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Abstract
Mouse tracking promises to be an efficient method to investigate the dynamics of cognitive processes: It is easier to deploy than
eyetracking, yet in principle it is much more fine-grained than looking at response times. We investigated these claimed benefits
directly, asking how the features of decision processes—notably, decision changes—might be captured inmouse movements.We
ran two experiments, one in which we explicitly manipulated whether our stimuli triggered a flip in decision, and one in whichwe
replicated more ecological, classical mouse-tracking results on linguistic negation (Dale & Duran, Cognitive Science, 35, 983–
996, 2011). We concluded, first, that spatial information (mouse path) is more important than temporal information (speed and
acceleration) for detecting decision changes, and we offer a comparison of the sensitivities of various typical measures used in
analyses of mouse tracking (area under the trajectory curve, direction flips, etc.).We do so using an Boptimal^ analysis of our data
(a linear discriminant analysis explicitly trained to classify trajectories) and see what type of data (position, speed, or acceleration)
it capitalizes on. We also quantify how its results compare with those based on more standard measures.
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Introduction

In the past 10 years, mouse tracking has become a popular
method for studying the dynamics of cognitive processes in
different domains, ranging from general decision making
(Koop, 2013; Koop & Johnson, 2013; McKinstry, Dale, &
Spivey, 2008) and social cognition (Freeman & Ambady,
2010; Freeman, Dale, & Farmer, 2011; Freeman & Johnson,
2016; Freeman, Pauker, & Sanchez, 2016) to phonetic com-
petition (Cranford & Moss, 2017; Spivey, Grosjean, &
Knoblich, 2005) and syntactic, semantic, and pragmatic pro-
cessing (Dale & Duran, 2011; Farmer, Cargill, Hindy, Dale, &
Spivey, 2007; Sauerland, Tamura, Koizumi, & Tomlinson,
2017; Tomlinson, Bailey, & Bott, 2013; and Xiao &
Yamauchi, 2014, 2017, among others).

Although response times can reveal whether a decision pro-
cess is fast or slow (Donders, 1969), and analyses of response
time distributions can give insight into how the decision process
unfolds (Ratcliff & McKoon, 2008; Usher & McClelland,
2001, among others), mouse movements promise a more direct
window onto the dynamics of cognitive processes, under the
assumption that motor responses are planned and executed in
parallel with the decisions they reflect (Freeman & Ambady,
2010; Hehman, Stolier, & Freeman, 2014; Resulaj, Kiani,
Wolpert, & Shadlen, 2009; Song & Nakayama, 2006, 2009;
Spivey & Dale, 2006; Spivey, Dale, Knoblich, & Grosjean,
2010; Wojnowicz et al., 2009). Concretely, if a response is
entered by clicking on a button, one may measure the time
needed to click on that button and use it as a reflection for the
complexity of the decision, roughly. But depending on whether
participants are decided from the start, hesitate, or undergo a
radical change of decision, the path to that button may take
different trajectories (Fig. 1, see Wojnowicz et al., 2009).

Accordingly, researchers have studied the shape and dy-
namics of mouse paths to document aspects of numerous
types of decision processes (see a review in Freeman, 2018).
Dale and Duran’s (2011) approach to negation processing is
an example of this. Linguistic negation has been traditionally
understood as an operator that reverses sentence truth condi-
tions, inducing an extra Bstep,^ or Bmental operation,^ in on-
line processing (Wason, 1965;Wason& Johnson-Laird, 1972;
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see the review in Tian & Breheny, 2016). Dale and Duran
tracked mouse trajectories as participants performed a truth-
value judgment task, in which they had to verify the truth of
general statements such as Cars have (no) wings. The authors
found that mouse trajectories gave rise to more shifts toward
the alternative response when evaluating negative than affir-
mative true sentences out of context. This was interpreted as
evidence for a Btwo-step^ processing of negation, in which the
truth conditions for the positive content are initially derived
and are negated only later, as a second step (see Kaup, Yaxley,
Madden, Zwaan, & Lüdtke, 2007, for details on the two-step
simulation account).1

More generally, one can extract several measures from the
mouse paths (e.g., maximal deviation point, number of direc-
tion changes, etc.) and argue, for instance, that the deviation of
thesemeasures fromwhat theywould be for an optimal, straight
trajectory reflects the relevant decision change. This raises a
fundamental question: what exactly does it mean for a mouse
path to be deviated? That is the main topic of this article.

