Behav Res (2017) 49:1652-1667
DOI 10.3758/s13428-017-0900-z

@ CrossMark

Mousetrap: An integrated, open-source mouse-tracking package

Pascal J. Kieslich"*(® - Felix Henninger >~

Published online: 23 June 2017
© Psychonomic Society, Inc. 2017

Abstract Mouse-tracking — the analysis of mouse movements
in computerized experiments — is becoming increasingly popu-
lar in the cognitive sciences. Mouse movements are taken as an
indicator of commitment to or conflict between choice options
during the decision process. Using mouse-tracking, researchers
have gained insight into the temporal development of cognitive
processes across a growing number of psychological domains.
In the current article, we present software that offers easy and
convenient means of recording and analyzing mouse move-
ments in computerized laboratory experiments. In particular,
we introduce and demonstrate the mousetrap plugin that adds
mouse-tracking to OpenSesame, a popular general-purpose
graphical experiment builder. By integrating with this existing
experimental software, mousetrap allows for the creation of
mouse-tracking studies through a graphical interface, without
requiring programming skills. Thus, researchers can benefit
from the core features of a validated software package and the
many extensions available for it (e.g., the integration with aux-
iliary hardware such as eye-tracking, or the support of interac-
tive experiments). In addition, the recorded data can be
imported directly into the statistical programming language R
using the mousetrap package, which greatly facilitates analysis.

D4 Pascal J. Kieslich
kieslich@psychologie.uni-mannheim.de

Experimental Psychology, School of Social Sciences, University of
Mannheim, Schloss Ehrenhof Ost, D-68131 Mannheim, Germany

Center for Doctoral Studies in Social and Behavioral Sciences,
University of Mannheim, Mannheim, Germany

Cognitive Psychology Lab, University of Koblenz-Landau,
Landau, Germany

Max Planck Institute for Research on Collective Goods,
Bonn, Germany

@ Springer

Mousetrap is cross-platform, open-source and available free of
charge from https://github.com/pascalkieslich/mousetrap-os.

Keywords Mouse-tracking - Experimental design -
Software - Response dynamics - Process tracing -
OpenSesame - Python

Introduction

Mouse-tracking — the recording and analysis of mouse move-
ments in computerized experiments — is becoming an increas-
ingly popular method of studying the development of cognitive
processes over time. In mouse-tracking experiments, partici-
pants typically choose between different response options rep-
resented by buttons on a screen, and the position of the mouse
cursor is continuously recorded while participants move to-
wards and finally settle on one of the alternatives (Freeman &
Ambady, 2010). Based on the theoretical assumption that cog-
nitive processing is continuously revealed in motor responses
(Spivey & Dale, 2006), mouse movements are taken as indica-
tors of commitment to or conflict between choice options dur-
ing the decision process (Freeman, Dale, & Farmer, 2011).

Mouse-tracking was first introduced as a paradigm in the
cognitive sciences by Spivey, Grosjean, and Knoblich (2005).
In their study on language processing, participants received
auditory instructions to click on one of two objects (e.g.,
“click the candle”). A picture of the target object was present-
ed together with a picture of a distractor that was either pho-
nologically similar (e.g., “candy”) or dissimilar (e.g., “dice”).
Participants’ mouse movements were more curved towards
the distractor if it was phonologically similar than if it was
dissimilar, suggesting a parallel processing of auditory input
that activated competing representations.

http://orcid.org/0000-0002-0853-9364
http://orcid.org/0000-0002-7730-9511
https://github.com/pascalkieslich/mousetrap-os
http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-017-0900-z&domain=pdf

Behav Res (2017) 49:1652-1667

1653

Following Spivey et al. (2005), mouse-tracking has been
used to gain insight into the temporal development of cognitive
processes in a growing number of psychological domains, such
as social cognition, decision making, and learning (for a review,
see Freeman et al., 2011). More recently, researchers have ex-
tended the initial paradigm, combining mouse-tracking with
more advanced methods. For example, mouse-tracking has been
used in conjunction with eye-tracking to study the dynamic
interplay of information acquisition and preference development
in decision making under risk (Koop & Johnson, 2013). In an
experiment with real-time interactions between participants,
mouse-tracking uncovered different degrees of cognitive con-
flict associated with cooperating versus defecting in social di-
lemmas (Kieslich & Hilbig, 2014). As these examples show, an
increasing number of researchers with different backgrounds
and demands are using mouse-tracking to study cognitive pro-
cesses. As a tool, mouse-tracking is increasingly combined with
other methods to build complex paradigms and to integrate data
across sources, leading to a richer understanding of cognition.

So far, many researchers conducting mouse-tracking stud-
ies have built their own experiments manually in code (e.g.,
Koop & Johnson, 2013; Scherbaum, Dshemuchadse, Fischer,
& Goschke, 2010). These custom implementations were often
one-off solutions tailored to a specific paradigm, and accom-
panied by custom analysis code to handle the resulting data
specifically and exclusively. Researchers have spent consider-
able effort and technical expertise building these codebases.

As an alternative, other researchers have used MouseTracker
(Freeman & Ambady, 2010), a stand-alone program for mouse-
tracking data collection and analysis. Its ability to build simple
experiments relatively quickly and design the mouse-tracking
screen via a graphical user interface, as well as its integrated
analysis tools have made mouse-tracking studies accessible to a
broader range of researchers. However, researchers choosing
MouseTracker lose the flexibility that general-purpose experi-
mental software provides, in particular the ability to implement
complex experimental designs within a single tool (involving,
e.g., individually generated stimulus material, real-time commu-
nication between participants, and/or the inclusion of additional
devices for data collection). In addition, many experimental soft-
ware packages provide a graphical user interface not only for the
design of single trials but of the entirety of the experimental pro-
cedure. Finally, most experimental software offers a scripting lan-
guage so that its built-in features can be customized and extended.
Although MouseTracker is free of charge (as citation-ware), the
source code is not openly available and thereby not open to ex-
tensions and customization, limiting its features to those provided
by the original authors. Moreover, MouseTracker is only available
for the Windows operating system.

Going beyond custom implementations and stand-alone soft-
ware solutions, there is a third option, namely providing modu-
lar components that extend existing experimental software. By
building on the user-friendliness and flexibility of these existing

tools, complex and highly customized experiments can be cre-
ated easily, often without resorting to code. By using established
open data formats for storage of mouse trajectories alongside all
other data, preprocessing and statistical analyses are possible in
common analysis frameworks such as R (R Core Team, 2016).

In this article, we present the free and open-source software
mousetrap that offers users an easy and convenient way of re-
cording mouse movements. Specifically, we introduce a plugin
that adds mouse-tracking to OpenSesame (Mathot, Schreij, &
Theeuwes, 2012), a general-purpose graphical experiment
builder. Together, these offer an intuitive, graphical user inter-
face for creating mouse-tracking experiments that requires little
to no further programming. Users can thus not only draw upon
the extensive built-in functionality of OpenSesame for designing
stimuli and controlling the experimental procedure, but also on
additional plugins that extend it further, adding for example eye-
tracking functionality (using PyGaze; Dalmaijer, Mathot, & Van
der Stigchel, 2014) and real-time interaction between partici-
pants (using Psynteract; Henninger, Kieslich, & Hilbig, in
press). Yet further customization is possible through Python
inline scripts. Like OpenSesame, mousetrap is available across
all major platforms (Windows, Linux, and Mac).

In summary, mousetrap provides a flexible, extensible,
open mouse-tracking implementation that integrates seamless-
ly with the graphical experiment builder OpenSesame and can
be included by drag-and-drop in any kind of experiment. Its
open data format allows users to analyze the data with a soft-
ware of their choice. In particular, the recorded data can be
imported directly into the statistical programming language R
using the mousetrap package (Kieslich, Wulff, Henninger,
Haslbeck, & Schulte-Mecklenbeck, 2016), which allows users
to process, analyze, and visualize the collected mouse-
tracking data.

In the following, we provide a brief introduction to mouse-
trap in combination with OpenSesame, and demonstrate how
a mouse-tracking experiment can be created, what the
resulting data look like, and how they can be processed and
analyzed. In doing so, we create an experiment based on a
classic mouse-tracking study by Dale, Kehoe, and Spivey
(2007). In this study, participants’ mouse movements are re-
corded while they classify exemplars (specifically: animals)
into one of two categories; for example, a participant might be
asked to classify a cat as mammal or reptile. The central inde-
pendent variable in this paradigm is the typicality of the ex-
emplar for its category: Exemplars are either typical members
of their category, as above, or they are atypical (e.g., a whale),
in that that they share both features with the correct (mammal)
and a competing category (fish). The central hypothesis tested
in this paradigm is that there should be more conflict between
response options when classifying an atypical exemplar, and
that mouse movements should therefore deviate more towards
the competing category for atypical as compared to typical
exemplars.

