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Abstract

Investigating cognitive processes by analyzing mouse movements has become a popular method in many psychological disci-
plines. When creating mouse-tracking experiments, researchers face many design choices—for example, whether participants
indicate responses by clicking a button or just by entering the button area. Hitherto, numerous different settings have been
employed, but little is known about how these methodological differences affect mouse-tracking data. We systematically inves-
tigated the influences of three central design factors, using a classic mouse-tracking paradigm in which participants classified
typical and atypical exemplars. In separate experiments, we manipulated the response indication, mouse sensitivity, and starting
procedure. The core finding that mouse movements deviate more toward the nonchosen option for atypical exemplars was
replicated in all conditions. However, the size of this effect varied. Specifically, it was larger when participants indicated
responses via click and when they were instructed to initialize the movement early. Trajectory shapes also differed between
setups. For example, a dynamic start led to mostly curved trajectories, responses via click led to a mix of straight and “change-of-
mind” trajectories, and responses via touch led to mostly straight trajectories. Moreover, the distribution of curvature indices was
classified as bimodal in some setups and as unimodal in others. Because trajectory curvature and shape are frequently used to
make inferences about psychological theories, such as differentiating between dynamic and dual-system models, this study
shows that the specific design must be carefully considered when drawing theoretical inferences. All methodological designs
and analyses were implemented using open-source software and are available from https://osf.io/xdp7a/.
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Over the past decade, mouse-tracking—the recording and
analysis of computer mouse movements—has become an im-
portant addition to the toolbox of experimental psychologists.
By recording mouse trajectories during psychological tasks,
mouse-tracking has allowed researchers to investigate a range
of cognitive processes that unfold in real time while people are
making their decisions (Freeman, Dale, & Farmer, 2011;
Spivey & Dale, 2006). As such, mouse-tracking has extended
the window into cognition that classic reaction time analyses
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and newer developments, such as eye-tracking or electroen-
cephalography, have opened (Schulte-Mecklenbeck et al.,
2017). Though it is a relatively new method, mouse-tracking
has quickly spread across a broad range of psychological
fields, as recent reviews have demonstrated (Freeman, 2018;
Stillman, Shen, & Ferguson, 2018).

Yet, despite mouse-tracking’s newfound glory and wide-
spread application in psychology, no standard exists for the
design of mouse-tracking studies (Scherbaum & Kieslich,
2018). As a result, methodological setups have varied consid-
erably between mouse-tracking experiments, but almost noth-
ing is known about the implications of such variation. At the
same time, it is probable that the methodological setup im-
pacts how cognitive processes are reflected in mouse trajecto-
ries. If so, the curvature and overall shape of cursor trajectories
may vary for different setups. Variation in these measures
would have far-reaching implications for past and future
mouse-tracking experiments, since they form the basis for
conclusions about psychological theories in these studies.
The previous evidence potentially affected by methodological
choices spans inferences about the influences of various psy-
chological factors on decision conflict (e.g., semantic
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representations, stereotypes, self-control, or personality differ-
ences; see Stillman et al., 2018) and inferences about which
theoretical model might best account for the data (e.g., dynam-
ic vs. dual-system models; see Freeman, 2018). For this rea-
son, there is a pressing need to understand how design factors
in mouse-tracking affect trajectories, and ultimately inferences
about psychological theories.

In an effort to provide insight into the consequences of
different design factors in mouse-tracking, we herein report
three experiments that assessed the impact of the most central
design choices, and discuss how the consequences might in-
fluence theorizing in general. We first give an overview of
previous mouse-tracking research and the varying methodo-
logical setups. Next, we present the three experiments and
report the effects that different design factors have on
mouse-tracking data. Finally, we discuss implications for the
connection of mouse-tracking data and theorizing, and pro-
vide recommendations for future mouse-tracking studies.

Mouse-tracking: Basic paradigm and design
factors

In typical mouse-tracking experiments, participants decide be-
tween two options represented as buttons on a computer
screen while their cursor movements are continuously record-
ed (see Fig. 1 for the basic setup and an exemplary mouse
cursor trajectory). These cursor movements are taken as an
indicator of the relative activation of response options over
the course of the decision-making process, assuming that the
more an option is activated, the more the mouse trajectory
deviates toward it (Freeman et al., 2011; Spivey & Dale,

2006). Thus, the degree of curvature is used as an indicator
of the amount of activation of or attraction to this option.
The recording and analysis of mouse trajectories has offered
two major opportunities for testing psychological theories
(Freeman, 2018; Stillman et al., 2018): First, it provides fine-
grained measures of the amount of conflict between response
options, thus allowing researchers to test predictions about
individual differences and contextual factors that influence
the amount of conflict in a specific decision. Second, mouse-
tracking allows for assessing the temporal development and
resolution of this conflict over the course of the decision pro-
cess, which makes it possible to test theories that make predic-
tions about how decisions and judgments unfold over time. In
this regard, a central usage of mouse-tracking has been to dif-
ferentiate between dynamic and dual-system models (Freeman
& Dale, 2013). Dynamic process models predict a continuous
competition of the response options that gradually gets re-
solved over time and should be reflected in continuously
curved trajectories in all trials. In contrast, dual-system models
predict a mixture of trials with little conflict and trials in which,
at first, one option is strongly activated and then a change of
mind occurs; this should lead to a mix of straight trajectories
and trajectories displaying abrupt shifts in the movement.
Mouse-tracking was first applied in the area of language
processing little more than a decade ago (Dale & Duran, 2011;
Dale, Kehoe, & Spivey, 2007; Spivey, Grosjean, & Knoblich,
2005) and has since spread to a broad range of psychological
disciplines. To date, mouse-tracking has been used to study
social cognition (e.g., Freeman & Ambady, 2009; Freeman,
Ambady, Rule, & Johnson, 2008; Hehman, Carpinella,
Johnson, Leitner, & Freeman, 2014; Johnson, Freeman, &
Pauker, 2012), action control (e.g., Scherbaum,

Fish

Fig. 1 Setup of the mouse-tracking experiment, including an exemplary
cursor trajectory. The trial is initiated by clicking on a start button in the
bottom center of the screen (not displayed), after which the name of the
to-be-classified animal is presented. Participants indicate their classifica-
tion decision by clicking on one of two response buttons. For the example
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trajectory, the maximum absolute deviation (MAD) is depicted (gray line)
as the maximum perpendicular deviation of the trajectory from a straight
line connecting the start and end points of the trajectory (dashed line)
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Dshemuchadse, Fischer, & Goschke, 2010), numerical cogni-
tion (see the review by Faulkenberry, Witte, & Hartmann,
2018), political beliefs (e.g., Duran, Nicholson, & Dale,
2017), perception (e.g., Frisch, Dshemuchadse, Gorner,
Goschke, & Scherbaum, 2015; Huette & McMurray, 2010;
Lepora & Pezzulo, 2015), memory (e.g., Koop & Criss,
2016; Papesh & Goldinger, 2012), value-based decision-mak-
ing (e.g., Dshemuchadse, Scherbaum, & Goschke, 2013;
Kieslich & Hilbig, 2014; Koop & Johnson, 2013), self-
control (e.g., Stillman, Medvedev, & Ferguson, 2017,
Sullivan, Hutcherson, Harris, & Rangel, 2015), and other dis-
ciplines. Two recent reviews have summarized the myriad
ways in which mouse-tracking has helped advance psycho-
logical theory in some of the aforementioned areas (Freeman,
2018; Stillman et al., 2018).

To provide a few examples of mouse-tracking applications
in different research areas, we have selected three exemplar
studies, devoted to social categorization, preferential choice,
and action control. The first example study used mouse-
tracking to investigate social categorization (Freeman &
Ambady, 2009), asking participants to select which of two
adjectives fit with the gender-stereotype for a presented face.
The study included two groups of faces: gender-typical faces
(e.g., a face with uniquely female features) and gender-
atypical faces (e.g., a female face that was to some degree
morphed with a male face). For the atypical faces, mouse
trajectories were more curved toward the opposite-gender ste-
reotype. For instance, for an atypical female face (as compared
to a typical female face), the mouse trajectory was more
curved toward a stereotypically male adjective, such as
“aggressive”, before ultimately selecting the stereotypically
female adjective “caring”. The authors also analyzed the time
course of the trajectories, as well as their shape (via bimodality
analysis), finding a continuous and unimodal distribution of
curvature values. From this, they concluded that a dynamic
process model can best account for the data, assuming simul-
taneous coactivation of competing stereotypes that gradually
gets resolved over time.

The second exemplar study used mouse-tracking to exam-
ine participants’ preferential choices (Koop & Johnson, 2013,
Exp. 1), asking them to indicate which of two pictures they
preferred by clicking on the corresponding picture. The pic-
ture pairs were created with systematically varying differences
in pleasantness as assessed by norming data, and participants’
mouse trajectories reflected these differences: The curvature
of trajectories systematically increased toward the nonchosen
option, the smaller the pleasantness difference between the
two pictures became. This study was used as a first step to-
ward validating mouse-tracking in the area of preferential de-
cision-making, to show that trajectory curvature can be used
to measure differences in personal preference.

The third exemplary mouse-tracking application comes
from the area of action control (Scherbaum et al., 2010): In a

mouse-tracking version of the Simon task, participants had to
choose the left or right option, depending on the direction of
an arrow that was presented on the left versus the right side.
Participants’ mouse trajectories reflected the typical Simon
effect, in that they were more curved toward the nonchosen
option if the location of the arrow was incongruent with its
direction. This effect was reduced if a trial was preceded by an
incongruent trial, the so-called congruency sequence effect. In
addition, mouse-tracking allowed for disentangling the tem-
poral development of the different effects. Specifically, tem-
poral analyses of the mouse movement direction revealed that
the congruency sequence effect set in after the Simon effect—
a finding that allowed for disentangling different theoretical
accounts of the cognitive processes underlying action control.

In all three example experiments, participants had to click
on a start button in the bottom center of the screen to start the
trial (to align the starting position of the cursor across trials),
but beyond this, the procedures differed substantially. In the
experiment by Koop and Johnson (2013), the stimuli appeared
immediately after the click on the start button, and participants
could indicate their response by clicking on one of the two
buttons. Participants did not receive any specific instructions
about how to move the mouse. In the experiment by Freeman
and Ambady (2009), participants were explicitly encouraged
to initiate their movement early in the trial, and a warning
message was displayed if the time for movement initiation
exceeded a predefined threshold. In the experiment by
Scherbaum et al. (2010), participants had to move the mouse
upward at the beginning of the trial for the stimulus to be
displayed, and they could indicate their response merely by
moving the cursor onto the corresponding button (no click
was required). Evidently, these three studies varied consider-
ably with regard to their methodological setup, with three
different starting procedures and two different response indi-
cation procedures—further hardware- and software-related
factors not even considered (e.g., the cursor speed settings or
computer screen resolution).

The methodological diversity in these exemplar studies il-
lustrates that researchers face a number of design choices
when creating mouse-tracking experiments, for which there
are no empirically based recommendations. These choices
include the examples mentioned above, such as the variations
in starting procedure and type of response indication, but also
choices pertaining to the screen layout as well as hard- and
software settings. Given the relative novelty of the method, to
date there are almost no empirical investigations of how de-
sign factors affect mouse-tracking data, but some of their po-
tential implications have previously been discussed. Hehman,
Stolier, and Freeman (2015) and Fischer and Hartmann (2014)
provided some recommendations for the basic setup of
mouse-tracking studies. Both suggested that researchers
should implement measures that increase the likelihood of
participants initializing their mouse movement early in the
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trial, to ensure that cognitive processing takes place while
participants are moving the mouse, and not beforehand.
Fischer and Hartmann additionally recommended reducing
the cursor speed to better capture cognitive effects in the
trajectory measures. Importantly, Hehman et al. (2015) noted
that “these approaches have not been empirically validated,
and instead are derived from our previous experience” (p.
388).