Our goal is to explicitly document the mouse-tracking meth-
od and the connection between cognition (decision making)
and action (mouse trajectories): What in a decision process is
reflected in mouse movements—decision changes, hesitations,
or other properties?—and how is it reflected—in changes in
acceleration, changes in direction, or other aspects of the tra-
jectory?We will tackle this question by asking what features of
mouse trajectories distinguish straightforward decisions, based
on a single initial commitment, and switched decisions, which
involve a change of mind in the course of the process.2

The distinction made here between switched and
straightforward decisions should not be taken to rely on any
specific account of decision making (e.g., serial vs. parallel).
Originally, the idea of a Bdeviated^ or Bswitched^mouse path
came from an intuition about serial processing: The mouse
path goes to one alternative, then switches to the other, be-
cause a hard decision is taken, and then a hard change of mind
is made. Indeed, this is the kind of claim traditionally made
about how linguistic negation is processed (Clark & Chase,
1972). There are, however, many other ways to interpret de-
viated mouse paths, both in general and in the specific case of
negation. Decisions could, for instance, involve parallel com-
petition between alternatives, with different degree of commit-
ment toward each option (Spivey et al., 2010). In the specific
case of negation, the deviation in mouse trajectories might be
driven by task effects that might not tell us anything about
negation processing per se (see note 1 and Orenes et al.,
2014; Tian & Breheny, 2016).

In the present study, we just aim to identify how these two
ends of the decision spectrum are reflected in mouse trajectories,
without discussing the underlying mechanisms in the decision-
making process. Although we will not examine the many inter-
pretations for our experiments, we do think some of these bigger
issues can be addressed with a methodology similar to the one
we use here. We will come back to this in the discussion.

This article is organized as follows: First, we present a vali-
dation experiment in which we directly manipulate whether the

1 In line with Dale and Duran (2011), several studies have shown that, at an
early processing stage, negation is often ignored, and the positive argument of
a negative sentence (e.g., Bthe door is open^ for The door is not open) is
represented (Hasson & Glucksberg, 2006; Kaup et al., 2007; Lüdtke,
Friedrich, De Filippis, & Kaup, 2008, among others). This pattern of results,
however, depends on a number of factors, including the amount of contextual
support given for the sentence and the availability and type of alternatives at
play. Indeed, the Btwo-step^ processing of negation seems to occur specifically
for sentences presented out of the blue, whereas no difference between nega-
tive and positive sentences arises when the right contextual support is provided
(Dale & Duran, 2011; Nieuwland & Kuperberg, 2008; Tian, Breheny, &
Ferguson, 2010). Similarly, the positive argument seems only to play a role
for negation processing when the positive alternative is fully available (e.g.,
binary predicates).When there is more than one alternative or the alternative(s)
are not available, negative sentences are processed straightforwardly (Orenes,
Beltrán, & Santamaría, 2014). How to interpret these different processing
patterns has been a center of debate in the negation literature (see Tian &
Breheny, 2016, for a review), where the Btwo-step^ strategy is often consid-
ered to be rather marginal. In the present article, however, we will precisely
focus on cases that are predicted to trigger a Btwo-step^ derivation, without
discussing further examples.

2 In a recent book, Wulff et al. (2019) propose a clustering analysis of mouse-
tracking data, in order to detect different types of trajectories within one ex-
perimental condition. As pointed out by a reviewer, this approach is related to
ours. The Mousetrap package developed by Kieslich and Henninger (2017)
also provides a method to perform a classification of trajectories (based on the
distance to prototypical trajectories). This approach differs conceptually from
the approach we take here: Although it is possible to use the LDAmeasure we
train to do classification, (zero represents an optimal threshold), we are inter-
ested primarily in extracting a continuous measure of the degree of deviation in
mouse paths.

Fig. 1 Shape of the trajectories underlying distinct decision processes.
One single cognitive process is expected to be mapped onto one smooth
trajectory (blue line), whereas a change of mind would be reflected by a
two-step path (red line). Intermediate cases are represented in gray
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stimuli trigger a flip in what the appropriate response is in the
course of a trial (see Study 3 in Farmer et al., 2007, for a similar
validation experiment).We show that the mouse paths do indeed
reflect these changes (Validation experiment: Presentation and
qualitative analysis). An analysis of these data using linear dis-
criminant analysis (henceforth, LDA) confirms that the two
types of decision, straightforward and switched, can be distin-
guished objectively (Validation experiment: Classifying decision
processes with LDA). We then compare the performance of the
LDA classifier trained on the results of the validation experiment
to traditionally used mouse tracking measures (Validation exper-
iment: LDAversus traditional mouse tracking analyses). Finally,
the LDA classifier trained on the validation data is further tested
with new, more Becological^ data, obtained from a replication of
Dale and Duran’s (2011) experiment on the processing of nega-
tion mentioned above (Extension to linguistic data). If a change
of decision is triggered by negation, the trajectories correspond-
ing to negative trials should be classified together with the tra-
jectories underlying changes of decision in the validation
experiment.3

Validation experiment: Presentation
and qualitative analysis

Participants were asked to perform a two-alternative forced
choice task. Each trial was triggered by clicking on a start
button at the bottom of the screen. A frame surrounding the
screen would then appear and the participants’ task was to
indicate whether the frame was blue or red by clicking on the
appropriate Bblue^ or Bred^ buttons at the top left or top right of
the screen, respectively. On most trials, the color of the frame
remained stable throughout the trials, but in crucial cases it
changed during the trial. In the first case, the initial choice
was the correct response (straightforward trials). In the second
case, participants were forced to change their answer (switched
trials). The switched trials are meant to mimic natural decision
changes. We take these to be a reasonable stand-in for changes
of decision, even though there are obvious differences: In nat-
ural changes of decision, alternative responses are weighted as
pieces of information are integrated, whereas in our experiment
the sensory information changed in time. We will return to the
question of how ecological these decisions are in "Extension to
linguistic data" section. The procedure is illustrated in Fig. 2.

