Abstract
In this paper, we focus on gender recognition in challenging large scale scenarios. Firstly, we review the literature results achieved for the problem in large datasets, and select the currently hardest dataset: The Images of Groups. Secondly, we study the extraction of features from the face and its local context to improve the recognition accuracy. Different descriptors, resolutions and classifiers are studied, overcoming previous literature results, reaching an accuracy of 89.8%.
Chapter PDF
Similar content being viewed by others
References
Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12) (December 2006)
Alexandre, L.A.: Gender recognition: A multiscale decision fusion approach. Pattern Recognition Letters 31(11), 1422–1427 (2010)
Bekios-Calfa, J., Buenaposada, J.M., Baumela, L.: Revisiting linear discriminant techniques in gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(4), 858–864 (2011)
Bourdev, L., Maji, S., Malik, J.: Describing people: A poselet-based approach to attribute classification. In: International Conference on Computer Vision (2011)
Chu, W.-S., Huang, C.-R., Chen, C.-S.: Identifying gender from unaligned facial images by set classification. In: International Conference on Pattern Recognition (ICPR), Istanbul, Turkey (2010)
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)
Dago-Casas, P., González-Jiménez, D., Long-Yu, L., Alba-Castro, J.L.: Single- and cross- database benchmarks for gender classification under unconstrained settings. In: Proc. First IEEE International Workshop on Benchmarking Facial Image Analysis Technologies (2011)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Schmid, C., Soatto, S., Tomasi, C. (eds.) International Conference on Computer Vision & Pattern Recognition, vol. 2, pp. 886–893. INRIA Rhône-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-38334 (June 2005)
Déniz, O., Bueno, G., Salido, J., De La Torre, F.: Face recognition using histograms of oriented gradients. Pattern Recognition Letters 32(12), 1598–1603 (2011)
Gallagher, A., Chen, T.: Understanding images of groups of people. In: Proc. CVPR (2009)
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, Univ, of Massachusetts, Amherst (October 2007)
Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Describable visual attributes for face verification and image search. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) (October 2011)
Li, B., Lian, X.-C., Lu, B.-L.: Gender classification by combining clothing, hair and facial component classifiers. Neurocomputing 76(1), 18–27 (2012)
Mäkinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(3), 541–547 (2008)
Marcel, S., Rodríguez, Y., Heusch, G.: On the recent use of local binary patterns for face authentication. International Journal of Image and Video Preprocessing, Special Issue on Facial Image Processing (2007)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Ramón-Balmaseda, E., Lorenzo-Navarro, J., Castrillón-Santana, M.: Gender classification in large databases. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 74–81. Springer, Heidelberg (2012)
Ricanek Jr., K., Tesafaye, T.: MORPH: A longitudinal image database of normal adult age-progression. In: IEEE 7th International Conference on Automatic Face and Gesture Recognition, Southampton, UK, pp. 341–345 (April 2006)
Shan, C.: Learning local binary patterns for gender classification on realworld face images. Pattern Recognition Letters 33, 431–437 (2012)
Tapia, J.E., Perez, C.A.: Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of lbp, intensity and shape. IEEE Transactions on Information Forensics and Security 8(3), 488–499 (2013)
Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods on the wild. In: Faces in Real-Life Images Workshop in ECCV (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castrillón-Santana, M., Lorenzo-Navarro, J., Ramón-Balmaseda, E. (2013). Improving Gender Classification Accuracy in the Wild. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2013. Lecture Notes in Computer Science, vol 8259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41827-3_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-41827-3_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41826-6
Online ISBN: 978-3-642-41827-3
eBook Packages: Computer ScienceComputer Science (R0)