In the, to date, only published empirical investigation of the
effects of a specific design factor on mouse-tracking data,
Scherbaum and Kieslich (2018) examined two different
starting procedures. They compared data from the previously
described experiment by Scherbaum et al. (2010) that had
used a dynamic starting procedure (i.e., a procedure in which
participants have to move the mouse upward for the stimulus
to be displayed) to those from a new experiment that replicat-
ed the same study using a different starting procedure, in
which the stimulus was presented after a short, fixed delay.
They found that the cognitive effects on trajectory curvature
were comparable for both starting procedures. However, the
dynamic starting procedure led to stronger, more distinguish-
able effects in the temporal analyses of mouse movement di-
rection. While this study provided a first indication that design
factors may play an important role in mouse-tracking studies,
it focused only on two variations of a single design factor (i.e.,
the starting procedure). Potential effects of other starting pro-
cedures and the broad range of further design factors still
remain unexplored.

The goal of the present study was therefore to systemati-
cally investigate the influence of a set of design factors that
commonly vary between mouse-tracking studies. For this pur-
pose, we used different variations of a classic and simple
mouse-tracking paradigm that we describe in the following
section. In addition, we provide researchers with open-
source implementations for all the methodological setups
and analyses that we report. These can be run using free and
cross-platform software (Kieslich & Henninger, 2017) and are
available online at https://osf.io/xdp7a/. For the analyses of
our mouse-tracking data, we focused on a set of traditional
mouse-tracking analyses (Freeman & Ambady, 2010), as well
as a number of recently proposed graphical and spatial analy-
sis approaches (Wulff, Haslbeck, Kieslich, Henninger, &
Schulte-Mecklenbeck, in press). We provide all raw data and
analysis codes, so that researchers can both replicate our anal-
yses and apply them to their own data.

Overview of the experiments

For the purpose of assessing the effects of methodological
differences in mouse-tracking studies, we conducted three
experiments and manipulated a central design factor in each
experiment, while keeping the overall paradigm constant
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across experiments. We chose a classic paradigm for
semantic categorization that was first published by Dale
et al. (2007) and marked one of the early mouse-tracking
applications. In this experiment, participants classify exem-
plars as belonging to one of two categories. Specifically, they
are presented with the name of an animal that is either typical
for its response category (e.g., a lion for mammal) or atypical,
in that it shares features with both the correct and the com-
peting category (e.g., a whale, sharing features with both the
correct category mammal and the incorrect category fish).
The experiment by Dale and colleagues is in many ways
representative of a typical mouse-tracking experiment:
Participants repeatedly choose between two options, the stim-
uli are simple and relatively quick to process, and a central
factor (typicality) is varied between trials with a directed hy-
pothesis regarding its influence on mouse-tracking data. The
central cognitive effect of interest in this experiment is what
we will henceforth call the typicality effect. It denotes that
mouse trajectories deviate more toward the nonchosen option
for atypical than for typical exemplars (Dale et al., 2007). As
stated above, one design factor was varied between partici-
pants in each of the three experiments, implementing the most
common variations of this design factor. An overview of all
manipulations is given in Table 1. The different design factors
will be introduced in detail before we report each experiment.

For analyzing mouse trajectories, we focus on the most
frequently used analysis in previous mouse-tracking stud-
ies, which is the analysis of trajectory curvature (Freeman,
2018; Stillman et al., 2018). This analysis aims to quantify
the amount of response conflict that was present in a given
trial. The idea is that the more a participant tends toward
the nonchosen option in a trial, the more the mouse trajec-
tory deviates toward it. To quantify curvature, different
indices have been proposed that are highly correlated in
practice (Stillman et al., 2018). We will use the maximum
absolute deviation (MAD), as an easy-to-interpret and
commonly used measure in mouse-tracking (Freeman &
Ambady, 2010; Kieslich & Henninger, 2017; Koop &
Johnson, 2011). The MAD is defined as the signed maxi-
mum deviation of the trajectory from a direct path (straight
line, see Fig. 1) connecting the start and end positions of
the trajectory (with maximum deviations above the direct
line, i.e., in the direction of the nonchosen option, receiv-
ing a positive sign, deviations below, a negative sign). In
line with the typicality effect, MAD values should be
higher for atypical than for typical exemplars, and indeed
this finding was observed in a recent replication of the
experiment by Dale and colleagues (Kieslich &
Henninger, 2017). For the purpose of the present study,
we examined whether the typicality effect via MAD could
be found in the different methodological setups and wheth-
er particular design choices influenced the occurrence and
size of the typicality effect.
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Table 1. Overview of the experiments, including basic design choices and their manipulations
Experiment Response Indication Mouse Sensitivity Starting Procedure
Click vs. touch Default Static
2 Click Default vs. slow Static
3 Click Slow Static vs. rtmax vs.initmax vs. dynamic

Default = 50% cursor speed (of maximum speed) with acceleration enabled; Slow = 30% (Exp. 2)/40% (Exp. 3) cursor speed with acceleration disabled;
rtmax = static start with restricted total response time; initmax = static start with restricted initiation time

Aside from using mouse-tracking to assess response con-
flict via curvature analyses, many researchers have also used
mouse-tracking to distinguish between different classes of the-
oretical models (Freeman, 2018; Stillman et al., 2018). For
instance, mouse-tracking has been used to determine whether
dual-system or dynamic models are better in accordance with
the data in a particular task (Freeman & Dale, 2013). Dual-
system models, on the one hand, should produce a mixture of
straight trajectories (in which both systems agree) and so-
called change-of-mind trajectories, in which the initial re-
sponse (by System I) favors one of the options (and as a
consequence, the cursor approaches that option) that is later
overridden (by System II), and the other option is chosen. The
latter, change-of-mind response should produce large curva-
ture values, whereas the former should result in small curva-
ture values. Thus, across all trials, a bimodal distribution of
small and large curvature values would be expected. Dynamic
models, on the other hand, expect that both response options
will be simultaneously activated to varying degrees until one
of the options is chosen. In this case, a unimodal distribution
of continuously varying curvature indices is expected.
Therefore, researchers have conducted bimodality analyses
of curvature indices at the trial level, expecting to find a bi-
modal distribution if a dual-system model accounted for the
data, and a unimodal distribution for dynamic models
(Hehman et al., 2015). On the basis of a bimodality analysis,
the original study by Dale et al. (2007) provided support for
dynamic models in their mouse-tracking data, as trajectory
curvatures were classified as being unimodally distributed.

For the present experiments, we examined whether the dis-
tribution of curvature values is affected by the methodological
setup of the mouse-tracking study. If methodological choices
were to affect bimodality analyses, this would pose a general
challenge to mouse-tracking studies, because then the theoret-
ical implications of mouse trajectories would always have to
be interpreted relative to the specific design that was
employed. That is, if a bimodal distribution were observed
in one setup, whereas a unimodal distribution was observed
in another, this could imply that the setup directly influences
the underlying cognitive process. However, an alternative
(and in our view more plausible) interpretation would be that
the methodological setup changes how the (unaffected)

cognitive process is mapped onto the mouse movements.
For example, one factor might ensure a continuous mapping
of the complete process, while another factor might only cap-
ture parts of the process. In this way, it might miss early stages
of the decision process, or lead to a discontinuous mapping in
which the mouse movements are only periodically updated.

Instead of performing bimodality analyses, which are basi-
cally designed to answer the question of whether there are one
or two types of trajectories, it has recently been argued that
more fine-grained analyses are needed that can allow for in-
ferences about a variety of different trajectory shapes (Wulff et
al., in press; Wulff, Haslbeck, & Schulte-Mecklenbeck, 2019).
In this regard, one proposed procedure is the mapping of tra-
jectories onto trajectory prototypes. On the basis of their meta-
analysis of mouse- and hand-tracking studies, Wulff et al.
(2019) suggested that a set of a few prototypical movement
trajectories may account for the majority of trajectories in
many mouse-tracking studies. To examine whether the meth-
odological setup promotes the occurrence of different trajec-
tory types, we will supplement our analyses using this recently
proposed prototype-mapping method (details on the method
are given in the Results section of Exp. 1).

Experiment 1

In the first experiment, we examined the effect that the re-
sponse indication procedure has on mouse-tracking data. For
this analysis, we experimentally varied whether participants
had to click on a response button to indicate their response
(click condition) or whether they could simply move the
mouse cursor into the area of the response button, with no
click required (touch condition). Both the click procedure
(e.g., Dale et al., 2007; Freeman et al., 2008; Koop &
Johnson, 2013; Spivey et al., 2005) and the touch procedure
(e.g., Frisch et al., 2015; Huette & McMurray, 2010;
Scherbaum et al., 2010) are commonly employed in the liter-
ature. Despite substantial variation in the response indication
procedures in previous studies, how the type of response in-
dication affects mouse-tracking data remains an open
question.
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As a direct methodological consequence of the procedure,
the click condition gives participants the opportunity to move
the cursor onto a response button, hover there, and then either
click on it or decide to move all the way to the other option.
Thus, the click condition allows participants to produce ex-
treme mouse trajectories with switches from one option to the
other. The occurrence of these movements has recently been
demonstrated in a number of empirical studies, and they have
served as indicators of changes of mind (Freeman, 2014;
Szaszi, Palfi, Szollosi, Kieslich, & Aczel, 2018; Wulff et al.,
2019). In the touch condition, changes of mind could theoret-
ically be captured if participants hovered below rather than on
top of a response button before switching to the other option,
but overall, the touch condition renders the occurrence of
these extreme movement types much less likely. As a conse-
quence, larger curvature indices would be expected for the
click than for the touch condition, and particularly so for trials
in which greater response conflict is expected. This, in turn,
would lead to larger effects of the typicality manipulation in
the click condition. However, if mouse trajectories were more
in line with the assumption of continuously curved mouse
trajectories, the response indication procedure should be less
relevant for discrete mouse-tracking measures such as curva-
ture indices. In this case, the touch condition might even be
better at capturing cognitive effects in mouse movements, as it
allows participants to indicate their response more smoothly
by removing the additional motor process of clicking.

Method

Procedure and materials The experiment was conducted at the
University of Mannheim, Germany. After providing written
informed consent and answering demographic questions, par-
ticipants first worked on an unrelated experiment that was
followed by the experiment currently under investigation.
Participants received partial course credit for completing the
experiment.

The basic setup and procedures followed those of
Experiment 1 from Dale et al. (2007). In each trial, partici-
pants were asked to classify an animal (presented as a written
word, e.g., “whale”) as belonging to one of two classes (e.g.,
“mammal” vs. “fish”). The stimulus material included the
same 13 typical and six atypical animals and their correspond-
ing response categories that were used by Dale and colleagues
in Experiment 1 (all materials were translated into German).

At the beginning of the experiment, participants were ran-
domly assigned to one of two experimental conditions (re-
sponse indication via click vs. touch). Participants received a
short set of instructions that explained the task to them, in-
cluding information about the response indication procedure.
Afterward, participants worked on three practice trials, follow-
ed by another set of short instructions summarizing the task.
Then, participants classified the 19 actual stimuli, which were
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presented in random order. At the end of the experiment, par-
ticipants’ handedness was assessed via the Edinburgh
Handedness Inventory (EHI; Oldfield, 1971, as implemented
by Kieslich & Henninger, 2017).

During each trial, a blank screen was first presented for
1,000 ms, followed by the presentation of the two response
categories for 2,000 ms in the top-left and top-right corners of
the screen (the order of the categories was randomized at the
trial level). Next, a start button appeared in the bottom center
of the screen, which participants had to click for the animal
stimulus to be immediately presented (see Fig. 1 for the layout
of the decision screen). After the click on the start button, the
mouse cursor was reset to the exact center of the start button,
the stimulus was presented 85 pixels (px) above it, and record-
ing of the mouse movements commenced. Depending on the
experimental condition, participants could then indicate their
response by clicking on the corresponding response button or
by touching it (in this case, the response was immediately
recorded as soon as one of the button areas was entered with
the cursor).