Participants

We recruited 54 participants (27 female, 27 male) using
Amazon Mechanical Turk. Two participants were excluded
from the analyses because they did not use a mouse to

perform the experiment. All of them were compensated
with 0.5 USD for their participation, which took approxi-
mately 5 min.

Design

Each trial instantiated one of two possible decision pat-
terns. In straightforward trials, the frame color remained
stable, and the decision made at the beginning of the trial
did not need to be revised. In switched trials, the color
switched once (from red to blue or from blue to red) during
the trial, forcing a revision of the initial choice. The change
on switched trials was triggered by the cursor reaching a
certain position on the y-axis, which could be at various
relative heights (point of change: early, at 40% of the
screen; middle, at 70%; or late, at 90%). The design is
schematized in Table 1.

To prevent participants from developing a strategy where-
by they simply dragged the cursor along the center line rather
than moving the mouse toward their current choice of answer,
the proportion of trials was adjusted so that a majority of the
trials (64) were straightforward (32 repetitions per frame col-
or), as compared to only 24 switched trials (four repetitions
per final frame color and change point).

Interface

The web interface was programmed using JavaScript. Mouse
movements triggered the extraction of (x, y) pixel coordinates
(there was thus no constant sample rate). Three buttons were
displayed during the experiment (Bstart^ and response but-
tons). The Bstart^ button was placed at the bottom center of
the screen. The two response boxes were located at the top left
(Bblue^) and top right (Bred^) corners. On each trial, between
the start-clicks and response-clicks, mouse movements trig-
gered the recording of the (x, y) pixel coordinates of the cursor
together with the time.

Data treatment

To allow comparisons between participants, the (x, y)-coordi-
nates were normalized according to participants’ window
size: The center of the start button was mapped onto the (0,
0) point, the Bblue^ button onto (− 1, 1), and the Bred^ button
onto (1, 1). Variations in response times and in the sensitivity
and sampling rate of our participants’ input devices implied
that different trials would have different numbers of (x, y)
positions per trial, making comparisons difficult. We there-
fore normalized the time course into 101 proportional time
steps by linear interpolation. That is, we reduced all time
points to 101 equally distant time steps, including the first
and the last positions.

3 Data and code for all the analyses developed in this article are provided at
https://osf.io/rbx3m/?view_only=7d557aa8931c4a0886e7ce2442a77895.
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Overall performance

Inaccurate responses (4% of the data) were removed from the
analyses. The mean trajectories for each decision pattern and
point of change are illustrated in Fig. 3. These trajectories
suggest that participants made a decision as soon as they were
presented with the color frame, and revised this decision if
needed. When they were forced to change their choice, this
switch was reflected in the mouse trajectories.

Validation experiment: Classifying decision
processes with LDA

Different decisions (i.e., decision patterns) have a different
impacts on mouse trajectories (Fig. 3). To identify the features
characteristic of each class (switched vs. straightforward), we
used a linear discriminant analysis for classification.

Description of the LDA classifier

The LDA is a supervised algorithm that finds a linear func-
tion projecting the predictors onto a line, giving a single
real number, where zero represents the midpoint between
the two classes to be learned and the separation between
the two classes on this dimension is maximal. This linear
combination of predictors can thus be used to form a deci-
sion rule to classify objects of one class (negative) or the
other (positive).

The two classes here were the multidimensional data com-
ing from switched and straightforward trials. The dimensions
taken into account were all x, y coordinates, the Euclidean-
distance-based velocity, and the Euclidean-distance-based ac-
celeration (both of which are nonlinear with respect to the
original (x, y) coordinates). The coordinates provide absolute
spatiotemporal information about where the cursor was at
what point, and velocity and acceleration provide information
about how it arrived there. To avoid collinearity (which causes
problems for LDA), we applied a principal component analy-
sis (PCA) to identify 13 principal components for these pre-
dictors, and we fitted and applied the LDA to these principal
components. We thus obtained an LDA measure for each trial,
the single number giving the position of the trial on the LDA
classification axis. Negative LDAvalues correspond to trajec-
tories than can be classified as straightforward, whereas pos-
itive values are associated with switched trials. The procedure
is schematized in Fig. 4.