@ Springer

1654

Behav Res (2017) 49:1652-1667

Building a mouse-tracking experiment

In the following, we provide a brief tutorial for building a
mouse-tracking experiment with mousetrap, demonstrating
the plugin’s major features as we do so. Our final result will
be a simplified version of Experiment 1 by Dale et al. (2007).
This study incorporates many features of a typical mouse-
tracking study: participants are presented with simple stimuli
(here only a single word) in a forced-choice design with two
response alternatives (one of which represents the correct re-
sponse). Besides, a within-participants factor (typicality) is
manipulated with a directed hypothesis regarding its influence
on mouse movements.

Plugin installation and overview

Mousetrap depends on OpenSesame (version > 3.1.0), which
is available free of charge for all major operating systems from
http://osdoc.cogsci.nl/, where it is also documented in depth.
Mousetrap itself is available from GitHub (https://github.com/
pascalkieslich/mousetrap-os), and is added to OpenSesame as
a plugin.! The plugin includes built-in offline help and docu-
mentation for all features. Additional online resources are
available from the GitHub repository, which offers extensive
documentation and several example experiments, including
the one built in the following (https://github.com/
pascalkieslich/mousetrap-os#examples).

OpenSesame provides a graphical user interface
through which users can create a wide range of exper-
iments without programming. The building blocks of
OpenSesame experiments are different items, from
which an entire experiment can be assembled by drag-
and-drop. For example, one might use a sketchpad item
to present a visual stimulus, a keyboard response or
mouse_response item to record key presses or mouse
clicks in response to the stimulus, and a logger item
to write the collected data into a log file. Where de-
sired, Python code can be included in an experiment
using inline script items to add further functionality.
All of these items can be organized into sequences to
run multiple items in direct succession and loops to
repeat the same items multiple times (with variations).
In a typical mouse-tracking experiment, a loop may
contain the list of different stimuli that are presented
in different trials, while a sequence contains all the
items that are needed for each trial.

The items provided by the mousetrap plugin allow
users to include mouse-tracking in any experiment using
the same drag-and-drop operations and with the same
ease. As OpenSesame provides two different ways of

! Information on installing the plugin is provided at https://github.com/
pascalkieslich/mousetrap-os#installation

@ Springer

building displays, the mousetrap plugin contains two cor-
responding items: the mousetrap response and the
mousetrap form item. Both provide comparable mouse-
tracking functionality, but differ in the way the stimulus
display is designed.

The mousetrap _response item tracks mouse movements
while the stimulus display is provided by another item — typ-
ically by a sketchpad item that offers a graphical user interface
for stimulus design. The mousetrap_response item then mon-
itors the cursor position and registers button clicks.

In comparison, the mousetrap_form item extends the built-
in OpenSesame form_base item to provide both a visual dis-
play as well as mouse-tracking. The visual content (e.g. text,
images, and buttons) can be specified directly from within the
item using a simple syntax and positioned on a user-defined
grid.

Both the mousetrap response and the mousetrap _form can
be used without writing Python code. For even more flexibil-
ity, both items provide corresponding Python classes which
can be accessed directly from code. Examples as well as doc-
umentation for these are provided online.

Creating a mouse-tracking trial

Figure 1 shows the structure of our example experiment. In the
beginning of the experiment, a form_text display item la-
belled “instructions” is included to explain the task to partic-
ipants. Next, a loop item called “stimuli” is added, which
repeats the same sequence of items in each trial while varying
the exemplars and response categories in random order (this
data, along with additional metadata, is entered in the loop in
tabular format — see bottom right of Fig. 1, where each row
corresponds to one stimulus and the associated response
options).

A simple way to create a mouse-tracking trial via the graph-
ical user interface is to use a sketchpad item to create the visual
stimulus display and a subsequent mousetrap_response item
to track the mouse movements while the sketchpad is present-
ed. Before creating the individual items, the overall experi-
ment resolution should be set to match the resolution that will
be used during data collection, because sketchpad items run at
a fixed resolution and do not scale with the display size. As
mouse-tracking experiments are normally run in full-screen
mode, the experiment resolution will typically correspond to
the display resolution of the computers on which the experi-
ment will be conducted.

The trial sequence itself begins with a form_text display
item that contains a start button in the lower part of the screen,
as is typical for mouse-tracking experiments (Freeman &
Ambady, 2010). Participants start the stimulus presentation
by clicking on this button, which also ensures that the start
position of the cursor is comparable across trials. Using a
form_text_display item is the most basic way of implementing

http://osdoc.cogsci.nl/
https://github.com/pascalkieslich/mousetrap-os
https://github.com/pascalkieslich/mousetrap-os
https://github.com/pascalkieslich/mousetrap-os#examples
https://github.com/pascalkieslich/mousetrap-os#examples
https://github.com/pascalkieslich/mousetrap-os#installation
https://github.com/pascalkieslich/mousetrap-os#installation

Behav Res (2017) 49:1652-1667

1655

v] Breakif never

Evaluate on first cyde

[7] Resume after break

[Full-factorial design

)

Preview

[]

The nuumber of rowe ic 4 All 10We ARMNIE ARCE

Overview g X
4 [1) example_experiment :Stlml.lll . 100p
Repeatedly runs another item
4 @ experiment
& instructions Run [Ejmal
= P
4 B stimuli Repeat each cyde 1,00 x 5
4 w trial Order [3fandom b4
start_butt
B start_button Source [table ']
!] present_stimulus
3 get_response Summary: trial will be called 4 times in random order

a logger

@ feedback
1 Monkey mammal
@ Unused items (0)
2 Tortoise bird
3 Ostrich bird
4 Dolphin fish

Fig. 1 Structure of the example OpenSesame experiment (left) and
settings for the stimuli loop (right). The panel on the left provides an
overview of all items in the experiment, organized in a sequential (from
top to bottom) and hierarchical (from left to right) display. On the highest
(i.e., leftmost) level, the experiment sequence contains the instructions,
the stimuli loop that generates the individual trials, and a final feedback
screen. The loop contains a trial sequence, which is subdivided into the
start button screen, a sketchpad that presents the stimulus, a mousetrap_

a start screen because it provides a ready-made layout includ-
ing some adaptable instruction text and a centered button
which can be used to start the trial. Further customization of
the start screen is possible, for example, by instead using an
additional sketchpad — mousetrap_response combination (as
was done in the experiment reported below; see also the online
example experiment without forms).

The start item is followed by a sketchpad that defines the
actual stimulus (Fig. 2). In the most general terms, a typical
mouse-tracking task involves the presentation of a stimulus
(e.g., a name or picture of an object), and several buttons. In
the current study, the buttons correspond to different catego-
ries, and the participant’s task is to indicate which category the
presented exemplar (i.e., the name of the animal as text) be-
longs to by clicking on the corresponding button.

The most important part of the mouse-tracking screen is the
exemplar that is to be categorized. It is added to the sketchpad
using a fextline element which allows for creating formatted
text. To vary the presented text in each trial and insert the data
from the loop (cf. Fig. 1), the corresponding variable name can
be added in square brackets.

Creating button-like elements on a sketchpad item consists
of two steps. First, the borders of the buttons are drawn using
rect elements. Next, the button labels are inserted using
textline elements (again using the variable names from the

fish mammal Typical
reptile reptile Typical
mammal bird Atypical
mammal mammal Atypical

response item that collects the participant’s response and tracks cursor
movements, and a logger item to save the data into the logfile. On the
right, the details of the loop are visible. The design options at the top
configure the loop such that each stimulus is presented once in random
order, and the table at the bottom contains the actual stimulus data for four
trials, namely the exemplar and response categories to be shown on
screen, the correct response, and the experimental condition for
inclusion in the dataset

loop in square brackets). When designing the buttons, a sym-
metrical layout is desirable in most cases. Importantly, all
buttons should have the same distance from the starting posi-
tion of the mouse. Typically, the buttons are placed in the
corners of the screen so that participants can easily reach them
without risking overshooting the button, yet the distance be-
tween buttons is maximal.