The experiment was created in OpenSesame (Mathot,
Schreij, & Theeuwes, 2012). Mouse cursor movements were
recorded every 10 ms using the mousetrap plugin (Kieslich &
Henninger, 2017). The experiment was conducted full-screen
at a resolution of 1,680 x 1,050 px on laboratory computers
running Windows 7. The mouse sensitivity settings were left
at the system defaults (cursor speed at 50% of maximum
speed, with acceleration enabled).

Participants To determine the desired sample size, we con-
ducted a power analysis using G¥Power 3.1.9 (Faul,
Erdfelder, Buchner, & Lang, 2009). Across all experiments,
we aimed to ensure that the power to detect a typicality effect
of medium size (d, = 0.5) was at least .95 (with a = .05, two-
tailed) within each experimental condition. This resulted in a
desired sample size of 54 participants per condition. We there-
fore recruited a total of 108 participants to complete the ex-
periment (85 female, 23 male; between 18 and 38 years of age,
M = 22.0 years, SD = 3.7). The majority (81 participants)
indicated a preference for the right hand (EHI score > 60),
and another six participants indicated a preference for the left
hand (EHI score < — 60); the remaining 21 participants indi-
cated no strong preference.

Results

We focused on a set of typical analyses that are commonly
performed in mouse-tracking studies. As such, we compared
trajectory curvatures and trajectory shapes, using both tradi-
tional analyses at the aggregate level (Freeman & Ambady,
2010) and newly proposed analysis procedures at the trial
level (Wulff et al., in press). Analyses were performed in R
(R Core Team, 2018) using the mousetrap R package
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Exp. 1: click Exp. 1: touch

Exp. 2: default Exp. 2: slow
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Fig. 2 Aggregate mouse trajectories for Experiments 1 and 2. All individual trajectories were flipped to the left, time-normalized, and aggregated

separately per typicality and experimental condition

(Kieslich & Henninger, 2017; Kieslich, Henninger, Wulff,
Haslbeck, & Schulte-Mecklenbeck, in press). The raw data,
analysis scripts, and results (including the supplementary
analyses) for this and all following experiments are openly
available from https://osf.io/xdp7a/.

Correctness Before the mouse-tracking analyses, we com-
pared the percentages of correctly answered trials between
the two design conditions. The numbers of correctly answered
trials did not differ significantly between experimental condi-
tions (93.5% correct answers in the click condition, 93.1% in
the touch condition), Xz(l) =0.16,p = 693.1 Following Dale
et al. (2007), only correctly answered trials were included in
the following analyses.

Aggregate trajectory curvature Next we performed a set of
analyses focusing on the aggregate trajectory curvature. For
this, we flipped all trajectories that ended on the right response
option to the left. To visually inspect the shape of the aggre-
gate trajectories, we followed the typical mouse-tracking anal-
ysis procedures; that is, we performed time-normalization so
that each trajectory would be represented by the same number
of temporally equidistant points (101, following Spivey et al.,
2005). Then we aggregated the trajectories per typicality con-
dition, first within and then across participants, and separately
for the click and touch conditions. The resulting aggregate
trajectories are displayed in Fig. 2. As expected, the aggregate
trajectories deviated more toward the nonchosen option for
atypical than for typical exemplars in both experimental con-
ditions. However, this difference was considerably larger in
the click condition.

To statistically test these differences in aggregate trajectory
curvature, we computed the MAD for each trajectory (see Fig.
1; Freeman & Ambady, 2010; Kieslich & Henninger, 2017,
Koop & Johnson, 2011). Following common procedures in
mouse-tracking studies, the MAD values were aggregated per

! This result was replicated in a generalized linear mixed model at the trial
level, using a binomial link function and including a random intercept per
participant (see the complete analyses online).

typicality condition separately for each participant. The mean
MAD values for atypical and typical exemplars are reported in
Table 2, separately for all experimental conditions and
experiments.

A repeated measures analysis of variance (ANOVA) using
the aggregated MAD values per participant with the within-
subjects factor typicality (atypical vs. typical) and the between-
subjects factor response indication procedure (click vs. touch)
revealed a significant main effect of typicality, F(1, 106) =
25.96, p < .001, 77p2 =.20, 90% CI [0.09, 0.30]. In both the click
and touch conditions, MAD values were significantly higher for
atypical than for typical exemplars (Table 2). In addition, we
observed a significant main effect of the response indication
procedure, F(1, 106) = 46.88, p < .001, np2 = .31, 90% CI
[0.19, 0.41], with higher MAD values in the click condition.
Finally, there was a significant interaction of typicality and re-
sponse indication procedure, F(1, 106) = 12.30, p < .001, np2 =
.10, 90% CI [0.03, 0.20], with a larger typicality effect in the
click (d, = 0.61) than in the touch (d, = 0.36) condition (Fig. 3).

Distribution of trajectory shapes To examine the influence of
the response indication procedure on trajectory shapes, we
first analyzed the bimodality of the distribution of the MAD
values at the trial level, following the typical analysis proce-
dures reported in previous mouse-tracking studies (Freeman
& Ambady, 2009, 2010; Freeman & Dale, 2013; Spivey et al.,
2005). That is, we standardized the MAD values per partici-
pant and then computed the bimodality coefficient separately
for atypical and typical trials in each experimental condition.
As can be seen in Table 2, both bimodality coefficients in the
click condition were larger than .555, which—on the basis of
simulation studies—is used as a cutoff for assuming a bimodal
distribution (see Freeman & Ambady, 2010; Freeman & Dale,
2013). However, in the touch condition, both bimodality co-
efficients were smaller than .555, which is taken as evidence
for a unimodal distribution.

Instead of performing bimodality analyses that are de-
signed to answer the question of whether there are one or
two different types of trajectories, it has recently been argued
that mouse-tracking researchers should perform more fine-
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Table 2.

comparison of the atypical and typical conditions)

Descriptive statistics for maximum absolute deviation (MAD) values (in pixels) per typicality condition, and paired ¢ test results (for a

Experiment Condition N Typical Atypical t Test
M SD BC M SD BC t P d,

1 Click 53 142.7 111.5 .632 287.5 237.0 .641 443 <.001 0.61
1 Touch 55 52.2 78.3 442 79.0 91.6 .500 2.69 .009 0.36
2 Default 59 157.8 158.8 .558 283.4 225.7 .576 5.49 <.001 0.71
2 Slow 59 73.4 113.1 573 150.9 141.2 .593 4.52 <.001 0.59
3 Static 59 185.2 1344 .520 269.7 172.7 .548 4.18 <.001 0.54
3 Rtmax 60 189.8 150.8 .536 301.5 197.8 501 432 <.001 0.56
3 Initmax 66 304.8 140.7 510 470.9 203.2 473 7.39 <.001 091
3 Dynamic 60 297.0 111.6 .560 364.1 154.0 .508 395 <.001 0.51

MAD values were first aggregated per participant and typicality condition. BC = bimodality coefficient, based on the per-participant standardized MAD

values

grained analyses to make inferences about the presence or
absence of different types of trajectory shapes (Wulff et al.,
in press; Wulff et al., 2019). One such analysis is a graphical
approach that plots a (smoothed) heat map of all trajectories
separately for each experimental condition (Kieslich et al., in
press). The resulting plots for each experimental condition are
displayed in Fig. 4. For the click condition, the plot indeed
suggests a mix of primarily straight trajectories and a number
of triangular trajectories that first move to the nonchosen op-
tion and then horizontally head to the chosen option. In con-
trast, the latter type of trajectories seems to be almost absent in
the touch condition, which consists of mostly straight and
slightly curved trajectories.

To quantify and statistically test for differences in the fre-
quency of trajectory types between conditions, a recently pro-
posed procedure has been mapping of the trajectories onto
trajectory prototypes (Wulff et al., in press). The prototypes
used in the present study are depicted in Fig. 5. They are based
on the prototype trajectories proposed in the meta-analysis by
Waulff et al. (2019). They include straight trajectories that
move directly from the start button to the chosen option,
curved trajectories, continuous change-of-mind (cCoM) tra-
jectories that exhibit a curved attraction toward the nonchosen
option, discrete change-of-mind (dCoM) trajectories that first
move straight to the nonchosen option and from there move
horizontally to the chosen option, and double change-of-mind
(dCoM?2) trajectories that first move straight to the chosen
option and then horizontally switch back and forth between
the nonchosen and chosen options.?

2 Other types of trajectories are possible, of course. However, we argue, on the
basis of the plots of individual trajectories per assigned prototype (Figs. 6 and
12), that this set of prototypes seems to describe the vast majority of trajecto-
ries in the present experiments well. See footnote 14 for a reanalysis of
Experiment 3 in which a subset of trajectories seemed to be accounted for
better by additional prototypes.
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To assign each trajectory to a prototype, the following anal-
ysis steps are employed (following Wulff et al., in press): First,
trajectories are spatially normalized so that each trajectory is
described by 20 points, ensuring that the spatial distance be-
tween adjacent points remains constant across the trajectory
(in contrast to time-normalization, it is desirable to use fewer
points to put an emphasis on the main shape of the trajectory).
Then, the trajectory prototypes are spatially transformed so
that their start and end points match the mean start and end
points of the trajectories (separately per experimental condi-
tion). Next, the spatial distance between each prototype and
trajectory is computed (using the Euclidian distance) and each
trajectory is assigned to the prototype with the smallest
distance.

The results of the prototype assignments and the relative
frequency of each prototype classification are displayed in

4004 »
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<C 2001
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Fig. 3 Mean of maximum absolute deviation values (MAD, in pixels) for
Experiment 1, shown separately per typicality and experimental
condition. Error bars indicate one SEM
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Exp. 2: default
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Fig. 4 Smoothed heat maps of the individual trajectories in Experiments 1 and 2, shown separately per experimental condition. Darker colors indicate

higher density

Fig. 6. The majority of individual trajectories seem to be ex-
plained well by the present set of prototypes. The relative
frequencies of prototypes differed significantly between the
experimental conditions, x*(4) = 83.79, p < .001. Whereas
most trajectories were classified as straight in the touch con-
dition, there were relatively fewer straight classifications in
the click condition. In addition, a considerably greater per-
centage of trajectories were classified as discrete changes of
mind (both dCoM and dCoM2) in the click condition.

To test whether the different trajectory types explained the
larger typicality effects on curvature in the click condition, we
performed an ordinal mixed regression at the trial level.
Assuming that more extreme deviations of a prototype in the
direction of the nonchosen option indicated greater amounts
of response conflict, we treated the assigned prototype as an
ordinal variable (straight < curved < cCoM < dCoM <
dCoM2). We included a random intercept per participant, as
well as the effect-coded predictors typicality (atypical = .5,
typical = — .5), experimental condition (click = .5, touch = —
.5), and their interaction. Atypical trials led to a significantly
higher probability of more extreme trajectories (z = 4.23, p <
.001), as did the click condition (z=15.70, p <.001). Especially
in the click condition, atypical trials also led to more extreme
trajectories, as indicated by a significant interaction (z = 2.39,
p =.017). The relative frequencies of prototype classifications
per typicality and experimental condition are displayed in
Table 3.

Discussion

In the first experiment, we examined the influence of the re-
sponse indication procedure on mouse-tracking data. When
participants indicated their response by clicking on the corre-
sponding option, the typicality effect was significantly larger
than when they could indicate their response by simply mov-
ing the cursor onto the button. This larger effect was related to

straight curved

cCoM

more extreme trajectory movements at the trial level—specif-
ically, more so-called discrete change-of-mind trajectories,
which first move straight to the nonchosen option before head-
ing horizontally to the chosen option. In the touch condition,
on the contrary, the majority of trials was either straight or
curved. This was also reflected in the bimodality coefficients,
which indicated evidence for bimodality in the click condition
and for unimodality in the touch condition.