Fig. 2 Procedure of the validation experiment. Participants were instructed to click the Bstart^ button in order to see the colored frame. Response boxes
were on the top left and top right. Depending on the trial condition, the frame color either did or did not change (once) during the trial

Table 1 Design in validation experiment

Decision Pattern Frame Color Point of Change

Straightforward Blue
Red

never

Switched Blue→ Red
Red → Blue

early (y = 40%)
middle (y = 70%)
late (y = 90%)
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Performance of the LDA classifier

Figure 5 illustrates the result of applying the procedure in Fig. 4
to the trajectories. To evaluate the overall performance of the
classifier, we calculated the area under the ROC curve (AUC), a
standard method for evaluating classifiers (Hastie, Tibshirani,
& Friedman, 2009). Intuitively, the AUC gives the degree to
which the histograms resulting from the classifier’s continuous
output (e.g., Fig. 5) are nonoverlapping in the correct direction
(in this case, switched systematically in a more positive direc-
tion on the classification axis than straightforward).

To properly evaluate the classifier’s performance at sepa-
rating trials following the distribution in the experiments, the
AUCmeasure was cross-validated. That is, the validation data
were partitioned into ten bins that kept the proportions of
straightforward and switched trajectories constant (75/25 pro-
portion). For each bin, we took the complementary set of data
(the remaining 90%) to train the classifier. The data contained
in the bin were used as a test set to diagnose the classifier
performance. We thus obtained one AUC score for each of
the ten test bins. The performance of the LDA classifier was
compared to a baseline, equivalent to the worst possible out-
come, and a topline, which was what we would expect from
an LDA under the best possible conditions. For the baseline,
we used a random classifier that assigned labels by sampling
from a beta distribution centered at the probability of straight-
forward trials; the topline was computed by testing and train-
ing the original LDA classifier on the same data set. The mean
AUC values for the LDA, the baseline, and the topline in each
bin are given in Fig. 6a.

To assess whether the performance of the LDA classifier
was statistically different from baseline (or topline) perfor-
mance, we tested the groups of ten scores with regard to
how likely it would be to obtain the attested differences in
scores under the null hypothesis that the LDA classifier per-
formance was the same as the baseline (or topline) perfor-
mance. The difference in the mean AUC between each of
these two pairs of classifiers was calculated as a test statistic.
The sampling distribution under the null hypothesis was esti-
mated by randomly shuffling the labels indicating which clas-
sifier the score came from.

In Table 2a, we report the results of a one-tailed test on the
mean AUC differences. As expected, our original LDA was
significantly better than a random classifier at categorizing
trajectories into straightforward and switched. Conversely,
there was no significant difference between the performance
of our LDA and the topline; the classifier’s performance was
not significantly different from the best an LDA could possi-
bly give on these data.

Meaningful features and optimal predictors

Our original LDA classifier took as predictors both absolute
and relative spatiotemporal features (coordinates, speed, and
acceleration). Some of these features, however, might not be
relevant for the classification. By comparing classifiers trained
with different predictors, we gathered information about
which features of mouse trajectories are most relevant to de-
cision processes.

Fig. 3 Mean trajectories for different decision patterns in the validation experiment. Error bars represent the standard errors of the x-coordinates
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We trained five additional LDA classifiers obtained by
subsetting the three original LDA predictors. If both absolute
and relative features are required for predicting the decision
type, we would expect our Bfull^ original LDA classifier to be
better than any other classifier that takes only a subset of these
original predictors. The performance of these additional clas-
sifiers was diagnosed in the same way as before, by comput-
ing the AUC for each of the ten test bins. Figure 6b illustrates
the mean AUC values for each of these classifiers, together
with the original LDA, the baseline, and the topline. Pairwise
comparisons with the original LDA were done by testing
whether the observed mean differences would be expected

under the null hypothesis of no difference in performance
between classifiers. Table 2b summarizes the comparisons
between each of these classifiers and our original LDA.

The original LDA did not differ significantly from other
LDA classifiers that contained the coordinates among their
predictors, suggesting that the distinction between
straightforward and switched decisions might be explained
solely by the information contained in the (x, y) coordinates.
Conversely, the original LDA was significantly better than
classifiers that used only speed and acceleration as predictors.
These comparisons therefore reveal that, for classifying our
validation data, absolute spatiotemporal features (x,y) coordi-
nates were generally better predictors than relative features
(speed and acceleration). That is, it seems to be more relevant
to know where the mouse pointer was at a given time than to
know how it got there.

We caution that the effects of true decisions, rather than the
simulated decisions tested here, might indeed have an impact
on speed and acceleration. It has been suggested that speed
and acceleration components can capture the level of commit-
ment to the response, such that a change of decision (switched
trajectories) might have associated with it a specific speed/
acceleration pattern (Hehman et al., 2014). This is not visible,
however, in our data.

Validation experiment: LDA versus traditional
mouse tracking analyses

The LDA classifier derives a solution to the problem of sep-
arating two kinds of mouse trajectories that is in a certain
sense optimal. Previous studies have used alternative tech-
niques to analyze mouse trajectories. In what follows, we
compare the performance of our LDA to other measures com-
monly used in mouse-tracking studies. We focus on measures
that assess the spatial disorder in trajectories, typically taken to
be indicative of unpredictability and complexity in response
dynamics (Hehman et al., 2014).