As the tracking of mouse movements should start immedi-
ately when the sketchpad is presented, the duration of the
sketchpad is set to 0 and a mousetrap_response item is
inserted directly after the sketchpad in the trial sequence (see
Fig. 1, where the mousetrap response item is labelled
“get response”). Because the mousetrap_response item is
separated from the stimulus display, the number of buttons®
as well as their location and internal name need to be provided
(see Fig. 3). In our case, and indeed for the majority of exper-
iments, the buttons correspond to the rectangles added to the
sketchpad earlier. Thus, the appropriate values for x and y
coordinates as well as width and height can be copied from
the element script, which can be accessed by double-clicking
on its border (Fig. 2). In addition to the coordinates, each

2 The mousetrap_response item supports up to four buttons. More can be
added by using the mousetrap form item or by defining buttons in Python
code.

@ Springer

1656

Behav Res (2017) 49:1652-1667

ﬂ present_stimulus — sketchpad

; black Penwidth 1px |

Duration 0

[Fill | showif always &

® (&) (@

(@ o55x [%

-840,-525 (V] Grid 35px |+

[CategoryLeft]

=

@ Element script

draw rect color=black £ill=0
h=170 penwidth=1 show_if=always
w=350 x=-840 y=-525 z_index=0

.
!] OpenSesame says ...

#N 000Ny N o @B

][Cancel

[o

[Exemplar]

-

[CategoryRight]

m

<

n

Fig. 2 Exemplary sketchpad item containing two buttons and a stimulus.
The drawing tools used to create the stimulus are shown on the left: The
button labels and the stimulus are created using textline elements. As they
vary for each trial, the experimental variables defined in the stimuli loop
(cf. Fig. 1) are used by enclosing the variable name in square brackets, so
that their values will be substituted when the experiment runs. The button
borders are drawn using rect elements. The underlying element script for

button receives a name argument that will be saved as re-
sponse when a participant clicks within the area of the corre-
sponding button. We recommend using the text content of the
button for this purpose (e.g., name =[CategoryLeft] for
the left button in Fig. 2).

When the response options are named, a correct response
can be defined by adding the corresponding button’s name in
the respective field. OpenSesame will then automatically code
the correctness of the response (as 1 or 0) in the variable
labelled correct, which is included in the data for later analysis
and can also be used to provide feedback during the study. As
with the labels, the correct response in each trial is determined
based on the variables specified in the loop (variable
CategoryCorrect, cf. Fig. 1).

In addition to logging the correctness of a single response,
OpenSesame’s global feedback variables (e.g., the overall ac-
curacy) can be updated automatically by selecting the

@ Springer

each button can be accessed by double-clicking on the respective
rectangle: the script corresponding to the left button is shown in the
pop-up window. The x, y, w, and A arguments define the left and top
coordinates of the rectangle and its width and height. They can be
copied and pasted into the mousetrap_response item (cf. Fig. 3) to
define the buttons

corresponding option, which makes it easy to, for example,
pay participants contingent on their performance. In the cur-
rent experiment, participants are provided with feedback on
their performance on the last screen of the experiment through
this mechanism.

The cursor position is recorded as long as the
mousetrap_response item is active. The interval in which the
positions are recorded is specified under logging resolution in
the item settings (see Fig. 3). By default, recording takes place
every 10 ms (corresponding to a 100-Hz sampling rate). The
actual resolution may differ depending on the performance of
the hardware (but has proven to be very robust in our studies,
see example experiment below and software validation in the
Appendix).

Finally, a logger item is inserted at the end of the trial
sequence (see Fig. 1). This item writes the current state of all
variables to the participant’s log file, which will later be used

Behav Res (2017) 49:1652-1667

1657

0 get response—mousetrap response (x| (Er] (@)

Number of buttons: 5
Button 1:
Button 2:
Button 3:
Button 4:

Correct button name: [CategoryCorrect]

-~
v

x=-840 y=-525 w=350 h=170 name=[CategoryLeft]

x=840 y=-525 w=-350 h=170 name=[CategoryRight]

Update feedback variables (average_response_time and accuracy)

("] Reset mouse position when tracking starts

Start coordinates: | .397

Timeout: infinite

Stopping boundaries:

upper=no lower=no left=no right=no

Click required to indicate response

Allowed mouse buttons: |eft button;right_button

("] Display warning message immediately if maximum initiation time is exceeded

Warning message:

Maximum initiation time: | 1000 ms

Logaging resolution: 10 ms

Save mouse-tracking data

draw textline text="Please start moving” x=0

y=0 sketchpad=present_stimulus

A

N

[
v

("] skip item and only load package

Fig. 3 Settings of the mousetrap response item: The topmost settings
define the number of buttons used, as well as their position (using the
arguments from the rect element script, cf. Fig. 2) and internal name (the
button label that was defined in the stimuli loop, cf. Fig. 1). The correct
answer can be specified in the Correct button name option to make use of
OpenSesame’s feedback capabilities. If desired, the mouse cursor can be
reset to exact start coordinates at tracking onset. Optionally, a timeout (in
ms) can be specified to restrict the time participants have to give their

in the analysis. The variable inspector can be used to monitor
the current state of the variables in the experiment if it is run
from within OpenSesame. The central mouse-tracking data
recorded through mousetrap items is stored in variables
starting with timestamps, xpos, and ypos.

answer. The boundary setting can be used to terminate data collection if
the cursor crosses a specified vertical or horizontal boundary on the
screen. Additional options concern the possibility to restrict the mouse
buttons available for responding, the immediate display of a warning if
cursor movement is not initiated within a given interval, and the
adjustment of the logging resolution, that is, the interval between
subsequent recordings of the cursor position

Alternative implementation using forms
As mentioned above, mousetrap also provides an alternative

way of implementing mouse-tracking via the mousetrap form
item. In contrast to the mousetrap _response item, the display

@ Springer

1658

Behav Res (2017) 49:1652-1667

is defined directly within the item by using a form. Forms are a
general item type which is used throughout OpenSesame.
They place content (which is referred to as “widgets” and
can include labels, images, buttons and image buttons) on a
grid, which allows forms to scale with the display resolution.
Forms do not provide a graphical interface, but instead use a
simple syntax to define and arrange the content.

In the current example, a mousetrap form could replace
both the “present_stimulus” sketchpad and the “get response”
mousetrap _response item. Assuming a grid with 16 columns
and 10 rows, a visual stimulus display similar to Fig. 2 can be
created as follows:

widget 6 7 4 2 label text="[Exemplar]"
widget 0 0 4 2 button text ="[CategoryLeft]"
widget 12 0 4 2 button text ="[CategoryRight]"

The numbers in the example define the position and extent
of each widget on the grid, followed by the type of element
and its specific settings. The additional mouse-tracking set-
tings are largely identical to the settings of the
mousetrap_response item (see Fig. 3 and the online example
experiment demonstrating a mousetrap _form).

Methodological considerations

With the basic structure of the experiment in place, the
stimulus display designed and the mouse-tracking added,
the experiment would now be ready to run. However,
some additional methodological details should be given
consideration. Mouse-tracking studies in the literature
differ in many methodological aspects, depending on
the implementation and researchers’ preferences. We
can provide no definitive recommendations, but we aim
to cover most common design choices and their imple-
mentation using the mousetrap plugin in the following
(see also Fischer & Hartmann, 2014; Hehman, Stolier,
& Freeman, 2015, for recommendations regarding the
setup of mouse-tracking experiments).

General display organization

One general challenge is the design of the information shown
during the mouse-tracking task. Because mouse movements
should reflect the developing commitment to the choice op-
tions rather than information search, the amount of new infor-
mation that participants need to acquire during tracking should
be minimized. At the same time, some information must be
withheld until tracking begins, so that participants develop
their preferences only during the mouse-tracking task and
not before.

To some degree, this also represents a challenge for the
current example experiment, where in addition to the name

@ Springer

of the exemplar, the information about the two response cate-
gories needs to be acquired. Dale et al. (2007) solved this by
presenting the response categories for 2,000 ms at the begin-
ning of each trial, even before the start button appeared. The
experiment sketched above can be adapted to implement this
procedure by including an additional sketchpad in the begin-
ning of the trial sequence that presents only the buttons and
their labels for a specified duration. This procedure was also
used in the experiment reported below.

Note that other mouse-tracking studies have used an alter-
native approach by presenting the critical information acous-
tically (e.g., Spivey et al., 2005). One advantage of this ap-
proach is that it prevents any artifacts that might be caused
from reading visually presented information. This approach
can be implemented easily in OpenSesame, for example, by
inserting a sampler item between the sketchpad and the
mousetrap_response item.

Starting position

As previously discussed, it is often desirable to have a com-
parable starting position of the cursor across trials, as is
achieved through the start button in our experiment.
However, this method only leads to generally comparable,
but not identical starting positions across trials. Though the
start coordinates can be aligned during the later analysis, the
cursor position can also be reset to exact coordinates by the
experimental software before the tracking starts. This can be
achieved by checking the corresponding option, and the start
coordinates can be specified as two integers (indicating pixel
values in the sketchpad metric where “0;0” represents the
screen center). These values are usually chosen to correspond
to the center of the start button, so that the jump in position is
minimized (the mousetrap_response item by default uses start
coordinates that correspond to the center of the button on a
form_text display item).