Importantly, previous mouse-tracking studies have used
the shape of trajectories (assessed often via bimodality
analyses) to draw inferences about whether single or dual
decision processes are at work in a given decision situation
(see the reviews by Freeman, 2018; Stillman et al., 2018).
This experiment demonstrated that using exactly the same
task and simply changing a theoretically peripheral design
aspect (the response indication procedure) can lead to ei-
ther a bimodal distribution of curvature values, which
could be interpreted as evidence for a dual-system model,
or a unimodal distribution, which could be interpreted as
evidence for a dynamic model. Although it is possible that
changing a design aspect would affect the underlying de-
cision process, we deem it more plausible that the decision
process remained unaffected by peripheral changes in the
methodological setup, and instead the design factor influ-
enced the mapping of the decision process onto the mouse
movement. However, this assumption cannot be tested di-
rectly (since the cursor movements always reflect both cog-
nitive and motor components); hence, a change in the cog-
nitive process cannot be ruled out solely on the basis of
mouse-tracking data. One possible indicator for changes in
the cognitive process could be changes at the choice
level—for instance, if participants were to make more er-
rors in one of the design conditions. In the present exper-
iment, correctness did not differ significantly between the
conditions, which might serve as a first, tentative indicator
that the decision process was unaffected.

dCoM dCoM2

y coordinate

x coordinate

Fig.5 Set of prototype trajectories used in the present analyses (cCoM = continuous change of mind, dCoM = discrete change of mind, dCoM2 = double

change of mind)
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Fig. 6 Individual trajectories per assigned prototype, shown separately
for the different experimental conditions in Experiments 1 and 2. For each
prototype, the relative frequency of classifications per experimental

In sum, the findings from Experiment 1 strongly suggest
that aspects of the study design have to be carefully considered
when interpreting mouse-tracking data. This should be partic-
ularly important with regard to potential effects of design fac-
tors that frequently vary between mouse-tracking studies.
Extending the above-presented findings on the effects of the
type of response indication, the following experiments are
devoted to two further central design factors: the mouse sen-
sitivity settings and starting procedure.

Experiment 2

In the second experiment, we focused on the design factor
mouse sensitivity. This setting includes both the cursor speed
and acceleration, which have varied considerably in previous
studies, with some studies leaving the settings at the system
defaults (which under Windows 7/8 is medium speed with
acceleration enabled; e.g., Kieslich & Hilbig, 2014; Szaszi
etal., 2018), and other studies deliberately reducing the cursor
speed and disabling cursor acceleration (e.g., Dshemuchadse
et al., 2013; Frisch et al., 2015; Scherbaum et al., 2010). For
this reason, we compared these two commonly used setups, a
default condition (medium speed, acceleration enabled) and a
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condition is displayed. Due to rounding, percentages may not sum to
exactly 100% for some conditions

slow condition (reduced speed, acceleration disabled). One
challenging aspect of this design factor is that mouse sensitiv-
ity settings have rarely been reported explicitly in previous
studies (Fischer & Hartmann, 2014).

With regard to the mouse sensitivity settings, Fischer and
Hartmann (2014) suggested that reducing the cursor speed and
turning off acceleration is preferable for capturing cognitive
effects in mouse trajectories. They argued that these settings
ensure a linear relationship between hand and cursor move-
ment, such that participants move the hand smoothly across a
greater distance. In contrast, under the default settings, small
movements of the wrist might already be enough to move the
cursor to indicate a response, due to enabled acceleration.
Although we, in principle, agree with these recommendations,
the actual empirical consequences of different mouse sensitiv-
ity settings remain unknown. It might, indeed, be the case that,
as Fischer and Hartmann suggest, a slow condition is better for
capturing the cognitive effects—which would lead, for exam-
ple, to a larger typicality effect—but this has never been

3 The authors have to admit that this is also the case for some of their own
studies—for example, Kieslich and Hilbig (2014), which used medium speed
(50% of maximum speed) with acceleration enabled, and Scherbaum et al.
(2010), which used a reduced speed (25%) with acceleration disabled.
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Table 3. Percentages of trajectories per assigned prototype in each
experimental condition, shown separately for typical/atypical exemplars

Experiment Condition Assigned Prototype
Straight Curved cCoM dCoM dCoM2

1 Click 73/60 12/11 710  7/16 1/4
1 Touch 84/81 10/12  5/4 2/3 0/0
2 Default 72/61 12/10  6/10  9/16  1/3
2 Slow 80/67 11715 512 3/5 0/2
3 Static 62/49 19/20  12/18 5/10  2/4
3 Rtmax 64/50 1515 13/18 714 13
3 Initmax 3924 33/27 1417 12/26 2/6
3 Dynamic 2826  53/45  13/15 6/10  1/4

Due to rounding, percentages may not sum to exactly 100% for some
conditions. cCoM = continuous change of mind, dCoM = discrete change
of mind, dCoM2 = double change of mind

demonstrated. Alternatively, it could also be that the default
condition leads to larger average effects by exaggerating small
hand movements—although Freeman and Ambady (2010)
noted that extremely high speeds might lead to problems, in
that the cursor movements might become ballistic and jerky.
By comparing a default and a slow cursor setting in this study,
we hoped to provide a first empirical basis for researchers to
make an informed decision about which mouse sensitivity
setting is most suitable to their research question.

Method

Procedure and materials The general experimental procedure
and all materials were identical to those in Experiment 1, and
the study was again conducted at the University of Mannheim,
Germany. The setup of the default condition in Experiment 2
was identical to the click condition of Experiment 1.* For the
slow condition, the only change was that cursor acceleration
was disabled and the cursor speed was reduced from 50% to
30% (of the maximum speed). Because the mouse sensitivity
settings cannot be changed from within OpenSesame, we used
a simple program to efficiently change the mouse sensitivity
settings in Windows 7, the Mouse Acceleration Toggler.”

Participants After providing written informed consent, partic-
ipants were randomly assigned to the default or the slow

4 One minor change was that the cursor was not reset to the exact center of the
start button (x = 0.0 px, y = 85.0 px) after participants clicked on it. However,
empirically, the average start position was close to this center (x: M =—0.2 px,
SD = 45.6 px; y: M = 103.6 px, SD = 32.5 px), and the start positions of all
trajectories were aligned statistically during preprocessing.

> The program can be obtained for free from http://skwire.dcmembers.com/
fp/?page=mat. The settings for the default condition were “accel = on speed =
107, and the settings for the slow condition were “accel = off speed = 6”.

condition and then completed the experiment (which was
followed by another experiment). At the end of the study,
participants provided demographic information and complet-
ed the EHI. They received partial course credit for their par-
ticipation. On the basis of the power analysis reported in
Experiment 1, we intended to ensure a minimum number of
54 participants per experimental condition. A total of 118
participants completed the experiment (88 female, 30 male;
between 18 and 35 years of age, M = 22.7, SD = 3.3). The
majority (91 participants) indicated a preference for the right
hand, whereas seven participants indicated a preference for the
left hand; the remaining 20 participants indicated no strong
preference.

Results

The analyses followed those of Experiment 1. In addition, we
conducted a manipulation check to examine whether the cur-
sor sensitivity settings affected cursor speed and acceleration.

Correctness The numbers of correctly answered trials did not
differ significantly between the experimental conditions
(93.5% correct answers in the default condition, 94.5% in
the slow condition), Xz(l) =095 p= 3298 Again, only
correctly answered trials were included in the analyses.

Manipulation check To determine whether participants actu-
ally moved the cursor faster in the default than in the slow
condition, we computed the maximum velocity (in px/ms) and
acceleration (in px/ms?) for every trial. We then averaged the
values per participant and compared them between conditions.
As expected, the maximum velocity was considerably larger
in the default condition (M = 10.0, SD = 2.2) than in the slow
condition (M = 4.3, SD = 1.1), /(116) = 18.09, p < .001, d =
3.33, 95% CI [2.77, 3.89]. Similarly, the maximum accelera-
tion was also larger in the default (M = 0.54, SD = 0.12) than
in the slow condition (M = 0.22, SD = 0.06), #(116) = 18.67,
p<.001,d=3.44,95% CI [2.86, 4.00].

Aggregate trajectory curvature To get a first impression of the
effect of the cursor sensitivity manipulation on trajectory cur-
vature, we inspected the aggregate time-normalized trajecto-
ries (Fig. 2). In both experimental conditions, the aggregate
trajectories deviated more toward the nonchosen option for
atypical than for typical exemplars. The size of this difference
seemed to be slightly larger in the default than in the slow
condition.

A repeated measures ANOVA using the aggregated MAD
values per participant, with the within-subjects factor

® This result was replicated in a generalized linear mixed model at the trial
level, using a binomial link function and including a random intercept per
participant (see the complete analyses online).
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Fig. 7 Mean of maximum absolute deviation values (MAD, in pixels) for
Experiment 2, shown separately per typicality and experimental
condition. Error bars indicate one SEM

typicality (atypical vs. typical) and the between-subjects factor
mouse sensitivity settings (default vs. slow), revealed a signif-
icant main effect of typicality, F(1, 116) = 50.49, p < .001, np2
=.30,90% CI[0.19, 0.40], with higher MAD values for atyp-
ical than for typical exemplars. The effect of typicality was
significant in both conditions (Table 2). In addition, we found
a significant main effect of the mouse sensitivity settings, F(1,
116) = 16.37, p < .001, np2 =.12,90% CI [0.04, 0.22], with
higher MAD values in the default condition. There was, how-
ever, no significant interaction of typicality and cursor sensi-
tivity, F(1, 116) = 2.82, p = .096, np2 =.02, 90% CI [0.00,
0.09], although the typicality effect was descriptively slightly
larger in the default (d, = 0.71) than in the slow (d, = 0.59)
condition (Fig. 7).

Distribution of trajectory shapes As a first analysis of trajec-
tory shapes, we again computed the bimodality coefficients
for the per-participant standardized MAD values, separately
for each typicality and experimental condition. In both the
default and the slow condition, the coefficients were larger
than .555, indicating a bimodal distribution (Table 2). The
smoothed heat maps (Fig. 4) indicated that in both conditions
there were a considerable number of straight trajectories, but
also a number of change-of-mind trajectories in which the
cursor was moved all the way to the nonchosen option before
moving to the chosen option. However, the latter type of tra-
jectories seemed to occur less frequently in the slow condition.

To quantify and statistically test for differences in the fre-
quency of trajectory types between conditions, we mapped
trajectories on the set of prototypes used in Experiment 1.

@ Springer

The majority of the individual trajectories was again explained
well by the prototypes (Fig. 6). The relative frequencies of
prototypes differed significantly between experimental condi-
tions, x*(4) = 49.66, p < .001. The main difference between
conditions was that there were relatively more straight trajec-
tories in the slow condition, and more dCoM trajectories in the
default condition.

We predicted the trajectory type in an ordinal mixed regres-
sion, including a random intercept per participant and the pre-
dictors typicality (atypical = .5, typical = — .5), experimental
condition (default = .5, slow = — .5), and their interaction.
Atypical trials led to a significantly higher probability of more
extreme trajectories (z = 7.13, p < .001), as did the default
condition (z = 2.80, p = .005). The interaction between typi-
cality and condition was not significant (z =—0.24, p = .809).
The relative frequencies of prototype classifications per typi-
cality condition are provided in Table 3.

Stability of effects across experiments The default condition
in Experiment 2 was virtually identical with the click condi-
tion in Experiment 1. Therefore, we performed a set of anal-
yses comparing these two conditions in order to replicate the
typicality effect and examine its stability.