Two of the most commonly used methods of mouse-
tracking spatial analysis are the area under the trajectory
curve and the maximal deviation (henceforth, AUT and MD,
respectively; see Freeman & Ambady, 2010). The AUT is the
geometric area between the observed trajectory and an ideal-
ized straight-line trajectory drawn from the start to the end
points, whereas the MD is the point that maximizes the per-
pendicular distance between this ideal trajectory and the ob-
served path (Fig. 7). For both measures, higher values are
associated with higher trajectory deviation toward the alterna-
tive; values close to or below zero suggest a trajectory close to
ideal. Another frequently used measure counts the number of
times a trajectory crosses the x-axis (horizontal flips (Dale &
Duran, 2011), as illustrated in Fig. 7).

Fig. 4 Diagram of classification procedure
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Although all these measures aim to evaluate the degree of
complexity of the path, they may fail to distinguish paths
straight to the correct answer from Btwo-step^ (deviation to
the alternative) or Buncertain^ (centered on the middle of the
screen) trajectories.4 To assess more directly whether mouse
trajectories have a meaningful deviation toward the alterna-
tive, the distance to both the target and alternative responses
should be taken into account. For instance, the ratio of the
target distance to the alternative distance can be calculated
for each (x, y) position. Whereas ratio values closer to 1 sug-
gest a position near the middle, higher values indicate a devi-
ation toward the alternative response.

AUT, MD, x-coordinate flips, and the point that maximizes
the log distance ratio (henceforth, the maximal log ratio) were
calculated for the validation data. Following Dale and Duran
(2011; and other studies on error corrections), we also ana-
lyzed the acceleration component (AC) as a function of the
number of changes in acceleration. Since stronger competition
between alternative responses is typically translated into
steeper acceleration peaks, changes in acceleration can be

interpreted as decision points (Hehman et al., 2014).
Figure 8 illustrates the distribution and mean values for each
decision pattern.

The same cross-validation procedure described in the pre-
vious section was used to diagnose the performance of each of
these measures.5 The mean AUC values for each of these
measures are illustrated in Fig. 9. Table 3 summarizes the
results of comparing the LDA performance to each of the
alternative measures.

Overall, these comparisons reveal that the LDA trained on
the validation data is significantly better at classifying this
type of decision than other commonly used measures. The
difference for the classifier in all cases was significant. The
mean AUC values suggest that MD and the maximal log ratio
are better at distinguishing decision processes than are the
other alternative measures. These two measures are the only
ones calculated on the basis of coordinates, and therefore give
more importance to spatiotemporal information than the
others do. In other words, the MD and the maximal log ratio
are not only sensitive to whether or not there was a deviation
from the ideal trajectory (as are the other measures), but
weight this deviation as a function of the moment at which it

4 A late, medium-size deviation toward the alternative might underlie a Btwo-
step^ decision, whereas an early, but large, deviation toward the alternative
might very well be considered noise. Measures such as the AUT might not be
able to make a distinction between these.

5 Note that these measures do not need training; we simply applied each
measure to the same ten test subsets as before to make the results comparable.

Fig. 5 Distribution and the mean LDA-based measure for each class: Classifier performance when applied to the whole validation data set. Error bars
represent standard errors of the mean
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occurred, assigning higher values to late deviations. This in-
formation seems to be essential for the classification, as we
observed in "Validation experiment: Classifying decision pro-
cesses with LDA" section.

Finally, we had previously observed that acceleration and,
to a minor extent, velocity were not helpful predictors for the
LDA classifier. Indeed, the performance of the acceleration
component overlaps here with that of the baseline, suggesting
that this type of information is not helpful.

To summarize, in this section we have shown that (1) a
rough manipulation of decision-making processes has a direct
impact on mouse trajectories, (2) an LDA using absolute tem-
poral information is enough to accurately distinguish these

decision patterns, and (3) this LDA does a better classification
than other, traditional mouse-tracking measures.

Extension to linguistic data

Mouse paths obtained from the validation experiment, in
which we explicitly induced Bdecision changes,^ were used
to construct a transformation that takes mouse trajectories as
input and transforms them into a single Bdegree of change of
decision^ measure (i.e., the LDA measure). This transforma-
tion can in principle be applied to new mouse trajectories in
order to detect changes of decision. Can our LDA, then, help

Fig. 6 Mean area under the ROC curve values obtained from cross-validation. a Cross-validation over ten bins for the original LDA, baseline, and
topline. b Comparison with values obtained for five additional classifiers, obtained by subsetting the original set of predictors

Table 2 Cross-validation results for the LDA classifier

Original LDA
(Coords., Speed, Acc.)

(a) (b) LDAWith Different Predictions

Baseline Topline Coords., Vel. Vel., Acc. Coords. Vel. Acc.

AUC (mean) .87 .52 .87 .87 .83 .87 .82 .67

Mean difference – .35 – .002 – .0004 .04 – .006 .04 .20

p value – < .001 .58 .50 < .001 .68 < .001 < .001

The performance of the LDAwas compared to that of (a) the baseline and topline classifiers and (b) the LDA classifiers with different predictors
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characterize more complex decision processes, such as the
ones involved in sentence verification tasks?