Movement initialization

In many mouse-tracking studies, participants are explicitly
instructed to initiate their mouse movement within a certain
time limit (as described by Hehman et al., 2015) while other
studies refrain from giving participants any instructions re-
garding mouse movement (e.g., Kieslich & Hilbig, 2014,
Koop & Johnson, 2013). If such an instruction is given, com-
pliance will typically be monitored and participants may be
given feedback. The mousetrap items provide several ways of
implementing this. The items automatically compute the
initiation_time variable that contains the time it took the par-
ticipant to initialize any mouse movement in the trial. This
variable can be used to give feedback to the participant after
the task, for example, by conditionally displaying a warning
message if the initiation time is above a predefined threshold.

Behav Res (2017) 49:1652-1667

1659

Alternatively, it is also possible to display a warning message
while the mouse-tracking task is running. In this case, the time
limits and the customized warning message can be specified in
the item settings (see Fig. 3). We recommend not using this
second option during the actual mouse-tracking task to avoid
distracting participants. However, it might be useful in initial
practice trials.

Going beyond a mere a priori instruction to initiate move-
ment quickly, some studies have also used a more advanced
procedure implementing a dynamic start condition (e.g.,
Dshemuchadse, Scherbaum, & Goschke, 2013; Frisch,
Dshemuchadse, Gorner, Goschke, & Scherbaum, 2015). In
these studies, the critical stimulus information was presented
only after participants crossed an invisible horizontal bound-
ary above the start position, ensuring that movement had
already been initiated. A dynamic start condition can be
implemented by including an additional sketchpad and
mousetrap_response item specifying an upper boundary for
tracking in the item settings (see corresponding online exam-
ple experiment).

In a first attempt to assess the influence of the starting pro-
cedure on mouse-tracking measures, Scherbaum and Kieslich
(2017) compared data from an experiment using such a dynam-
ic start condition to a condition in which the stimulus was
presented after a fixed delay. While results showed that theo-
retically expected effects on trial-level mouse-tracking mea-
sures (i.e., trajectory curvature) were reliably found in both
conditions, effects on within-trial continuous measures were
stronger and more temporally distinguishable in the dynamic
start condition. This was in line with generally more consistent
and homogeneous movements in the dynamic start condition.

Another alternative to ensure a quick initialization of
mouse movements is to restrict the time participants have for
giving their answer. This time limit can be specified (in ms) in
the corresponding option in the item settings (Fig. 3).

Response indication

An additional methodological factor that varies across
mouse-tracking studies is the way participants indicate
their response. While many studies require participants
to click on the button representing their choice (e.g.,
Dale et al., 2007; Koop, 2013), in other studies merely
entering the area corresponding to the button with the
cursor is sufficient (e.g., Dshemuchadse et al., 2013;
Scherbaum et al., 2010). Both options are available in
mousetrap (see Fig. 3). If a click is required, the
(physical) mouse buttons that are accepted as a response
indication can be specified. By default, mouse clicks are

3 However, introducing a time limit might also induce time pressure which
might lead to other (undesired) effects.

required and both left and right mouse clicks are
accepted.

Counterbalancing presentation order

A final consideration should be given to potential posi-
tion effects: So as not to introduce confounds between
response alternatives and the position of the correspond-
ing button, the mapping should be varied across trials
and / or across participants. This is especially important
if the response alternatives stay constant across trials
(which is often the case in decision making studies,
e.g., Kieslich & Hilbig, 2014; Koop, 2013). In the cur-
rent study, the position of the correct response and the
foil (left vs. right) should be varied. This can be done
statically by varying their order across trials (see
Fig. 1). To go further, the position of response options
can be randomized at run time using OpenSesame’s ad-
vanced loop operations (as was done in the experiment
reported below, see also shuffle horiz online example
experiment).

Data collection

After creating the mouse-tracking experiment, it should be
tested on the computers that will later be used to collect the
data. We also recommend importing and analyzing self-
created test data to check that all relevant independent and
dependent variables have been recorded, and to check the
logging resolution (see below). When preparing the study
for running in the lab, a number of methodological factors
need to be considered.

As noted in the previous section, mouse-tracking ex-
periments should be run in full screen mode at the
maximum possible screen resolution. The OpenSesame
Run program, which is included with OpenSesame, can
run the experiment without having to open it in the
editor, making the starting process more efficient, and
hiding the internal structure, conditions, and item names
from participants.

In addition, the mouse sensitivity settings of the operat-
ing system should be checked and matched across labora-
tory computers, in particular the speed and acceleration of
the cursor relative to the physical mouse (these settings
cannot be influenced directly from within OpenSesame).
There is currently no single setting applied consistently
across studies in the literature, and the settings used in
the field are often not reported. Presumably, the settings
will often have been left to the operating system defaults
(under Windows 7 and 10, medium speed with accelera-
tion) or speed will have been reduced deliberately and ac-
celeration turned off (as recommended by Fischer &
Hartmann, 2014).

@ Springer

1660

Behav Res (2017) 49:1652-1667

When preparing the laboratory, it should be ensured
that participants have enough desk space to move the
mouse. In this regard, we have found it useful to move
the keyboard out of the way and design the experiment so
that participants can complete the entire experiment by
using only the mouse. Additionally, heretofore largely un-
explored factors concern the handedness of participants,
the hand used for moving the mouse, and their interplay.
Some authors go as far as to recommend including only
right-handed participants (Hehman et al., 2015). We
would recommend assessing the handedness of partici-
pants, as well as the hand actually used for moving the
mouse in the experiment.

In general, we would like to stress the importance of
documenting mouse-tracking studies in sufficient detail,
both so that fellow researchers can replicate the experiment
and so that potentially differing findings between individ-
ual mouse-tracking studies can be traced back to differ-
ences in their methodological setup. Ideally, each of the
degrees of freedom sketched above should be documented,
as well as the specifics of the lab computers (especially
screen resolution and mouse sensitivity settings). It is also
very useful to provide a screenshot of the actual mouse-
tracking task. Finally, to give interested colleagues the op-
portunity to explore the specific details of the task setup, it
is also useful to provide them directly with the experiment
files. This is particularly easy if mouse-tracking experi-
ments are created in OpenSesame with the mousetrap
plugin, as OpenSesame is freely available for many plat-
forms. OpenSesame also provides the option to automati-
cally save experiments on the Open Science Framework
and share them with other researchers.

Example experiment

Having built and tested the experiment, enterprising col-
leagues could begin with the data collection immediately.
We have done exactly this, and have performed a replica-
tion of Experiment 1 by Dale et al. (2007). In doing so, we
aimed to assess the technical performance of the plugins
(especially with regard to the logging resolution), to dem-
onstrate the structure of the resulting data and how they can
be processed and analyzed, and to replicate the original
result that atypical exemplars lead to more curved trajec-
tories than typical exemplars. The exact experiment that
was used in the study (with German material and instruc-
tions) and a simplified but with regard to the task identical
version (with English example material and instructions)
can be found online at https://github.com/pascalkieslich/
mousetrap-resources, as can the raw data and analysis
scripts.

@ Springer

Methods

We used the 13 typical and 6 atypical stimuli from Dale etal.’s
Experiment 1 (see Table 1 in Dale et al., 2007) translated to
German. Participants first received instructions about their
task and completed three practice trials. Thereafter, the 19
stimuli of interest were presented in random order.
Participants were not told that their mouse movements were
recorded, nor did they receive any specific instructions about
moving the mouse.

Each trial began with a blank screen that was presented
for 1,000 ms. After that, the two categories were displayed
for 2,000 ms in the top left and right screen corners (the
order of the categories was randomized at run time), fol-
lowing the procedure of the original study. Next, the start
button appeared in the bottom center of the screen, and
participants started the trial by clicking on it. Directly
thereafter (the cursor position was not reset in this study),
the to-be-categorized stimulus word was displayed above
the start button and participants could indicate their re-
sponse by clicking on one of the two categories (see
Fig. 2).

The experiment was conducted full screen with a resolution
of 1,680 x 1,050 pixels. Laboratory computers were running
Windows 7, and mouse settings were left at their default
values (acceleration turned on, medium speed). Cursor coor-
dinates were recorded every 10 ms.