First, we performed a repeated measures ANOVA on MAD
values that were averaged per participant. We included the
within-subjects factor typicality and the between-subjects fac-
tor experiment. As was theoretically expected, a significant
main effect of typicality emerged, F(1, 110) = 47.34, p <
.001, npz = .30, 90% CI [0.19, 0.40], with larger values in
atypical trials (Table 2). With regard to the differences be-
tween experiments, we found neither a main effect of experi-
ment, F(1, 110) = 0.03, p = .856, np2 = .00, 90% CI [0.00,
0.02], nor an interaction between experiment and typicality,
F(1, 110) = 0.24, p = .624, np2 =.00, 90% CI [0.00, 0.04].

The relative frequencies of the classified prototypes did not
differ significantly between experiments, x*(4) = 1.01, p =
.908. In an ordinal mixed regression predicting the assigned
prototype, with typicality (atypical = .5, typical =—.5), exper-
iment (Exp. 1 =.5, Exp. 2 = —.5), and their interaction, we
observed a significant effect of the typicality predictor (z =
6.85, p < .001). However, there was no significant effect of
experiment (z = 0.10, p = .923), nor was there a significant
interaction between typicality and experiment (z = 0.37, p =
[713).

Discussion

In this experiment, we examined the influence of the mouse
sensitivity settings on mouse-tracking data. We compared a
condition in which these settings were left at the system de-
fault under Windows 7 (50% of maximum speed, acceleration
enabled) with a slow condition in which the acceleration was
disabled and cursor speed reduced (to 30%). The default
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condition generally led to greater trajectory curvature (on av-
erage), which seemed to be driven by a higher percentage of
trajectories with extreme movement patterns. However, there
was no significant difference in the sizes of the typicality
effect between conditions.

The higher percentage of more extreme movement patterns
in the default condition is probably related in particular to the
activated acceleration setting, which amplified even small
movements toward one of the options. Interestingly, although
there was a relatively higher occurrence of these extreme
movement patterns for atypical than for typical exemplars, this
did not lead to a significant interaction between mouse sensi-
tivity settings and typicality, because there was also an in-
crease in more extreme movement types for atypical exem-
plars in the slow condition. At the same time, we also found no
evidence that a slow condition increases cognitive effects in
mouse-tracking data, as had been argued by Fischer and
Hartmann (2014).

The second experiment also provided the possibility for an
internal replication of the typicality effect across experiments,
as the default condition was virtually identical to the click
condition of Experiment 1. Across all analyses, there were
no significant differences between the experiments, pointing
to the stability of mouse-tracking findings across studies—if
the methodological setup is held constant.

The findings from this experiment provide a first empirical
insight into the effects of mouse sensitivity settings on mouse-
tracking data. Although the default setting increased the oc-
currence of more extreme mouse movement patterns, these
did not affect the strength of cognitive effects reflected in
mouse movements, and both settings ultimately produced
similar results. However, the investigated conditions only re-
flect two of the most common settings in the literature, and do
not represent an exhaustive sample. Some studies have previ-
ously used an even greater reduction in speed (e.g., Huette &
McMurray, 2010), and it is possible that this could produce
stronger effects than the slow condition herein (or different
effects altogether). In addition, acceleration and speed were
only varied jointly in this experiment, and consequently their
relative impacts on the observed effects are not yet clear.
Finally, we could only examine the mouse sensitivity settings
for one specific type of response indication and starting pro-
cedure. It could be the case that mouse sensitivity settings
become more important in other setups—for example, for
starting procedures that enforce an early movement
initiation—a topic we will return to in the next experiment,
which compared different types of starting procedures.

Experiment 3

In this experiment we investigated the influence of the starting
procedure on mouse-tracking data. The starting procedure

concerns the instructions and settings regarding how partici-
pants should initiate their mouse movement and how this re-
lates to the stimulus presentation. A number of starting proce-
dures have been used in previous mouse-tracking studies, and
the most common ones will be compared within this experi-
ment. The first and most basic starting procedure we termed
static start. In this procedure, the stimulus is presented imme-
diately after participants have clicked on the start button, and
participants do not receive any instructions how and when to
initiate their mouse movements. This procedure has been
employed in a number of mouse-tracking studies (e.g.,
Kieslich & Hilbig, 2014; Koop, 2013; Koop & Johnson,
2013), including the original experiment by Dale et al. (2007).

Other mouse-tracking studies have modified the starting
procedure in order to ensure that participants initiate their
movements early in the trial, hoping to ensure that the com-
plete decision process will be reflected in the movement
(Fischer & Hartmann, 2014; Hehman et al., 2015;
Scherbaum & Kieslich, 2018). We implemented and tested
three such procedures in the following. A simple method
(termed rtmax) is to restrict the total time participants have
for giving a response in a trial (e.g., Duran et al., 2017;
Szaszi et al., 2018). This indirectly also encourages an early
movement initiation, because participants have to make their
choices quickly. A different, frequently employed procedure
(termed initmax here) uses a static procedure but explicitly
instructs participants to initiate their movement within a cer-
tain time limit in each trial, and presents a warning after a trial
if participants initiated their movement too slowly (see
Hehman et al., 2015, for a discussion; and Freeman &
Ambady, 2009, 2011; Papesh & Goldinger, 2012; Stolier &
Freeman, 2016; and Yu, Wang, Wang, & Bastin, 2012, for
exemplary applications). The fourth starting procedure that
we included methodologically ensured a movement initiation
even before stimulus presentation. In this dynamic starting
procedure, participants have to initiate an upward movement
for the stimulus to be displayed. This procedure has been
employed by a number of mouse-tracking studies (see
Scherbaum & Kieslich, 2018, for a discussion; and
Dshemuchadse et al., 2013; Frisch et al., 2015; Huette &
McMurray, 2010; and Scherbaum et al., 2010, for exemplary
applications).

Previous recommendations in the literature have stated that
starting procedures that ensure that participants initiate the
mouse movement early in the trial should help capture cogni-
tive effects in trajectories (Fischer & Hartmann, 2014;
Hehman et al., 2015). Specifically, encouraging participants
to start moving the mouse as early as possible may increase
the likelihood that important aspects of the decision process
are reflected in the movement, such as the initial response
tendency, varying activations of the competing options, or
changes of mind. If parts of these cognitive processes were
already completed before participants even started moving the
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mouse, these processes would not be captured in the trajecto-
ries. In the extreme case, a decision might already be complet-
ed before the movement is initiated, leading to a straight tra-
jectory. A straight trajectory in this case would not necessarily
indicate that no conflict was present during the decision pro-
cess, but rather that it occurred before movement initialization.
Applying this reasoning to the present experiment, this im-
plies that all starting procedures that ensure an early move-
ment initiation should lead to a larger typicality effect than a
static starting procedure. This should hold in particular for the
dynamic and the initmax starting procedures, which directly
aim at ensuring an early movement initiation.

So far, only one published study has empirically investigat-
ed the influence of different starting procedures on mouse-
tracking data (Scherbaum & Kieslich, 2018). This study
showed that a dynamic starting procedure did not lead to sig-
nificantly larger cognitive effects found in aggregate curvature
measures than did a static starting procedure in which the
stimulus was presented after a fixed, short delay. However, a
dynamic starting procedure did lead to larger cognitive effects
in temporal analyses that assessed how the cursor movement
direction was affected by different factors at a specific time
point. Although this study provides a first indication that the
starting procedure is an important design aspect of mouse-
tracking studies, it only involved a comparison of two condi-
tions across experiments (and, as a consequence, without ran-
dom assignment). In addition, it only considered two possible
starting procedures. Therefore, a study that experimentally
compares a larger set of commonly used starting procedures
is needed.

Method

Procedure and materials This experiment was again conduct-
ed at the University of Mannheim, Germany. After providing
written informed consent, participants were randomly
assigned to one of four starting conditions and completed
the experiment. At the end, participants provided demograph-
ic information and answered the EHI. After completing the
experiment, participants had the chance to win one of several
vouchers for local coffee shops (and other businesses, as well
as a voucher for a German soccer league game) or sweets.
The basic setup of all conditions was identical to the click
condition in Experiment 1, with the following modifications:
The stimulus (the animal name) was now presented 340 px
above the center of the start button, the cursor speed was
reduced (to 40%), and acceleration was disabled.” These
changes were introduced in order to ensure that the

7 The cursor sensitivity was again set via the Mouse Acceleration Toggler
(specific settings: “accel = off, speed = 8”). However, for six participants,
the settings accidentally were not activated (meaning that they remained at
the system default), so the data for these participants were discarded.
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participants in the dynamic and initmax conditions could ac-
quire the stimulus information during their upward movement
without stopping, which is facilitated if the stimulus is pre-
sented at a higher position and if the mouse cursor moves
slower. In addition, we increased the number of practice trials
to six, so that participants could better acquaint themselves
with the more complex starting procedures.

Apart from the starting procedure, which was manipulated
between participants (static vs. rtmax vs. initmax vs. dynam-
ic), all experimental conditions were identical. A schematic
representation of the trial structure for each starting procedure
is presented in Fig. 8. In the static condition, the stimulus was
presented immediately after participants clicked on the start
button, and participants did not receive any information about
movement initiation (as in the previous two experiments). The
rtmax condition was identical to this, but participants were
told that they would have to provide their answer within 2.5
s; if participants took longer than 2.5 s, the trial was aborted
and a reminder to answer within the time limit was presented.
The initmax condition was also identical to the static condi-
tion, with the addition that participants were told that they
would have to initiate an upward movement within 0.6 s; if
they exceeded this time limit, a warning message was
displayed (after participants had given their response) that
reminded them to initialize their upward movement within
the time limit.* The movement criterion for the dynamic pro-
cedure followed the setup by Frisch et al. (2015); that is,
participants needed to move the mouse 50 px upward for the
stimulus to be presented.’

Participants On the basis of the power analysis reported in
Experiment 1, we intended to ensure a minimum number of
54 participants per experimental condition. A total of 245
participants completed the experiment and were included in
the analysis. The sample comprised 162 women and 83 men,
and the participants were between 18 and 50 years old (M =
21.9, SD = 3.3). The majority (172 participants) indicated a
preference for the right hand, and 16 participants indicated a
preference for the left hand; the remaining 57 participants
indicated no strong preference.

Results

The analyses of Experiment 3 mostly followed those of the
previous experiments. However, a few additional analyses

8 To calculate the initiation time, we used the same upward movement crite-
rion as in the dynamic condition (an upward movement of 50 px). Regarding
the time limit, we initially used a time limit of 0.4 s for a set of six participants.
However, the participants reported that they were often not able to initiate their
mouse movement within that time period, so we increased the time limit to
0.6 s and discarded the data for these participants.

° Unlike Frisch et al. (2015), we did not impose a time limit for participants
performing this upward movement (in order to keep the setup as simple and
understandable as possible).
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Fig. 8 Schematic representation of the trial structure for each of the
starting procedure conditions in Experiment 3, each presented in a
separate row. The first column shows the screen containing the start
button, which was identical for all conditions. The second column
shows the screen that was immediately presented once a participant had

were conducted as manipulation checks. In addition, since the
experimental manipulation now involved more than two con-
ditions, we performed additional contrast analyses to trace
back potential effects of the starting procedure to specific con-
ditions. In these analyses, we used dummy-coding in which
the static starting procedure served as the baseline condition.