To address this question, we tested our classifier on data
obtained from a replication of Dale and Duran’s (2011) exper-
iment. This experiment revealed differences in the processing
of true positive and negative sentences when people per-
formed a truth-value judgment task. These results were
interpreted as indicating that negation gives rise to an abrupt
shift in cognitive dynamics (an unconscious change of deci-
sion). If this is indeed the case, we would expect mouse tra-
jectories corresponding to the verification of negative
sentences to pattern with switched trajectories from the vali-
dation experiment. This pattern of results would provide ad-
ditional support for the hypothesis that, at least in out-of-the-
blue contexts, processing negation does involve two steps, in
which the positive value is initially derived and is negated
only as a second step. On the other hand, if negation does
not involve a change in decision—or if participants’ behavior
in the validation experiment is simply too different from nat-
ural changes of decision—then the LDA measure trained on
validation data would not reveal systematic differences be-
tween positive and negative sentences.

Experiment

Participants had to perform a truth-value judgment task in
which they had to decide whether a sentence (e.g., Cars have
wheels) is true or false, on the basis of common world knowl-
edge. Each sentence could either be a negated form or a
nonnegated form, and could either be a true or a false
statement. Unlike Dale and Duran (2011) experiment, the
complete statement was presented in the middle of the screen
after participants pressed Bstart^ (i.e., no self-paced reading,
see example in Fig. 10). The response buttons appeared at the
top left and top right corners of the screen, as in our validation
experiment. The materials and design are exemplified in
Table 4, and a sample trial can be seen in Fig. 10.

Participants

In all, 53 English native speakers (29 female, 24 male) were
tested using Amazon Mechanical Turk. They were compen-
sated for their participation (1 USD). The experiment lasted
approximately 10 min.

Design

The experimental design consisted of two fully crossed
factors: truth value (true, false) and polarity (negative,
positive). We had a total of four conditions, and each
participant saw four instances of each condition (16
sentences).

Interface and data treatment The interface and data treatment
were the same as we had used in the validation experiment.
The time course of mouse trajectories was again normalized
into 101 time steps.

Results and discussion

Replicating Dale and Duran (2011)

All participants responded correctly more than 75% of the
time. No participant was discarded on the basis of accuracy.
Only accurate trials were analyzed. Figure 11 illustrates the
mean trajectories for the four conditions.

To assess whether we replicated Dale and Duran’s
(2011) results, we calculated x-coordinate flips (see
Validation experiment: LDA versus traditional mouse
tracking analyses section) and analyzed them with a linear
mixed-effect model, taking truth, polarity, and their inter-
action as predictors. We included random intercepts per
subject and a random slope for the interaction of both fac-
tors. All p values were obtained by comparing the omnibus
model to a reduced model in which the relevant factor was

Fig. 7 Description of commonly used mouse-tracking measures
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removed. This was the analysis done by Dale and Duran.
Unlike Dale and Duran, we did not perform statistical anal-
yses based on the acceleration component, since this

quantitative measure was unable to distinguish the mouse
trajectories underlying different decision patterns in the
validation experiment.

Fig. 8 Distribution andmeans obtained from applying differentmouse-trackingmeasures to the validation data. Error bars represent standard errors of themean
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The model for x-coordinate flips revealed a main effect of
polarity, such that negation increased the number of flips by an
estimated of 0.76 (χ2 = 21.7, p < .001), and a significant Truth
× Polarity interaction (χ2 = 24.7, p < .001), such that the
difference between negative and positive sentences was big-
ger for the true than for the false statements. There was no
significant effect of truth (χ2 < 1, p = .5). Table 5 summarizes
our and Dale and Duran’s (2011) results.

We seem to have replicated Dale and Duran’s (2011) find-
ings: Verifying true negated sentences produces less-
straightforward trajectories than do true positive sentences.
The values obtained in the two experiments were slightly dif-
ferent; our results present a higher range of values (see
Table 5). In our experiments, the mouse position was not

sampled at a fixed rate, creating additional noise that could
be responsible for the range difference. Moreover, Dale and
Duran used a smoothingmethod over their trajectories, where-
as we did not. This probably causes our estimates to be higher.

Classifier performance

How well does our LDA classify new trajectories underlain by
cognitive processes that might, or might not, involve different
decision patterns across conditions? We tested these new data
using two different LDA classifiers, both of them trained on
mouse trajectories from the validation experiment. In other
words, switched and straightforward trials from the validation
were used to train the LDA algorithms, which we then used to

Fig. 9 Mean area under the ROC curve values obtained from cross-validation. aCross-validation on ten bins for the original LDA, baseline, and topline.
b Comparison with the values obtained for other commonly used mouse-tracking measures

Table 3 Cross-validation results for the LDA classifier

Original LDA AUT MD Maximal Log Ratio x-Coord. Flips AC

AUC (mean) .87 .62 .81 .81 .73 .53

Mean difference – .24 .06 .06 .14 .34

p value – < .001 < .001 < .001 < .001 < .001

The performance of LDAwas compared to each of five commonly used measures in mouse tracking studies
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test new trajectories. The first classifier was our original LDA,
which had as predictors (x, y) coordinates as well as distance-
based velocity and acceleration. The second LDA had only (x,
y) coordinates as predictors. The validation results (see
Validation experiment: Classifying decision processes with
LDA section) suggest that the simpler model, which only relies
on absolute information, might be sufficient to classify the two
basic kinds of decision-making processes. That is to say, the
simplemodel fits the data just as well as amore complexmodel,
and it can be interpreted more straightforwardly.