The experiment was conducted as the second part in a
series of unrelated studies. Before the experiment, we assessed
participants’ handedness using the Edinburgh Handedness
Inventory (EHI; Oldfield, 1971). We used a modified version
of the EHI with a five-point rating scale on which participants
indicated which hand they preferred to use for ten activities
(-100 = exclusively left, =50 = preferably left, 0 =no prefer-
ence, 50 = preferably right, 100 = exclusively right) and in-
cluded an additional item for computer mouse usage.

Participants were recruited from a local student participant
pool at the University of Mannheim, Germany, and paid for
their participation (the payment was variable and depended on
other studies in the same session). Participants were randomly
assigned to either an implementation of the study using the
mousetrap plugin in OpenSesame (N =60, 39 female, mean
age =22.2 years, SD = 3.5 years) or another implementation (a
development version of an online mouse-tracking data collec-
tion tool) not included in the current article. Participants’ mean
handedness scores based on the original EHI items indicated a
preference for the right hand for the majority of participants
(50 of 60 participants had scores greater than 60), no strong
preference for eight participants (scores between —60 and 60)
and preference for the left hand for two participants (below
—60). Interestingly, all participants reported using a computer
mouse preferably or exclusively with the right hand, as indi-
cated by the newly added item.

https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-resources

Behav Res (2017) 49:1652-1667

1661

Data preprocessing

In the following section, we focus on a simple but frequently
applied comparison of (aggregate) mouse trajectory curva-
ture.* In doing so, we will go through all analysis steps from
loading the raw data to the statistical tests in the statistical
programming language R (R Core Team, 2016). The complete
analysis script is shown in Fig. 4.

The libraries required for the following analyses can be
installed from CRAN using the following command:
install.packages (c ("readbulk", "mousetrap")).
Thereafter, both libraries are loaded using
library (readbulk) and library (mousetrap)
respectively. We will only touch upon the most basic fea-
tures of both; additional library-level documentation can
be accessed with the command package? mousetrap
(or online at http://pascalkieslich.github.io/mousetrap/),
and help for specific functions is available by prepending
a question mark to any given command, as in ?mt__
import mousetrap.

OpenSesame produces an individual comma-separated
(CSV) data file for each participant. Because there is a single
logger item in the experiment that is repeated with each trial,
every line corresponds to a trial. Different variables are spread
across different columns. For our purposes, the most impor-
tant columns are those containing the mouse-tracking data,
namely the columns beginning with timestamps, xpos, and
ypos. These columns contain the interval since the start of
the experiment in milliseconds, and the x and y coordinates
of the cursor at each of these time points. The position coor-
dinates are given in pixels, whereby the value 0 for both x and
y coordinates corresponds to the center of the screen and
values increase as the mouse moves toward the bottom right.

As a first step after opening R (or RStudio), the current
working directory should be changed to the location where
the raw data is stored (either using serwd or via the user inter-
face in RStudio). To read the data of all participants into R, we
suggest the readbulk R package (Kieslich & Henninger, 2016),
which can read and combine data from multiple CSV files into
a single dataset. Readbulk provides a specialized function for
OpenSesame data (read_opensesame). Assuming that the raw
data is stored in the subfolder “raw_data” of the working direc-
tory, we can combine all individual files into a single data.frame
using read opensesame ("raw_data").

Next, the raw data are filtered so that only the trials of
interest are retained. Specifically, all trials from the practice
phase are excluded. Besides, we determined which trials were
solved correctly using the correct variable, which was auto-
matically set by the mousetrap_response item. The accuracy

* These analyses differ from the more elaborate analyses in the original article
by Dale et al. (2007), which we have omitted for reasons of brevity. We
provide an R script for replication of the original analyses online.

in the current study was 88.9% for atypical and 95.4% for
typical trials — results comparable to those in the original study.
Following Dale et al., only the correctly completed trials were
kept for the analyses.

For preprocessing and analyzing mouse-tracking data, we
have developed the mousetrap R package (Kieslich et al.,
2016). A detailed description of the package and its functions
is provided elsewhere (Kieslich, Wulff, Henninger, Haslbeck,
& Schulte-Mecklenbeck, 2017). In the following, we will fo-
cus on the most basic functions needed for the present
analyses.

As a precondition for further analysis, the raw data must be
represented as a mousetrap data object using the
mt_import_mousetrap function. This function will automati-
cally select the mouse-tracking data columns from the raw
data® and transform their contents into a data structure ame-
nable to analysis.

Next, several preprocessing steps ensure that the data can be
aggregated within and compared meaningfully between condi-
tions. Trajectories are remapped using mt_remap_symmetric
which ensures that every trajectory starts at the bottom of the
coordinate system and ends in the top left corner (regardless of
whether the left or the right response option was chosen).
Because the mouse cursor was not reset to a common coordi-
nate at the start of tracking, mt¢_align_start is needed to align all
trajectories to the same initial coordinates (0, 0). Trajectories are
then typically time-normalized so that each trajectory contains
the same number of recorded coordinates regardless of its re-
sponse time (Spivey et al., 2005). To this end,
mt_time_normalize computes time-normalized trajectories
using a constant (but adjustable) number of time steps of equal
length (101 by default, following Spivey et al.).

Several different measures for the curvature of mouse tra-
jectories have been proposed in the literature (Freeman &
Ambady, 2010; Koop & Johnson, 2011). One frequently used
measure is the maximum absolute deviation (MAD). The
MAD represents the maximum perpendicular deviation of
the actual trajectory from the idealized trajectory, which is
the straight line connecting the trajectories’ start and end
points.° The MAD and many additional trial-level measures
can be calculated using the mt_measures function.” These
measures are then typically aggregated per participant for each
level of the within-participants factor. For this,
mt_aggregate per subject can be used (see Fig. 4).

> In case that more than one mousetrap item is included in the experiment, the
names of the columns need to be provided explicitly using the corresponding
arguments.

® If this maximum deviation occurs in the direction of the non-chosen option
(i.e., “above” the idealized trajectory), it receives a positive sign, otherwise a
negative sign.

7 This function uses the raw trajectories by default to avoid the (unlikely)
possibility that relevant spatial information gets lost during time normalization.
In the current sample, the MAD values based on the raw trajectories and on the
time-normalized trajectories correlate to .9999.

@ Springer

http://pascalkieslich.github.io/mousetrap/

1662

Behav Res (2017) 49:1652-1667

library(readbulk)

raw_data <- read_opensesame("raw_data", verbose = FALSE)
raw_data <- subset(raw_data, Condition!="Example" & correct==1)

library(mousetrap)

mt_data <- mt_import_mousetrap(raw_data)

mt_data <- mt_remap_symmetric(mt_data)

mt_data <- mt_align_start(mt_data)
mt_data <- mt_measures(mt_data)

agg_measures <- mt_aggregate_per_subject(mt_data, subject_id = "subject_nr",

use_variables = "MAD", use2_variables

= "Condition")

t.test (MAD~Condition, data = agg_measures, paired = TRUE)

mt_data <- mt_time_normalize(mt_data)

mt_plot_aggregate(mt_data, use = "tn_trajectories", points = TRUE,
x = "xpos", y = "ypos", color = "Condition", subject_id = "subject_nr")

Fig. 4 R script for replicating the main data preparation and analysis
steps. First, the individual raw data files are merged and read into R.
They are then filtered, retaining only correctly solved trials from the
actual task. Next, the mouse-tracking data are imported and
preprocessed by remapping all trajectories to one side, aligning their

Data quality check

To check whether the intended logging resolution was actually
met, mt_check _resolution can be used to compute the
achieved interval between logs. Across all recorded mouse
positions in all trials that entered the following analyses,
99.4% of the logging intervals were exactly 10 ms, corre-
sponding to the desired logging resolution. An additional
0.5% of intervals were shorter than 10 ms, due to the fact that
every click in the experiment leads to an immediate recording
of the current cursor position, even outside of the defined
logging interval. Finally, 0.1% of logging intervals were great-
er than 10 ms, of which 76.2% lagged by 1 additional ms only.
Overall, the mean timestamp difference was 9.98 ms (SD =
0.43 ms).

A more comprehensive technical validation of the mouse-
trap plugin is reported in the appendix. Extending a procedure
by Freeman and Ambady (2010), we used external hardware
(Henninger, 2017) to generate known movement patterns
from the start button to one of the response buttons. An anal-
ysis of the recorded cursor positions revealed that almost ev-
ery change in position was captured on the raw coordinate
level, and that the recorded positions and derived trial-level
measures almost perfectly corresponded to their expected
values.