Correctness Across all trials, the numbers of correctly an-
swered trials differed significantly between experimental con-
ditions (static: 94.1%, rtmax: 89.1%, initmax: 89.7%,

clicked the start button. The (shortened) instructions for each starting
procedure are shown in red. The last column shows the layout of the
screen once the participant had moved the mouse cursor upward for 50
px, which was again identical for all conditions

dynamic: 93.6%), x*(3) = 29.93, p < .001. To contrast the
effects of the different conditions, we performed a generalized
linear mixed model at the trial level using a binomial link
function and including a random intercept per participant.
The starting condition was included as a predictor, using dum-
my coding with the static condition serving as the baseline.
The dynamic condition did not differ significantly from the
static condition (z = — 0.42, p = .673), whereas the initmax
condition led to significantly lower performance (z=—3.12, p
=.002). The rtmax condition also led to significantly lower
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performance (z = — 3.53, p < .001); however, when first ex-
cluding all trials in the rtmax condition that exceeded the time
limit (3.8% of trials, which were counted as incorrect in the
previous analysis, as participants did not provide an answer)
the performance in the rtmax condition (92.6%) no longer
differed significantly from that in the static condition (z = —
1.18, p = .237). Only correctly answered trials were included
in the following analyses."°

Manipulation check We analyzed a number of time-related
variables as a manipulation check of the starting proce-
dure. For each variable, we first averaged the values per
participant and then compared them between conditions.
The descriptive statistics of the different variables are
displayed in Table 4.

As a first variable, we computed the time it took partic-
ipants to move the mouse upward for 50 px (RTj,;).
Because the participants in the initmax condition were spe-
cifically instructed to initiate their movement within 0.6 s,
we expected that RT;,;; should be lower in the initmax than
in the static condition. The average RTj,; in the initmax
condition was considerably smaller than the instructed time
limit (although participants still exceeded the time limit on
12.4% of trials). RT;,; differed significantly in an ANOVA
between the different starting conditions, F(3, 241) =
13.64, p < .001, np2 = .15, 90% CI [0.08, 0.21]. Contrast
analyses revealed that RT;,; was significantly smaller in
the initmax than in the static condition, #241) = — 5.70,
p < .001. It was also significantly smaller in the rtmax
condition, #241) = — 2.05, p = .042, whereas it was not
significantly different from the static condition in the dy-
namic condition, #(241) = — 0.45, p = .651."

A similar but more traditional mouse-tracking variable
is the initiation time—that is, the time in the trial until any
movement was initiated. The initiation times also differed
significantly between conditions, F(3, 241) = 22.69, p <
.001, npz = .22, 90% CI [0.14, 0.29], with a shorter

10 Initially, we planned to exclude trials exceeding the movement initialization
time limit in the initmax condition. We noticed during pilot trials, however,
that meeting this criterion was challenging for some participants. Therefore,
we decided to slightly oversample the number of participants in this condition,
to be able to compensate for participants who would have to be excluded
because they did not initiate their movement in time on enough trials.
However, as previous studies using an initmax starting procedure (e.g.,
Freeman & Ambady, 2011) did not exclude trials exceeding the time limit,
we eventually decided to follow that procedure. All main results can be repli-
cated when excluding trials in the initmax condition on which the time limit
was not met, thereby excluding five participants for whom no correctly an-
swered trials remained in either typicality condition (see the complete analyses
online).

! Because some trials had extremely large RT;,; values, we repeated the
analyses using median instead of mean values per participant. The general
pattern was replicated. However, now the dynamic condition also had a sig-
nificantly shorter RT;,; than the static condition (see the complete analyses
online).

@ Springer

Table 4. Means (and SDs) of the per-participant aggregated timing
variables in Experiment 3, presented separately for each condition (in
milliseconds)

Condition RTnic Initiation Time RT

static 808.5 (324.1) 508.7 (215.6) 2,110.4 (654.1)
rtmax 650.1 (176.6) 437.3 (160.0) 1,521.6 (183.4)
initmax 377.4 (159.5) 243.1 (142.8) 1,471.7 (248.6)
dynamic 773.4 (752.2) 348.7 (233.2) 2,805.4 (1,199.8)

RT;p; = Time until cursor was moved 50 pixels upward

initiation time in the initmax than in the static condition,
#(241) = - 7.78, p < .001. The dynamic and rtmax condi-
tions also led to significantly shorter initiation times than
did the static condition, #241) = — 4.58, p < .001, and
#(241) = — 2.05, p = .042."2

With regard to the total response time (RT) in each trial, we
expected that the rtmax condition would lead to shorter RTs.
The starting procedure had a significant influence on the RT,
F(3, 241) = 49.61, p < .001, np2 = .38, 90% CI [0.30, 0.44].
Contrast analyses revealed that the rtmax condition indeed led
to shorter RTs than did the static condition, #241)=—4.63, p <
.001. RTs were also significantly shorter in the initmax than in
the static condition, #(241) =— 5.14, p < .001. In the dynamic
condition, the total RTs were significantly longer than in the
static condition, #(241) =547, p < .001."3 The overall longer
RTs in the dynamic condition make sense, because in this
condition the stimulus was only displayed after initiation of
the upward movement, and consequently, processing might
have started later. Interestingly, if we calculated the RT for
the dynamic condition based solely on the part of the trial after
the stimulus presentation (which is typically done in studies
that use a dynamic starting procedure; e.g., Dshemuchadse
et al., 2013; Frisch et al., 2015; Scherbaum et al., 2010), it
was on average (M =2,021.1 ms, SD = 671.1 ms) quite com-
parable to the total RT in the static condition.

Aggregate trajectory curvature To get a general impression
of the effect of the starting procedure on trajectory curva-
tures, we inspected the aggregate time-normalized trajecto-
ries (Fig. 9). In all experimental conditions, the aggregate
trajectories deviated more toward the nonchosen option for
atypical than for typical exemplars. The dynamic and
initmax conditions generally led to prolonged vertical up-
ward movements as compared to the static and rtmax

12 When repeating the analyses using median instead of mean values per
participant, the general pattern was replicated. However, now the rtmax con-
dition did not have a significantly shorter initiation time than the static
condition.

'3 The results pattern was comparable when using median instead of mean
values per participant.
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Fig.9 Aggregate mouse trajectories for Experiment 3. All individual trajectories were flipped to the left, time-normalized, and aggregated separately per

typicality and experimental condition

conditions. In addition, the typicality effect especially
seemed to be more pronounced in the initmax condition.

A repeated measures ANOVA using the per-participant ag-
gregated MAD values with the within-subjects factor typical-
ity (atypical vs. typical) and the between-subjects factor
starting procedure (static vs. rtmax vs. initmax vs. dynamic)
revealed a significant main effect of typicality, F(1, 241) =
97.72, p < .001, np2 =.29, 90% CI [0.21, 0.36], with higher
MAD values for atypical than for typical exemplars. The ef-
fect of typicality was significant in all four conditions
(Table 2).

In addition, we found a significant main effect of the
starting procedure, F(3, 241) = 18.67, p < .001, 77P2 =.19,
90% CI [0.11, 0.25]. Contrast analyses revealed that MAD
values were overall significantly higher in the initmax than
in the static condition, #(241) = 6.53, p < .001, as well as in
the dynamic than in the static condition, #241) = 4.10, p <
.001. The MAD values in the rtmax condition did not dif-
fer significantly from the static condition, #241) = 0.72, p
= .470.

There was also a significant interaction between typical-
ity and starting procedure, F(3, 241) = 4.12, p = .007, np2 =
.05, 90% CI [0.01, 0.09]. As can be seen in Fig. 10, the
typicality effect was significantly larger in the initmax than
in the static condition, #241) = 2.68, p = .008. No signif-
icant difference in the size of the typicality effect emerged
between the dynamic and static conditions, #(241) = — 0.56,
p = .576, nor between the rtmax and static conditions,
#241) = 0.87, p = .383.

Distribution of trajectory shapes To analyze trajectory
shapes, we again computed the bimodality coefficients for
the per-participant standardized MAD values separately for
each typicality and experimental condition (Table 2). The
bimodality coefficients were smaller than .555 for all
starting procedures, for both typical and atypical trials,
with the exception of the typical trials in the dynamic con-
dition, where the value of .560 was slightly larger than the
cutoff.

Smoothed heat maps (Fig. 11) indicated that a consid-
erable number of straight trajectories occurred in the static
and rtmax conditions. In the dynamic and the initmax
conditions, there were fewer straight trajectories, but in-
stead, many trajectories that moved upward for a distance
(longer than the required movement criterion). In all con-
ditions, there also seemed to be a number of change-of-
mind trajectories, in which the cursor was moved all the
way to nonchosen option before moving to the chosen
option.

To quantify and statistically test for differences in the fre-
quencies of trajectory types between conditions, we mapped
the trajectories on the same set of prototypes that was used in
Experiments 1 and 2. The majority of individual trajectories
again seemed to map well onto the set of prototypes

Condition
600 - — static
- - rtmax
initmax I
4004 --- dynamic '
()]
< -y
=
200 4
0-
Typical Atypical
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Fig. 10 Mean of maximum absolute deviation values (MAD, in pixels)
for Experiment 3, shown separately per typicality and experimental
condition. Error bars indicate one SEM
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Fig. 11 Smoothed heat maps of the individual trajectories in Experiment 3, shown separately per experimental condition. Darker colors indicate higher
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(Fig. 12)."* The relative frequencies of prototypes differed
significantly between experimental conditions, Y2(12) =
535.73, p < .001. In line with the previous experiments, the
majority of trials in the static condition were classified as
straight. Similar results were also obtained in the rtmax con-
dition. In the dynamic condition, the majority of trials were
classified as curved, whereas the initmax condition led to a
roughly even split of straight and curved classifications, as
well as a considerable increase of dCoM classifications rela-
tive to the other three conditions.

We again predicted the trajectory type in an ordinal
mixed regression including a random intercept per partic-
ipant and the predictors typicality (atypical = .5, typical =
—.5) and experimental condition (dummy-coded, with
static serving as the baseline condition). Atypical trials
led to a significantly higher probability of more extreme
trajectories in the static condition (z = 5.06, p < .001). The
rtmax condition did not differ significantly from the static
condition, z = 0.31, p = .760. Both the initmax and the
dynamic conditions led to significantly more extreme tra-
jectories than the static condition, z = 5.99, p < .001, and
z=4.37, p <.001, respectively. For the initmax condition,
more instances of both the curved and change-of-mind
trajectory types occurred, whereas for the dynamic condi-
tion, there seemed to be especially more curved trajecto-
ries (see Fig. 12). With regard to the interaction of typi-
cality and condition, we observed no significant interac-
tions for the rtmax and initmax conditions, z = 0.79, p =
427, and z = 1.68, p = .094. The dynamic condition led to
a relatively smaller increase in extreme trajectories for
atypical trials than the static condition, z = — 2.19, p =
.029.

Discussion

In this experiment, we examined the influences of four differ-
ent starting procedures on mouse-tracking data. Several

14 Upon closer inspection of the data, we discovered a small number of tra-
jectories in the initmax and dynamic conditions that were not captured well by
the existing prototypes, as they went upward all the way to the top of the screen
and then moved either left to the chosen option or first right to the nonchosen
option and from there left to the chosen option (or, rarely, even twice back and
forth). Comparable results were obtained when including those movement
patterns as additional prototypes and repeating the analyses with this extended
set (see the complete analyses online).
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previous mouse-tracking studies have used a static starting
procedure in which the stimulus was immediately presented
after participants clicked on the start button, and participants
did not receive any instructions regarding movement initia-
tion. However, this poses the risk that participants might make
their decision before initiating the movement. Therefore, other
studies have employed measures to ensure that participants
initiate their movement early in the trial, hoping to increase
the likelihood that the complete decision process would be
reflected in the movement. These methods include restricting
the total response time (rtmax), instructing participants to ini-
tialize their movement early in the trial (initmax), or requiring
an upward movement for the stimulus to be displayed
(dynamic).