The relevant difference in processing between positive and
negative sentences was expected to arise specifically for true
statements. Consequently, we analyzed the performance of
both classifiers when applied to true trials. Figure 12 illustrates
the distribution and means of the resulting LDA measure.

To assess how well these classifiers separate positive from
negative trials, we bootstrapped 1,000 new samples of various
different sample sizes from the data from the replication exper-
iment and calculated the area under the ROC curve for the
classification of each one. Figure 13a shows the mean AUC
values obtained after applying the classification procedure

across these various samples of different sizes. The values are
generally lower that the ones obtained in the validation exper-
iment. This could be due to the fact that the tasks were different,
or it could simply reveal idiosyncrasies of the original valida-
tion experiment data, or of this replication experiment.

Might the observed performance be expected, even if neg-
ative and positive trials were actually not systematically dif-
ferent? Are these AUC values significantly different from the
ones that would have been obtained from applying the LDA to
a set of data in which there was no difference between exper-
imental conditions? We calculated the AUC values for a set of
data in which the experimental labels (positive, negative) were
scrambled (once per sample). The distribution of AUC values
under this null hypothesis was compared to the performance
observed for the original data. Figure 13b illustrates the sepa-
rability of the two classifications for each sample size.

The LDA classifier trained with the validation data seems
to make a distinction between experimental conditions. This
finding suggests that the contrast between negative and posi-
tive trials was similar to the contrast in the validation experi-
ment. The fact that negation has similar properties to switched
decisions indicates that verifying negative sentences might
give rise to a change of decision, as was proposed by Dale
and Duran (2011), among others. However, although the
mouse trajectories corresponding to negative and to switched
trials do share basic properties, they seem to differ on how
they are placed on the Bchange of decision^ spectrum: They
occupy different parts of the decision-based LDA continuum
(compare Figs. 5 and 12). This is not surprising, given that we
were dealing with different cognitive processes—simulated

Fig. 10 Illustration of a trial in the replication of Dale and Duran (2011)

Table 4 Design of Dale and Duran’s (2011) replication

Truth Value Polarity Example

True Positive
Negative

Cars have wheels.
Cars have no wings.

False Positive
Negative

Cars have wings.
Cars have no wheels.
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decisions versus sentence verification—but, as we discussed
above, the difference could easily also result from an idiosyn-
crasy of these two data sets.

Finally, although the classifier comparison in Fig. 6 indi-
cated that relative spatiotemporal features, such as accelera-
tion and speed, were not essential for the classification of
simple decisions, these features do seem to play a role in the
classification of sentence verification data. Indeed, Fig. 13
reveals that the full classifier—which takes all features as
predictors—gives a better separation between the two exper-
imental conditions than does the simplified one.

Other mouse-tracking measures

Does the difference in performance between the LDA and
other mouse-tracking measures remain when these are applied
to the new experimental data? Figure 14 illustrates the distri-
butions of each measure. The question of whether different
measures differ in their ability to separate the experimental
conditions was addressed by applying the same procedure as
before: We calculated the mean area under the ROC curve for

different sample sizes (see Fig. 15a) and contrasted these
values against a null hypothesis of no difference between ex-
perimental conditions (see Fig. 15b).

The results in Fig. 15a suggest that most measures per-
formed less well here than on the validation data (cf. Fig. 9).
Since a decrease in performance was attested across the board
and not only for the classifiers trained with the validation data,
this difference must be driven by properties of the new data
set. The sentence verification data might be more variable,
such that both negative and positive trials might underlie in-
stances of different decision processes.

The LDA classifier seems here to be roughly as powerful as
other, traditional mouse-tracking measures, such as the maxi-
mal deviation and the maximal log ratio. In contrast with the
validation results, this opens the possibility of using these
alternative measures to analyze mouse-tracking data from sen-
tence verification tasks. The classifier is still a better choice
from a conceptual point of view, since it does not make any
specific assumptions about how the change of decision should
be reflected by mouse trajectories beyond the observed ones.

Baseline

A linear classifier trained on simulated decisions can separate
the two experimental conditions of the replication of the pre-
vious study by Dale and Duran (2011). We interpreted this
result as suggesting that the key features being extracted re-
flect two different decision processes. It could instead be ar-
gued that the classification is not based on properties related to
decision processes, but on some other feature of the mouse
paths that happened to be partially shared between conditions
in both experiments. For example, the LDAmight be sensitive
not to decision shift but to differences in cognitive cost, some-
thing both experiments might have in common.