Results
A quick first visual impression of the effect of the typicality

manipulation on mouse movements can be obtained by
inspecting the aggregate mouse trajectories. Specifically,

@ Springer

start coordinates and computing trial-level summary statistics (such as
the maximum absolute deviation, MAD). The MAD values are
aggregated per participant and condition, and compared using a paired
t-test. Finally, the trajectories are time-normalized, aggregated per
condition, and visualized

mt _plot aggregate can be used to average the time-
normalized trajectories per condition (first within and then
across participants) and to plot the resulting aggregate trajec-
tories (Fig. 5). In line with the hypothesis by Dale et al., the
aggregate response trajectory in the atypical condition showed
a greater attraction to the non-chosen option than the trajectory
in the typical condition.

To statistically test for differences in curvature, the average
MAD values per participant and condition can be compared.
In line with the hypothesis and the visual inspection of the
aggregate trajectories, the MAD was larger in the atypical
(M=343.8, SD=218.6) than in the typical condition (M=

750 1
=
2
9 500 b
©
£
B
o
[e]
o
>
250 -
Condition
Atypical
—o— Typical
O 4
~600 —400 200 0

x coordinate (px)

Fig. 5 Average time-normalized trajectories per experimental condition

Behav Res (2017) 49:1652-1667

1663

172.2, SD = 110.8). This difference was significant in a paired
t-test, 1(59) = 6.73, p <.001, and the standardized difference of
d,=0.87 represented a large effect.

The analyses just described give an initial impression of
what mouse-tracking data look like. While we have provided
a first simple test of our basic hypothesis, the analysis has
barely scratched the surface of what is possible with this data
(and what can be realized using the mousetrap package).
Specifically, we have skipped a number of important prepro-
cessing and analyses steps that are standard procedure in
mouse-tracking studies, such as the inspection of individual
trials to detect anomalous or extreme mouse movements
(Freeman & Ambady, 2010) and analyses to detect the pres-
ence of bimodality (Freeman & Dale, 2013).* The original
article our study was based upon also contains many more
analyses (see online supplementary material for a replication
of the analyses by Dale et al., 2007, based on the current
dataset).

Several more advanced analyses methods and measures
have also been proposed, such as velocity and acceleration
profiles, spatial disorder analyses via sample entropy, or the
investigation of smooth versus abrupt response competition
via distributional analyses (see, e.g., Hehman et al., 2015,
for an overview). Many of these methods and measures are
implemented in the mousetrap R package, and are described
and explained in the package documentation. We discuss else-
where in detail the methodological possibilities and consider-
ations when processing and analyzing mouse-tracking data, as
well as their implementation in mousetrap (Haslbeck, Wulff,
Kieslich, Henninger, & Schulte-Mecklenbeck, 2017; Kieslich
etal., 2017).

Discussion

In this article, we presented the free and open-source software
mousetrap that offers users easy and convenient means of
recording mouse movements, and demonstrated how a simple
experiment can be built and analyzed. Specifically, we intro-
duced mousetrap as a plugin that adds mouse-tracking to the
popular, open-source experiment builder OpenSesame,
allowing users to create mouse-tracking experiments via a

8 A simple bimodality analysis can be conducted by computing bimodality
coefficients (BC). Following Freeman and Ambady (2010), we z-standardized
MAD values per participant and computed the BC separately for the atypical
and the typical condition. In both conditions, the BC was higher than the
recommended cutoff (.555), BCrypical = .608, BCaypicar =593, indicating a
bimodal distribution. To analyze whether the difference in MAD between
typicality conditions remained significant after excluding outliers, we exclud-
ed all trials with |zpap| >1.50 and repeated the main analyses (for details, see
online supplementary material). As in the complete dataset, aggregate MAD
was significantly higher in the atypical than in the typical condition, p <.001.
Note, however, that more advanced and comprehensive alternative analyses
are available (Kieslich et al., 2017).

graphical user interface. To demonstrate the usage of mouse-
trap, we created and replicated a mouse-tracking experiment
by Dale et al. (2007), and analyzed the resulting data using the
mousetrap R package. In line with the original hypothesis and
results, we found that mouse trajectories displayed greater
curvature towards the competing response option for atypical
compared to typical exemplars. Naturally, we have only been
able to discuss the most salient decisions in the construction of
mouse-tracking experiments. However, where possible, we
have noted the additional degrees of freedom and design
choices, and sketched their implementation.

Mousetrap offers an alternative to the two major ways
mouse-tracking studies are currently implemented. First, re-
searchers have built custom code-based implementations of
mouse-tracking for specific paradigms. These custom-built
experiments can be flexibly tailored to the individual re-
searchers’ needs, but their implementation requires extensive
programming skills, and paradigms are often cumbersome to
adapt to new tasks. Secondly, researchers have relied on
MouseTracker (Freeman & Ambady, 2010), a specialized ex-
perimental software for building mouse-tracking experiments
and analyzing the resulting data. While this software has made
mouse-tracking studies accessible to more researchers by pro-
viding a visual interface for designing the mouse-tracking
screen and recording the mouse movements, it forgoes the
flexibility and many useful features of general-purpose exper-
imental software (such as the option to define the structure of
the experiment itself via a graphical user interface, or to di-
rectly include a scripting language for customization and run
time adaptation).

Aiming to combine the advantages while avoiding the dis-
advantages of both approaches, mousetrap extends the general
purpose graphical experiment builder OpenSesame (Mathot
et al., 2012). Thereby, it allows users to easily create mouse-
tracking experiments via a graphical interface without requir-
ing programming skills. In addition, it makes available the
many useful features of OpenSesame, such as a user-friendly
interface for designing the structure of the experiment and
implementing advanced randomizations, the support for di-
verse audiovisual stimuli, an open data format, extensibility
via Python scripts, and cross-platform availability.

While mouse-tracking is a frequently used method for
assessing response dynamics (Koop & Johnson, 2011), it
should be noted that other methods are also available, such
as the use of remote controllers (e.g., a Nintendo Wii Remote,
cf. Dale, Roche, Snyder, & McCall, 2008) or the direct record-
ing of hand movements (via a handle, e.g., Resulaj, Kiani,
Wolpert, & Shadlen, 2009, or using a motion capture system,
e.g., Awasthi, Friedman, & Williams, 2011). Another ap-
proach that might become more important in future research
is the tracking of finger (or pen) movements via touchscreens
(e.g., Buc Calderon, Verguts, & Gevers, 2015; Wirth, Pfister,
& Kunde, 2016) due to the increasing availability of tablets

@ Springer

1664

Behav Res (2017) 49:1652-1667

and smartphones. The mousetrap plugin could be extended to
implement the latter approach in OpenSesame.

With mousetrap, we hope to make mouse-tracking acces-
sible to researchers from many different fields, and thereby to
enable them to gain insights into the dynamics of cognitive
processes. Given the fast-paced development of the mouse-
tracking method, we hope that our modular and open ap-
proach will help users to implement the increasingly complex
designs, to combine mouse-tracking with other process trac-
ing methods such as eye-tracking, and to apply the method in
fields where only few mouse-tracking studies have been con-
ducted so far, such as behavioral economics with real-time
interactive experiments. Similarly, we hope that the open data
format and the close link to open analysis tools such as those
demonstrated herein will make the manifold methods of ana-
lyzing mouse-tracking data widely available.

Acknowledgments We thank Anja Humbs for testing a development
version of the mousetrap plugin for OpenSesame, Monika Wiegelmann
and Mila Riidiger for collecting the data for the example experiment, and
Arndt Broder and Johanna Hepp for helpful comments on an earlier
version of this manuscript. This work was supported by the University
of Mannheim’s Graduate School of Economic and Social Sciences
funded by the German Research Foundation

Appendix
Software validation

To validate the data collection procedure, we extended the
procedure employed by Freeman and Ambady (2010), who
simulated and processed artificial mouse trajectories. We used
external hardware (Henninger, 2017) to generate two known
movement patterns that connected the start and the top left
response button: either a diagonal line, or a triangular path
leading only upward at first, and then left towards the response
button (Fig. 6). The validation experiment was built in
OpenSesame (version 3.1.6, using the legacy backend”) using
the mousetrap _response item (version 1.2.1). The screen lay-
out and mouse-tracking settings were identical to the example
experiment reported in the main article (cf. Figs. 2 and 3). The
study was run on a laboratory terminal with modest hardware
(Windows 7 Professional, on an Intel Pentium Dual-Core run-
ning at 3 GHz with 4 GB RAM).