The results showed that the initmax condition, in which
participants were instructed to initialize an upward mouse
movement within 0.6 s, led to a significantly larger typicality
effect than did the static condition, as measured via MAD.
This was accompanied by an increase of change-of-mind tra-
jectories that moved all the way to the nonchosen option be-
fore heading to the chosen option. However, participants also
made more mistakes in their choices than they did in the static
condition. When implementing the initmax condition, a cen-
tral challenge is to set an adequate time limit for initiation of
the mouse movement (see Hehman et al., 2015, for a
discussion). With the present setting (move upward 50 px
within 0.6 s), we found that participants could not always meet
the time limit for initiating their mouse movement. Although a
slight increase of the time limit might seem an easy solution
for this issue in future studies, it bears the potential of offset-
ting the above-described effects of this starting procedure.
This highlights the need for conducting pilot studies to deter-
mine which initiation time threshold works best for the spe-
cific task at hand.

A dynamic starting procedure, in which participants had to
move the cursor upward 50 px for the stimulus to be
displayed, did not significantly influence the typicality effect.
However, trajectories were overall classified as being more
curved than in all other starting procedures, and the relative
occurrence of more extreme trajectory types in atypical versus
typical trials was slightly reduced. This indicates that a dy-
namic starting condition increases the occurrence of trajecto-
ries that fit best with the idea of a continuous mapping of the
cognitive process onto the movement. However, we cannot
rule out that the early part of the trajectory especially might
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Fig. 12 Individual trajectories per assigned prototype, shown separately for the different experimental conditions in Experiment 3. For each prototype,
the relative frequency of classifications per experimental condition is displayed

reflect a purely motoric component (i.e., the vertical move-
ment that needs to be executed for the stimulus to be displayed
and a continuation of this movement while the stimulus is
processed), and hence, the overall more curved shaped would
be driven mainly by this motor process. Nevertheless, as com-
pared to a static start, the dynamic starting procedure method-
ologically ensures that processing will take place during the
movement and, hence, increases the likelihood that these pro-
cesses will be reflected in the movement.

Combining a dynamic start with a touch instead of a click
response, as has been implemented in previous studies
(Dshemuchadse et al., 2013; Frisch et al., 2015; Scherbaum
et al., 2010), may also lead to a more homogeneous distribu-
tion of trajectory curvature. These studies have also often
employed a dynamic starting procedure in combination with
restrictions regarding the time for initiating the upward move-
ment as well as the time for giving the total response. Future
studies should therefore more closely examine the dynamic
starting procedure in this setup (see also Scherbaum &
Kieslich, 2018).'°

15 Older studies used a different movement initiation criterion (moving
upward at least 4 px in each of two consecutive time steps; see Scherbaum
et al., 2010). However, we think that this does not constitute an important
difference, and would argue in favor of the newer criterion (used, e.g., in
Frisch et al., 2015), as its definition is more straightforward and easier to
implement.

Introducing a total time limit of 2.5 s for giving a response
in the rtmax condition did not have a significant effect in any
of the trajectory analyses, as compared to the static starting
procedure. It is possible that this resulted from the time limit
not being strict enough, given that the average response time
in the static condition was also shorter than 2.5 s (see Table 4).
When setting the time limit, we had intended to encourage
participants to start moving earlier without introducing too
much overall time pressure (which could alter basic decision
processes—e.g., through the introduction of stress). The ma-
nipulation generally seemed to be effective, since the average
response time in the rtmax condition was more than 0.5 s
shorter than that in the static condition, and participants initi-
ated their upward mouse movements earlier in the trial. Still,
future studies could explore the use of a stricter total time
limit, at the risk of altering the cognitive processes and poten-
tially losing more trials in which participants do not answer
within the time limit.

An interesting observation is that the bimodality coeffi-
cients in almost all conditions indicated evidence for a
unimodal distribution. This was also the case for the static
condition, which was quite similar to the slow condition from
Experiment 2 (in which the bimodality coefficient indicated
bimodality). The main methodological difference for the static
condition in the present experiment was that the stimulus was
presented at a higher point on the screen. This might explain
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the finding, because on average the trajectories headed up-
ward for a longer time in the static condition of Experiment
3 than in the slow condition from Experiment 2 (cf. Figs. 2 and
9). This, in turn, led to higher average MAD values (Table 2),
and deviations from this higher baseline would have a smaller
effect on the bimodality coefficient. Still, inspection of the
heat maps and prototype classifications indicated that different
types of trajectories were present in all starting conditions.

In sum, this experiment has shown that the starting proce-
dure has considerable influence on mouse-tracking data,
influencing both the size of the cognitive effects reflected in
mouse trajectories and their shape. Because both have been
used to test psychological theories, this underscores the im-
portance of taking the methodological setup of the study into
account when interpreting mouse-tracking data. Specifically,
within the same task, a dynamic starting procedure can pro-
duce a majority of curved trajectories, whereas a static start
leads to a majority of straight trajectories. While the former
type of trajectory is usually associated with dynamic process
models, the latter type is interpreted instead as belonging to a
low-conflict decision in a dual-system model. At the same
time, change-of-mind trajectories were present to varying de-
grees for all starting procedures, which are usually associated
with high-conflict decisions in a dual-system model.
Assuming that the starting procedure does not really change
the underlying decision process, this implies that the mapping
of the decision process onto the mouse movement depends on
the starting procedure, with the dynamic and initmax starting
procedures increasing the likelihood that the decision process,
and especially its early stages, is more continuously mapped
onto the mouse movement.'®

General discussion

Over the past decade, mouse-tracking has spread to a multi-
tude of psychological areas and has been used to examine
diverse cognitive processes (Freeman, 2018; Stillman et al.,
2018). Given the relative novelty of the method, to date no
standards for designing and running mouse-tracking experi-
ments have been established, and this has entailed consider-
able variation in the methodological setups of previous
mouse-tracking studies. To improve understanding of the em-
pirical, and ultimately also the theoretical, consequences of
methodological differences for mouse-tracking data, in the
present study we reported a systematic investigation of three
central design factors. In a series of experiments, the design
factors response indication, starting procedure, and mouse

16 Aswas previously discussed, it remains an open question to what degree the
higher share of curved trajectories in the dynamic and initmax conditions was
driven by motor processes executed at the beginning of the trial to fulfill the
upward movement criterion.
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sensitivity were varied, while the basic experimental setup
remained constant and followed that of a classic mouse-
tracking experiment by Dale et al. (2007). In all methodolog-
ical setups, the postulated typicality effect was replicated, in
that mouse trajectories deviated more toward the nonchosen
option for atypical than for typical stimuli. However, the size
of'this effect was influenced by the type of response indication
and the starting procedure. In addition, trajectory shapes were
influenced by all design factors: In traditional bimodality anal-
yses, some setups have led to the distribution of curvature
indices being classified as unimodal, whereas other setups
have been classified as bimodal. When mapping individual
trajectories onto a set of prespecified prototypes, the relative
frequency of the prototypes varied according to the methodo-
logical setup, and in many cases this could explain differences
in the size of the typicality effect between conditions. The
main effects of the design factors on trajectory curvature and
shape are summarized in Table 5.

Implications for interpreting mouse-tracking results

The findings of the present study have general implications for
interpreting the results from mouse-tracking studies. First, it
could be demonstrated that it is possible to find theoretically
predicted effects on mouse trajectories in any methodological
setup. Thus, in principle, any setup seemed able to capture the
conflict between response options to at least some degree.
This provides evidence that in the present task, the connection
between decision processes and cursor movements was so
robust that it prevailed under any type of methodological set-
up. However, the size of this effect varied considerably be-
tween setups. Therefore, it is possible that smaller and less
robust effects than the typicality effect we investigated would
not be detected with certain methodological setups. As a con-
sequence, before concluding that a certain manipulation does
not influence conflict as measured through mouse trajectories,
one should consider whether the setup was optimized to detect
such effects. More generally, the findings highlight that the
comparison of effect sizes between mouse-tracking studies
with different methodological setups might be challenging—
given that in the present experiments anything from a small
(touch condition from Exp. 1) to a large (initmax condition
from Exp. 3) effect was obtained for the exact same task and
manipulation (see Table 2).

Second, previous mouse-tracking studies have used bi-
modality analyses of curvature indices to conclude which
theoretical model may account for the cognitive process
of interest (Freeman & Dale, 2013; Hehman et al., 2015;
Stillman et al., 2018). Most often, studies have aimed to
differentiate between dynamic and dual-system models,
which should lead to unimodal versus bimodal distribu-
tions, respectively. The present study demonstrated that,
depending on the methodological setup, both unimodal
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Table 5. Summary of design factor effects and recommendations for future studies
Design Influence on Typicality Effect  Influence on Trajectory Shapes Preliminary Recommendations for
Factor Future Studies
Starting Initmax leads to largest effect. Static/rtmax: majority straight. For simple tasks: use dynamic/initmax start to
procedure  Other conditions are not Dynamic: majority curved. increase chances early aspects of decision
significantly different. Initmax: mix of straight and curved, process are captured, especially
increase of dCoM. relevant for temporal analyses
(Scherbaum & Kieslich, 2018).
For complex tasks: use static start
(restricting response time
had no significant effect, but limit
was not very strict).
Mouse No significant influence Default settings: increase of dCoM. For dynamic/initmax: Reduce speed and
sensitivity on typicality effect. Reduced speed and disabled acceleration: disable acceleration to ensure decision
increase of straight. can be completed during upward movement.
For static: settings had no strong effect
(avoid very fast cursor nevertheless).
Response Click leads to larger effect Click: increase of dCoM. For dynamic/initmax: use touch to achieve
indication than touch. Touch: mostly straight, almost more homogeneous curvature distribution.

no dCoM.

For static: use click, but consider analysis via
prototype classification.

The influences on the size of the typicality effect (maximum absolute deviation in atypical vs. typical trials) and trajectory shapes (relative frequency of
prototype classifications) are summarized. Note that the summary and recommendations are preliminary, as not all combinations of each of the design
factor conditions were investigated in this study. rtmax = static start with restricted total response time, initmax = static start with restricted initiation time,

dCoM = discrete change-of-mind trajectory

and bimodal distributions can be obtained in the very
same psychological task. If cognitive processes were not
influenced by the setup, this would imply that different
shapes can occur for the same cognitive process. This, in
turn, would indicate that the mapping of cognitive pro-
cesses onto mouse movements can vary depending on
the methodological setup, and that an interpretation of
trajectory shapes needs to consider the methodological
conditions under which they were obtained. However,
solely on the basis of mouse-tracking data, we cannot rule
out that changes in the setup influence cognitive processes
directly, and that this might offer an alternative explana-
tion for the findings. For instance, one could argue that
changes in the setup induced changes in the movement
that had a backward influence on the decision processes
via feedback mechanisms (e.g., Lepora & Pezzulo, 2015;
see also Aczel, Szollosi, Palfi, Szaszi, & Kieslich, 2018).
Future research will need to address this question further
using additional indicators of cognitive processes—for ex-
ample, neurophysiological indices or other process-tracing
techniques. For now, we make the tentative (and poten-
tially simplifying) assumption that the setup mostly influ-
ences how the cognitive process is mapped onto the
movement.