Fig. 11 Mean trajectories for accurate trials

Table 5 Mean and effect estimates for Dale and Duran’s (2011; D&D)
original experiment and our replication

Condition x-Flips x-Flips in D&D

T/no negation 2.22 1.13

T/negation 3.67 1.71

F/no negation 2.82 1.24

F/negation 2.9 1.34

Estimate Polarity 0.76 0.35

Estimate Truth 0.07 0.13

Estimate Truth × Polarity 1.35 0.47
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To disentangle these possibilities, we asked how the classi-
fier trained on simulated decisions classifies trajectories that
have different shapes but ought not to be related to differing
decision processes. We constructed a set of baseline data that
contained only the positive trials from the replication of the
experiment byDale andDuran (2011). The trials were classified
as to whether their response time was above or below the sub-
ject mean. We reasoned that shorter response times would cor-
respond to early commitment to the response, whereas longer
response times would reflect a late commitment. As is illustrat-
ed by Fig. 16a, the two classes in the baseline data have slightly
different trajectory shapes. Importantly, however, nothing about

this split implies that these shapes correspond to a change of
decision. Thus, the classifier trained on straightforward versus
switched trials was expected to perform poorly.

The distribution of the LDA measure after testing the clas-
sifier on the new data set is shown in Fig. 16b. The perfor-
mance was evaluated following the same procedure applied
above (see the blue line in Fig. 15).

The classification on early versus late categories is less
accurate than the one performed on separate negative and
positive trials. Differences in trajectories that are not due to
the experimental manipulation are poorly captured by the
LDA measure: Even trajectories that look similar to switched

Fig. 13 Performance of the LDA classifiers. aMean AUC values over bootstrapped data (iterations = 1,000) for different sample sizes. b Difference in
classifier performance when applied to scrambled versus the original data

Fig. 12 Two LDA classifiers applied to true trials (negative vs. affirmative). Error bars represent standard errors of the mean
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Fig. 14 Distributions and means of negative and positive true trials obtained from applying different mouse-tracking measures to negation data. Error
bars represent standard errors of the mean

Fig. 15 Performance of other mouse-tracking measures. a Mean AUC values over bootstrapped data (iterations = 1,000) for different sample sizes. b
Difference in measure performance when measures were applied to scrambled versus the original data
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and negation trials are not taken to be underlying a change of
decision. Thus, despite the differences between the experi-
mental conditions in the validation experiment and the repli-
cation experiment, the similarities appear to be more than
accidental.

Conclusion

We investigated the correspondence between some types of
decision processes and mouse movements. By manipulating
whether a stimulus triggered or did not trigger a rough change
of decision, we showed directly, for the first time, how mouse
trajectories are impacted by decision processes: A forced
switch in decision has an impact on mouse movements, which
is for the most part observable in the spatial information (the
path), and not so much in the timing of the trajectory.

We trained a classifier on the mouse trajectories underlying
these simulated decisions to predict whether or not a given
trial involved this sort of decision shift. This classifier, freely
available online, accurately classifies not only the paths cor-
responding to quasi-decisions, but also the paths underlying a
more complex cognitive process, such as the verification of
negative sentences.

The approach developed here in this sense makes an im-
portant contribution to all lines of research that may rely on
mouse-tracking data to investigate cognitive processing. Our
results not only replicate previous findings but, more impor-
tantly, show that the LDA classifier performs at least as well as
the best of the other commonly used mouse-tracking mea-
sures. This comparison of performance raises the question of
whether we should abandon traditional mouse-tracking mea-
sures, adopting our LDA classifier instead.

On the one hand, we have established that the maximal
deviation and maximal log ratio measures as comparable

alternatives to the LDA analysis in terms of performance.
These measures are in principle easier to deploy than our
classifier and have been used successfully in a number of
studies.

However, unlike these other measures, the performance of
the LDA classifier is contingent on the characteristics of the
training data set—in our case, the one coming from the valida-
tion experiment. Although, as it is now, our validation experi-
ment is just a first, very simple approximation to a decision
switch, it can potentially be refined and adapted in order to test
new hypotheses. That is, if one has clearer hypotheses about the
mechanisms at play during decision making or sentence verifi-
cation, one could build more-representative validation experi-
ments. This would in turn serve to identify prototypical mouse
path patterns for different types of cognitive processes. Indeed,
we believe this refinement will be a necessary step and is only
made possible by our classifier, making LDA analysis concep-
tually more powerful than alternative measures.

Moreover, the LDA classifier has the unique advantage of
not relying on any specific assumption about how switched
trajectories should look like. Because it is assumption-free,
our approach can be applied to other processing measures in
order to perform a classification of decisions that goes beyond
the specific mouse-tracking methodology.

Author note The research leading to these results received
funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-
2013)/ERC Grant Agreement No. 313610, and was also sup-
ported by Grants ANR-10-IDEX-0001-02 PSL* and ANR-10-
LABX-0087 IEC.
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Fig. 16 Analyses performed on baseline data set (early vs. late decisions)
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