In the following simulations, we ventured to perform a
strict test of the software: First, to test the performance of
the data collection procedure under heavy load, we simulated

o OpenSesame provides other backends with superior temporal accuracy.
However, we used legacy in our simulations and the example experiment, as
it is generally more stable, especially when using forms, which are often used
when designing mouse-tracking experiments. More information on general
benchmark results for OpenSesame can be found at http://osdoc.cogsci.nl/
manual/timing/

@ Springer

rapidly changing cursor coordinates. Specifically, in all simu-
lations, the cursor position was updated at the logging resolu-
tion (10 ms) to assess whether data is recorded correctly when
the cursor position changes as fast as data are collected. On
each update, the cursor moved to the next integer pixel loca-
tion on its path, that is, both one pixel up and one left for 800
px for the diagonal trajectory, or first one pixel upwards for
800 px and then one left for 800 px for the triangular path. The
trial was started by a (simulated) click on a start button, which
initiated the display of the response buttons, and ended with a
mouse click on the left response button, with pauses of 110 ms
before movement initiation and 100 ms between the end of
movement and the simulated response. This means that the
time between the start and end click was 8,210 ms for the
diagonal path and 16,210 ms for the triangular path. Second,
we validate the resulting data at the lowest possible level, that
is, using the raw trajectory coordinates of each individual
(simulated) trial. In scientific practice, standard mouse-
tracking analyses will compensate for imperfect measurement
to some degree because mouse trajectories are typically time-
normalized and analyses are based on aggregate statistics.

For both the diagonal and the triangular path, we simulated
1,000 trials. The resulting data files were read into R and
processed and analyzed using the mousetrap R package
(Kieslich et al., 2016). All data and analyses scripts can be
found at https://github.com/pascalkieslich/mousetrap-os#
validation.

To determine the temporal alignment between the external
hardware and the data recorded by the mousetrap response
item, we performed several analyses (based on the absolute
timestamps recorded in OpenSesame): After the click on the
start button, the screen with the response buttons was
displayed with an average delay of 6.9 ms (SD =0.7 ms) in
both simulations. Mouse-tracking started after an additional
delay of 0.7 ms (SD = 0.5 ms). This means that, on average,
7.6 ms passed between a click on the start screen and tracking
onset on the next screen. Taking this delay into account, the
observed tracking durations'® in both simulations matched the
expected value very closely, with an average duration of
8202.9 ms (SD = 0.9 ms) for the diagonal simulation, and an
average duration of 16203.1 ms (SD = 0.9 ms) for the triangu-
lar simulation.

Next, we assessed whether the specified logging resolution
was met, using the m¢ _check resolution function to compute
the time interval between subsequent recorded cursor posi-
tions. In the diagonal simulation, the mean interval was
10.0 ms (SD = 0.3 ms) matching the intended logging interval.
Specifically, 99.86% of the logging intervals were exactly

1% Tracking durations can be obtained via the response_ime variable stored in
OpenSesame or by using the R7 variable computed from the timestamps using
the mt_measures function of the mousetrap R package. Both approaches lead
to identical results.

https://github.com/pascalkieslich/mousetrap-os#validation
https://github.com/pascalkieslich/mousetrap-os#validation
http://osdoc.cogsci.nl/manual/timing/
http://osdoc.cogsci.nl/manual/timing/

Behav Res (2017) 49:1652-1667

1665

Diagonal

Triangular

400 1

200 1

y coordinate (px)
<

—-200 1

~4001

-800 —600 400 ~200

0 -800

—600 —400 -200 0

x coordinate (px)

Fig. 6 Plot of all raw trajectories for each simulation. All trajectories started at the bottom center of the screen and ended at the top left

10 ms, corresponding precisely to the desired logging resolu-
tion. An additional 0.12% of intervals were shorter than 10 ms,
due to the fact that each click led to an immediate recording of
the current cursor position, even before the end of a logging
interval (and because logging was not exactly synchronized
with simulated cursor movements and clicks). Finally, 0.02%
of logging intervals were greater than 10 ms, of which 99.3%
lagged by 1 additional ms only. Similar results were obtained
in the triangular simulation, in which the mean timestamp dif-
ference was 10.0 ms (SD = 0.2 ms) and where 99.92% of the
logging intervals were exactly 10 ms, 0.06% were shorter, and
0.02% longer (of which 94.4% lagged by 1 ms only).

To gain a first visual impression of the data, all raw trajec-
tories were plotted separately for the two simulations. As can
be seen in Fig. 6, all trajectory shapes were perfectly aligned
within each simulation and no anomalous positions were
recorded.

Missed position changes due to lags in the logging interval
can be identified simply by computing the distance between
two adjacent cursor positions recorded in each trial. These are
expected to be either 0 px for a period where the cursor did not
move along the respective dimension or 1 px along one (for
the triangular simulation) or both (for the diagonal simulation)
dimensions for a period with movement. Any value greater
than 1 px indicates a missed change in position. In the diago-
nal simulation, 99.9995% of the subsequently recorded posi-
tions were either 0 px or 1 px apart for both x and y coordi-
nates — the remaining 0.0005% differed by 2 px along either
dimension, indicating that a single movement was missed. In
the triangular simulation that involved changes in x coordinate
only for the first, and y coordinate only for the second half of
the trial, for the x coordinates, 99.9949% of the distances were
either 0 px or 1 px, and 0.0051% were 2 px indicating that a
single movement was missed (in only a single additional case

were two changes in position missed). For the y coordinates,
99.9953% of the distances were either 0 px or 1 px, and
0.0047% were 2 px.

To assess the accuracy of the recorded cursor position at each
point during the trial, we computed its expected position for each
set of recorded coordinates (based on the known path generated
by the external hardware, and taking into account the average
tracking onset). We then computed Pearson correlations between
the observed and the expected position separately for the x and y
coordinates. In the diagonal simulation, the correlation was
.99999999996 for both x and y coordinates, and the expected
and observed position were identical in 99.9995% of cases (and
differed by 1 px for the remaining cases). In the triangular sim-
ulation, the correlation was .999999993 for the x coordinates,
and .999999995 for the y coordinates. For the x coordinates,
the observed and expected position were identical in 99.8994%
of cases (and differed by 1 px for all remaining cases except one,
where it differed by 2 px). For the y coordinates, the observed
and expected position were identical in 99.9298% of cases (and
differed by 1 px for the remainder).

Table 1 Expected values, observed mean and standard deviation for
selected mouse-tracking measures per simulation

Diagonal Triangular

MAD AUC AD MAD AUC AD
Expected 0.00 0.00 0.00 565.69 320000.00 279.01
M 0.00 0.00 0.00 565.69 320000.00 279.01
SD 0.00 0.00 0.00 0.00 0.00 0.02

MAD maximum absolute deviation, AUC area under curve, AD average
deviation.

In the diagonal simulation, Ms for MAD and AD were < 9*10* and SD
for AD was < 3%107°

@ Springer

1666

Behav Res (2017) 49:1652-1667

Finally, we computed a number of mouse-tracking indi-
ces based on the raw trajectory data, using the
mt_measures function. The descriptive statistics for a se-
lection of the measures can be found in Table 1. In line
with the expected measures based on the predetermined
paths, the maximum absolute deviation (MAD), area under
curve (AUC) and average deviation (AD) were 0 for the
diagonal simulation and did not vary between trials. For
the triangular simulation, the MAD always met the expect-
ed value of 565.69 px (which is the height of a right-angled
triangle where both legs have a length of 800 px) and the
AUC was always 320,000 px* (which corresponds exactly
to the area of the previously described triangle). The AD
values were on average also as expected (M=279.01 px)
with a minor variation between trials (SD =0.02 px) be-
cause the AD takes every logged coordinate value into
account and is therefore most sensitive to variations
therein.

In sum, with regard to both logging resolution and mea-
sured coordinates, the mousetrap plugin for OpenSesame
captures the raw mouse trajectory extremely well. It should
be noted that the current validation was performed under
even stricter conditions than those used in the validation of
another software package (Freeman & Ambady, 2010): in
the current simulation, the cursor was updated at a higher
rate (every 10 ms instead of 30 ms) and more fine-grained
analyses were used, focusing on exact raw trajectories in-
stead of averaged data. When applied to actual data, even
the remaining minute discrepancies will most often be neg-
ligible given that mouse-tracking analyses usually interpo-
late the raw trajectories to some extent (e.g., through time-
normalization) and analyze trial summary statistics such as
the measures reported above. Thus, we are confident that
our software will perform reliably under most conditions.

