly
widely and evenly distributed in the plane and fell within
a more or less circular area. This may implicitly have
prompted subjects to pay attention to the boundary of the
convex hull. That is, the shape of the problem may have
suggested the shape of the solution. If this were the case,
then changing the overall form of problems should
change the nature ofsolutions. If, for example, the points
were enclosable by a more extended, linear form, then,
perhaps, other figural factors such as proximity or good
continuation might determine subjects' paths. In Fig­
ure 5, for example, the question arises of whether sub­
jects starting at the leftmost point would follow the curve
and thereby produce the nonoptimal solution on the top,
with crossed arcs, or would they continue to be influ­
enced by the boundary of the hull, and find the optimal
solution, shown below?

A more general sense in which the TSP is "circular"
arises from the task's requirement to complete a circuit,
which constrains solutions to the form of a topological
ring. It may be that this built-in "circularity" ofthe task
gives the boundary of the convex hull a salience it would
not otherwise have. This could be tested by removing the
requirement to complete a circuit. For example, the goal
could be changed to that of connecting the points in the
shortest possible path, starting at the point farthest to the
left of the display and ending with the point farthest to
the right. This "linear" version ofthe problem retains all
of the local characteristics of the original TSP but alters
a global characteristic in a potentially significant way.
Figure 6 illustrates three sample solutions to a problem
of this type. The solution at the top has only two arcs
which connect adjacent boundary points. The lower two

Figure 5. Nonoptimal and optimal solutions to more linearly extended Traveling Salesman Problem.
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each have four arcs connecting adjacent boundary
points. If the convex hull retains its influence on percep­
tion of the problem, then, arguably, subjects should pro­
duce solutions more like the lower two than like the top
one. If, on the other hand, subjects' solutions conform
more to the top one, it would suggest that the salience of
the hull in human solutions to the TSP arises from the
problem's requirement to complete a circuit.

The present results are essentially exploratory and are
subject to some limitations. The problems were drawn
from a relatively narrow range in terms of the number of
interior points, with only one example at each level. This
raises questions about the representativeness of the prob­
lems used and limits the generality of the findings. How­
ever, this is mitigated to some extent by the inclusion of
the benchmark Dantzig problem, which, unlike our
quasi-random problems, has a highly structured layout
designed to provide a critical test ofheuristics. Subjects'
solutions to this special problem were similar to those
obtained for the other problems, both in quality and in
the relationship between number of interior points and
problem complexity. A second factor which suggests that
the present findings may not be specific to the sample
problems used is their consistency with those of Lee
(1985) based on a much wider range of randomly gener­
ated problems. The latter results indicated that the best
human performances still exceeded those of the heuris­
tics up to problems with 60 nodes and 50 interior points.

Only further empirical study will identify the range and
types ofproblems for which human performance contin­
ues to be of such a high quality. However, it may be that
conditions under which human performance breaks
down will be more informative about the mechanisms in­
volved than the conditions under which it remains supe­
rior. This need not necessarily require "large" problems.
The Dantzig problem has few nodes, but it confounds
many heuristic algorithms, and there may similarly be
"small" problems that present difficulties for human
subjects. Research is currently in progress in which the
spatial distribution of internal nodes is systematically
varied in the degree of clustering and distance from the
boundary.

In conclusion, the present study revealed that human
subjects were able to produce very good solutions to an
intransigent mathematical problem. The high degree of
consistency between individuals argues that a common
process or set of processes underlies the ability. A num­
ber of factors indicate that the process is perceptually
based. It appears not to depend on any overt measure­
ment or calculation. Solutions were produced relatively
quickly, requiring roughly 2 min per problem. By way of
comparison, computational procedures known to pro­
duce solutions of a similar standard would have to per­
form in the order of 8,000 calculations to solve one 20­
node problem. The spatial mode ofpresenting the problem
appears to be critical. It may be that the relative ease with

•

• •
• •

•

•
•

•

•

Figure 6. A "linear" Traveling Salesman Problem and three possible solutions.



PERFORMANCE ON THE TRAVELING SALESMAN PROBLEM 539

which subjects produce high-quality solutions arises be­
cause the task requirements of the TSP happen to con­
form to natural tendencies ofthe perceptual system. How­
ever, a theoretical account of human performance will
require further research.

role of "fixation" in the solution of several "insight" problems.
Journal ofExperimental Psychology: General, 110, 169-192.

WILF,H. S. (1986). Algorithms and complexity. Englewood Cliffs, NJ:
Prentice-Hall.
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196.83,146.3; 81.42,144.49; 85.83,31.13; 198.74,
35.69; 114.25,90.37; 178.62,79.78; 135.33,99.61;
120.41,69.85; 109.31,91.33; 132.41,69.11

215.06,117.67; 134.03, 169.78; 62.38,109.39;
89.26,28.15; 192.35,29.51; 128.76,55.87; 139.44,
90.92; 142.22,71.20; 152.24,62.73; 168.57, 103.29

219.71,83.18; 177.94, 160.43; 97.40,157.72; 60.06,
86.99; 104.47, 18.32; 175.66, 18.39; 155.34,58.40;
150.41,126.27; 146.55,87.41; 127.32,93.50

206.66,134.24; 137.58, 169.96; 77.94,140.48;
61.22,76.07; 111.63, 15.20; 170.66, 16.11;217.29,
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