More specifically, the starting procedure may influence the
degree to which early aspects of the decision process are
reflected in the mouse movement, with an initmax and a dy-
namic starting procedure increasing the likelihood that early

aspects are captured, whereas this is not guaranteed in studies
that use a static start. In extreme cases, the decision process
might even be finished before the mouse movement was ini-
tiated, in setups with a static start. A resulting straight trajec-
tory would then not necessarily indicate that there was no
response conflict, but possibly that such conflict was not cap-
tured in the movement. In addition, the response indication
probably influences the degree to which the attraction of an
option is translated into a movement toward that option. The
click condition allowed participants to move all the way to an
option (if this was the currently favored option) and then re-
direct the movement to the other option (a prototypical
change-of-mind trajectory), whereas the touch condition re-
duced the likelihood of these extreme movements. Thus, a
study with a static starting procedure and a click response
mode is more likely to produce a mix of straight and
change-of-mind trajectories than is a study with a dynamic
starting procedure and a touch response mode. So, if in the
former case mostly curved trajectories were observed, this
could be seen as more compelling evidence for a dynamic
system model on the process level than if those were observed
in the latter case. Conversely, if a mix of straight and change-
of-mind trajectories were observed in a setup with a dynamic
starting procedure and a touch response mode, this could be
seen as more convincing evidence for a dual-process model
than if those were observed for a static starting procedure and
a click response mode. One recommendation for future studies
that aim for a critical test of a certain class of process model
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could thus be: “Optimize” the methodological setup in such a
way that it increases the likelihood that types of trajectories
will be observed that are not expected on the basis of the a-
priori-hypothesized process model. For instance, optimize the
setup for continuously curved trajectories, if a dual-process
model is assumed. However, this is just a preliminary
suggestion.

Third, the results demonstrate the usefulness of the newly
proposed analysis method for identifying different types of
movement trajectories (Wulff et al., in press; Wulff et al.,
2019). On the one hand, it allows for unpacking the effect that
a certain manipulation has on mouse trajectory curvature. That
is, it shows whether higher curvature is caused by all trajecto-
ries being more curved in one of the conditions, or whether a
certain condition leads to the occurrence of more extreme
trajectory types, such as discrete changes of mind. In the pres-
ent experiments, larger effects on aggregate curvature were
often accompanied by a higher share of these types of move-
ments. On the other hand, it offers an alternative way to assess
whether or not different types of trajectories are present in the
data. In Experiments 1 and 2, the new method generally
seemed to agree with the traditional bimodality method, in
that conditions with a bimodal distribution also contained a
mix of more extreme trajectory types than did conditions with
a unimodal distribution. In Experiment 3, bimodality analyses
generally suggested unimodal distributions, yet the prototype
method still seemed to indicate the presence of different types
of trajectories in the data. Future research will need to address
the conditions under which these methods agree, and if not,
which method offers the more valid interpretation.

Implications for designing mouse-tracking studies

The findings have implications for the design of future mouse-
tracking studies. In line with previous recommendations
(Fischer & Hartmann, 2014; Hehman et al., 2015), a starting
procedure that encourages participants to initiate their mouse
movement early in the trial led to larger cognitive effects.
Interestingly, no larger effects were observed for the dynamic
starting procedure, in which participants had to move the mouse
upward for the stimulus to be displayed. This, in turn, is in line
with previous findings by Scherbaum and Kieslich (2018), who
also did not find differences in the cognitive effects on trajec-
tory curvature when comparing a dynamic and a static starting
procedure. However, they also showed that a dynamic starting
procedure led to larger effects in more fine-grained analyses
that investigated the temporal development of within-trial
movements in a time-continuous regression framework.

The cursor speed and acceleration settings did not have
substantial effects on mouse-tracking data in the present study.
However, we only examined the effect of these settings in a
static starting procedure. In test runs for the dynamic and
initmax starting procedures, we observed that a fast cursor
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with enabled acceleration made it extremely difficult to ac-
quire the stimulus information during the upward movement.
Specifically, the cursor increased in speed so quickly at the
beginning of the trial that it was difficult to read the stimulus
word before reaching the upper part of the experimental
screen. For this reason, we decided to reduce the cursor speed
and to turn off acceleration when comparing the different
starting procedures—a setup that we recommend to anyone
using a starting procedure that encourages early movement
initiation (in line with Fischer & Hartmann, 2014; Freeman
& Ambady, 2010).

With regard to the response indication mode, a response by
click led to considerably larger effects than did a response by
touching the button with the cursor. However, this was related
to an occurrence of more extreme trajectories. In addition, the
distribution of curvature values was classified as bimodal in
the click condition and as unimodal in the touch condition.
This suggests that researchers might face a trade-off between
larger effects that are due to the occurrence of more extreme
trajectory types and smaller effects with a more homogeneous
trajectory distribution.

Another consideration when making design choices for a
mouse-tracking study is the question of which setup is suited
for which psychological tasks. Although encouraging early
mouse movements through the starting procedure should
work well for studies with stimuli that can be processed very
quickly and in which decisions are relatively easy, it might
provide a challenge for studies involving more complex tasks
(such as decisions between monetary lotteries—e.g., Koop &
Johnson, 2013—or decisions in the Cognitive Reflection
Test—e.g., Travers, Rolison, & Feeney, 2016). In this case, a
static starting procedure might be better suited, so that partic-
ipants can initiate the movement after acquiring the stimulus
information. This is at the risk that they might finish process-
ing and arrive at a decision before initiating the mouse move-
ment. This would most likely lead to an increase of straight
trajectories (which can also be observed in the present study in
conditions that used a static starting procedure).

On the basis of these considerations, we provide a set of
preliminary recommendations in Table 5. For simple tasks, we
recommend that researchers use an initmax or dynamic
starting procedure, disable acceleration, reduce cursor speed,
and use a touch response indication procedure in order to
achieve a homogeneous trajectory distribution. If the task un-
der investigation is more complex, researchers might use a
static starting procedure and collect responses via click.
Cursor speed is not as critical in this setup, but an extremely
fast cursor should be avoided, nonetheless. In this setup, dy-
namic analyses may not be possible, because the consistency
of the movement over the course of a trial may not be suffi-
cient (Scherbaum & Kieslich, 2018). In addition, the occur-
rence of different types of trajectories is more likely in this
setup, and thus an analysis of trajectory shapes via prototype
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classification should be performed (Wulff et al., in press).
These recommendations are, of course, preliminary, and re-
quire more empirical studies that will investigate different
combinations of each of the design factor conditions and dif-
ferent psychological tasks.

Limitations

In the present study we investigated the influence of design
factors on mouse-tracking data by replicating a classic mouse-
tracking experiment (Dale et al., 2007, Exp. 1) with different
methodological setups. To investigate the impacts of these
different setups on mouse-tracking data, we had to make a
number of choices, each of which entailed certain limitations.
Specifically, we selected a specific set of three central design
factors and implemented only specific combinations of these.
We also decided to implement all manipulations between par-
ticipants, to avoid carryover effects. Therefore, we could only
implement a limited number of conditions for each design
factor, to ensure that statistical power was sufficient for each
condition. We further only used one mouse-tracking paradigm
for all three experiments, to ensure comparability between
experiments. Finally, we selected only a subset of all poten-
tially available mouse-tracking analyses for the present pur-
pose, focusing on the most frequently used analyses. In the
following, we discuss how each of these choices could pose
limitations for the present investigation.

As stated above, we only examined three design factors in
total and varied only one of them in each experiment. While
this allowed for a clear interpretation of the consequences of
each design factor in isolation, it also excluded the possibility
of investigating potential interactions between the different
design factors—some of which are likely to occur. For exam-
ple, while it might be the case that a touch response procedure
drastically reduces cognitive effects of curvature when used in
combination with a static start procedure (as implemented in
this study), it could well be that this is not the case when a
touch response procedure is combined with a starting proce-
dure that encourages early movement initiation. In addition,
for starting procedures that encourage an early movement ini-
tiation, a fast cursor speed might lead to problems (as we
previously discussed). Consequently, the study of design fac-
tors in mouse-tracking warrants further investigation and ex-
tension of the present results in order to investigate the effects
of each design factor with different combinations of the other
factors.

In addition, although we intended to cover the most com-
mon implementations of each design factor, we could not
cover all possible implementations. With regard to mouse
sensitivity, we only compared two commonly used settings
(one with default settings—i.e., enabled acceleration and
50% speed—and one with disabled acceleration and 30%
speed). Of course, many more speed settings could be

used—both faster and slower speeds—and the effect of speed
should be explored independently of acceleration. With regard
to the starting procedures, several studies have also employed
a static starting procedure with delayed stimulus presentation
(e.g., Spivey et al., 2005)—a condition that was not included
in the present study. In addition, the dynamic and initmax
starting procedures also have been used in combination with
a general restriction of the total response time (e.g.,
Dshemuchadse et al., 2013; Freeman & Ambady, 2011). In
this regard, the previously discussed study by Scherbaum and
Kieslich (2018) may offer first insight, as it compared a dy-
namic with a static starting procedure (in which the stimulus
presentation was slightly delayed), and the total response time
was restricted in both conditions.

We also intended to investigate the most central design
factors. However, additional design factors are likely relevant
in mouse-tracking studies. One potentially relevant factor is
the stimulus position. This is already suggested by the fact that
the shapes of the trajectories differed between the slow con-
dition of Experiment 2 and the static condition of Experiment
3, which is likely related to the change of stimulus position
between the experiments. Another potentially relevant factor
concerns the response button position. Research on these and
additional factors is currently under way (Grage, Schoemann,
& Scherbaum, 2019; Schoemann, Liiken, Grage, Kieslich, &
Scherbaum, 2019). In addition, there are also other factors that
are more closely related to the task at hand, such as the stim-
ulus modality (presented as a written word, a spoken word, or
a picture). Dale et al. (2007), for example, replicated their
experiment both with written words and pictures, the latter
generally leading to larger effects.

A further potential limitation of the present investigation is
that it only used a paradigm from one content area (semantic
categorization) and that the study was implemented in a rela-
tively simplistic methodological setup. As compared to the
paradigm by Dale et al. (2007) that we used herein, other
studies have included a considerably higher number of prac-
tice and actual trials and gave closer instructions to partici-
pants with regard to how they should move the mouse (e.g.,
Dshemuchadse et al., 2013; Scherbaum et al., 2010).
Nevertheless, we think that the basic setup of the present study
is representative of many mouse-tracking studies and that the
effects observed in each experiment were reliable (as indicated
by the cross-experiment comparison of two conditions with
identical setups that did not differ significantly in any analy-
ses). Still, all of this highlights the need for future studies that
can examine the effects of the individual design factors in
other mouse-tracking paradigms.

Finally, in our analyses we focused on the influence that
design factors have on trajectory curvature and trajectory
shape, assessed through the calculation of MAD values, bi-
modality analysis, and the newly proposed prototype-
mapping method. We did this because these are the most
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common applications of mouse-tracking (Stillman et al.,
2018). Nonetheless, the richness of mouse-tracking data al-
lows for a multitude of further analyses (see Freeman, 2018,
Hehman et al., 2015; Scherbaum et al., 2010; Stillman et al.,
2018), and it is an interesting question how design factors
might also have an influence on each of these other analyses
(see Scherbaum & Kieslich, 2018, who performed a number
of additional analyses in their comparison of two starting
procedures).'” Because the data for all experiments are freely
provided in an open format (along with open-source software
for their analysis), interested researchers are invited to use
them to explore how the design factors in the present study
influence data in their particular analysis of interest.

Conclusion

In this study, we presented a comprehensive investigation of
three central design factors in mouse-tracking—response in-
dication, mouse sensitivity, and starting procedure—and of
their influence on mouse-tracking data. We demonstrated that
these design factors can have considerable impact on trajecto-
ry curvature and the shape of individual trajectories. Such
differences can, in turn, bias theorizing and lead to premature
conclusions about support for or against certain theories—for
example, the distinction of dynamic and dual-system ac-
counts. Our results strongly suggest that the specific design
of a mouse-tracking study must be carefully considered when
interpreting mouse-tracking data with respect to testing theo-
ries and when planning mouse-tracking studies. Finally, an
extension of the present investigation to further setups and
tasks seems imperative—an endeavor that we encourage fur-
ther researchers to pursue with the help of the experiments,
analysis code, and data that we have made available.
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17 Scherbaum and Kieslich (2018) analyzed the development of the mouse
movement over time using time-continuous multiple regression analyses. We
did not replicate these analyses herein, as they require a considerably higher
number of trials per participant than the 19 trials available for each participant
in the present study.
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