References

Awasthi, B., Friedman, J., & Williams, M. A. (2011). Faster, stronger,
lateralized: Low spatial frequency information supports face pro-
cessing. Neuropsychologia, 49(13), 3583-3590. doi:10.1016/j.
neuropsychologia.2011.08.027

Buc Calderon, C., Verguts, T., & Gevers, W. (2015). Losing the bound-
ary: Cognition biases action well after action selection. Journal of
Experimental Psychology: General, 144(4), 737-743. doi:10.1037/
xge0000087

Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses in
the time course of categorizing atypical exemplars. Memory &
Cognition, 35(1), 15-28. doi:10.3758/BF03195938

Dale, R., Roche, J., Snyder, K., & McCall, R. (2008). Exploring action
dynamics as an index of paired-associate learning. PLOS ONE, 3(3),
e1728. doi:10.1371/journal.pone.0001728

Dalmaijer, E. S., Mathét, S., & Van der Stigchel, S. (2014). PyGaze: An
open-source, cross-platform toolbox for minimal-effort program-
ming of eyetracking experiments. Behavior Research Methods,
46(4), 913-921. doi:10.3758/s13428-013-0422-2

@ Springer

Dshemuchadse, M., Scherbaum, S., & Goschke, T. (2013). How deci-
sions emerge: Action dynamics in intertemporal decision making.
Journal of Experimental Psychology: General, 142(1), 93—100. doi:
10.1037/a0028499

Fischer, M. H., & Hartmann, M. (2014). Pushing forward in embodied
cognition: May we mouse the mathematical mind? Frontiers in
Psychology, 5, 1315. doi:10.3389/fpsyg.2014.01315

Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for
studying real-time mental processing using a computer mouse-
tracking method. Behavior Research Methods, 42(1), 226-241.
doi:10.3758/BRM.42.1.226

Freeman, J. B., & Dale, R. (2013). Assessing bimodality to detect the
presence of a dual cognitive process. Behavior Research Methods,
45(1), 83-97. doi:10.3758/s13428-012-0225-x

Freeman, J. B., Dale, R., & Farmer, T. A. (2011). Hand in motion reveals
mind in motion. Frontiers in Psychology, 2, 59. doi:10.3389/fpsyg.
2011.00059

Frisch, S., Dshemuchadse, M., Gorner, M., Goschke, T., & Scherbaum, S.
(2015). Unraveling the sub-processes of selective attention: Insights
from dynamic modeling and continuous behavior. Cognitive
Processing, 16(4), 377-388. doi:10.1007/s10339-015-0666-0

Haslbeck, J. M. B., Wulff, D. U., Kieslich, P. J., Henninger, F., & Schulte-
Mecklenbeck, M. (2017). Advanced mouse- and hand-tracking
analysis: Detecting and visualizing clusters in movement
trajectories. Manuscript in preparation.

Hehman, E., Stolier, R. M., & Freeman, J. B. (2015). Advanced mouse-
tracking analytic techniques for enhancing psychological science.
Group Processes & Intergroup Relations, 18(3), 384—401. doi:10.
1177/1368430214538325

Henninger, F. (2017). The participant on a chip: Flexible, low-cost, high-
precision validation of experimental software. Manuscript in
preparation.

Henninger, F., Kieslich, P. J., & Hilbig, B. E. (in press). Psynteract: A
flexible, cross-platform, open framework for interactive experi-
ments. Behavior Research Methods. doi:10.3758/s13428-016-
0801-6

Kieslich, P. J., & Henninger, F. (2016). Readbulk: An R package for
reading and combining multiple data files. doi:10.5281/zenodo.
596649

Kieslich, P. J., & Hilbig, B. E. (2014). Cognitive conflict in social di-
lemmas: An analysis of response dynamics. Judgment and Decision
Making, 9(6), 510-522.

Kieslich, P. J., Wulff, D. U., Henninger, F., Haslbeck, J. M. B., & Schulte-
Mecklenbeck, M. (2016). Mousetrap: An R package for processing
and analyzing mouse-tracking data. doi:10.5281/zenodo.596640

Kieslich, P. J., Wulff, D. U., Henninger, F., Haslbeck, J. M. B., & Schulte-
Mecklenbeck, M. (2017). Mouse- and hand-tracking as a window to
cognition: A tutorial on implementation, analysis, and visualization.
Manuscript in preparation.

Koop, G. J. (2013). An assessment of the temporal dynamics of moral
decisions. Judgment and Decision Making, 8(5), 527-539.

Koop, G. J., & Johnson, J. G. (2011). Response dynamics: A new window on
the decision process. Judgment and Decision Making, 6(8), 750-758.

Koop, G. J., & Johnson, J. G. (2013). The response dynamics of prefer-
ential choice. Cognitive Psychology, 67(4), 151-185. doi:10.1016/j.
cogpsych.2013.09.001

Mathot, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-
source, graphical experiment builder for the social sciences.
Behavior Research Methods, 44(2), 314-324. doi:10.3758/s13428-
011-0168-7

Oldfield, R. C. (1971). The assessment and analysis of handedness: The
Edinburgh inventory. Neuropsychologia, 9(1), 97-113. doi:10.
1016/0028-3932(71)90067-4

R Core Team (2016). R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical
Computing. https://www.R-project.org/

http://dx.doi.org/10.1016/j.neuropsychologia.2011.08.027
http://dx.doi.org/10.1016/j.neuropsychologia.2011.08.027
http://dx.doi.org/10.1037/xge0000087
http://dx.doi.org/10.1037/xge0000087
http://dx.doi.org/10.3758/BF03195938
http://dx.doi.org/10.1371/journal.pone.0001728
http://dx.doi.org/10.3758/s13428-013-0422-2
http://dx.doi.org/10.1037/a0028499
http://dx.doi.org/10.3389/fpsyg.2014.01315
http://dx.doi.org/10.3758/BRM.42.1.226
http://dx.doi.org/10.3758/s13428-012-0225-x
http://dx.doi.org/10.3389/fpsyg.2011.00059
http://dx.doi.org/10.3389/fpsyg.2011.00059
http://dx.doi.org/10.1007/s10339-015-0666-0
http://dx.doi.org/10.1177/1368430214538325
http://dx.doi.org/10.1177/1368430214538325
http://dx.doi.org/10.3758/s13428-016-0801-6
http://dx.doi.org/10.3758/s13428-016-0801-6
http://dx.doi.org/10.5281/zenodo.596649
http://dx.doi.org/10.5281/zenodo.596649
http://dx.doi.org/10.5281/zenodo.596640
http://dx.doi.org/10.1016/j.cogpsych.2013.09.001
http://dx.doi.org/10.1016/j.cogpsych.2013.09.001
http://dx.doi.org/10.3758/s13428-011-0168-7
http://dx.doi.org/10.3758/s13428-011-0168-7
http://dx.doi.org/10.1016/0028-3932(71)90067-4
http://dx.doi.org/10.1016/0028-3932(71)90067-4
https://www.R-project.org/

Behav Res (2017) 49:1652-1667

1667

Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes
of mind in decision-making. Nature, 461(7261), 263-266. doi:10.
1038/nature08275

Scherbaum, S., Dshemuchadse, M., Fischer, R., & Goschke, T. (2010).
How decisions evolve: The temporal dynamics of action selection.
Cognition, 115(3), 407-416. doi:10.1016/j.cognition.2010.02.004

Scherbaum, S., & Kieslich, P. J. (2017). Stuck at the starting line: How
the starting procedure influences mouse-tracking data. Manuscript
submitted for publication.

Spivey, M. J., & Dale, R. (2006). Continuous dynamics in real-time
cognition. Current Directions in Psychological Science, 15(5),
207-211. doi:10.1111/5.1467-8721.2006.00437 .x

Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous attrac-
tion toward phonological competitors. Proceedings of the National
Academy of Sciences of the United States of America, 102(29),
10393-10398. doi:10.1073/pnas.0503903102

Wirth, R., Pfister, R., & Kunde, W. (2016). Asymmetric transfer effects
between cognitive and affective task disturbances. Cognition and
Emotion, 30(3), 399-416. doi:10.1080/02699931.2015.1009002

@ Springer

http://dx.doi.org/10.1038/nature08275
http://dx.doi.org/10.1038/nature08275
http://dx.doi.org/10.1016/j.cognition.2010.02.004
https://github.com/pascalkieslich/mousetrap-os%23validation
http://dx.doi.org/10.1073/pnas.0503903102
http://dx.doi.org/10.1080/02699931.2015.1009002

	Mousetrap: An integrated, open-source mouse-tracking package
	Abstract
	Introduction
	Building a mouse-tracking experiment
	Plugin installation and overview
	Creating a mouse-tracking trial
	Alternative implementation using forms
	Methodological considerations
	General display organization
	Starting position
	Movement initialization
	Response indication
	Counterbalancing presentation order

	Data collection

	Example experiment
	Methods
	Data preprocessing
	Data quality check
	Results

	Discussion
	Appendix
	Software validation

	References

