Skip to main content

Advertisement

Log in

Introns are key regulatory elements of rice tubulin expression

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The genomic clones containing elements that regulate transcription of the three known rice (Oryza sativa L.) alpha-tubulin isotypes (Ostua1, Ostua2 and Ostua3) have been isolated. We have used these genomic regions to identify the regulatory elements that contribute to the expression of a marker gene (gusA) in transient assays performed on rice calli derived from mature embryos. In all cases, we found that the first intron was required to achieve high levels of expression. This is consistent with data already reported for the α-tubulin isotype1 and indicates that a common regulatory mechanism is active on all the members of the rice α-tubulin gene family. The enhancing effect of the first intron was then tested by constructing illegitimate combinations of α-tubulin promoter and intron sequences (Ostua1pro–Ostua2intro; Ostua1pro–Ostua3intro; Ostua2pro–Ostua3intro; Ostua3pro–Ostua2intro) and then by assaying β-glucuronidase (GUS) activity in transformed rice calli. All illegitimate combinations expressed GUS at high level, suggesting that rice α-tubulin promoters and introns can be exchanged among the different isotypes. This did not occur when the intron of the rice β-tubulin isotype16, known to enhance transcription of its own gene, was used in place of the α-tubulin intron. We have also analysed the effect of abscisic acid (ABA) on GUS expression in rice calli transformed with chimeric tubα2pro-intro::gusA and tubα3pro-intro::gusA constructs. ABA was able to reduce GUS expression only in the presence of the tubα2pro-intro sequence. We discuss these data in terms of mechanisms that in rice, as opposed to other plants, may control tubulin isotype-specific expression and the involvement of ABA in the regulation of α-tubulin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3
Fig. 4a, b
Fig. 5
Fig. 6a–d

Similar content being viewed by others

Abbreviations

ABA :

cis-Abscisic acid

GFP :

Green fluorescent protein

GUS :

Escherichia coli β-glucuronidase

MT :

Microtubule

UTR :

Untranslated region

References

  • Anthony RG, Hussey PJ (1999) Double mutation in Eleusine indica alpha-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothioamidate herbicides. Plant J 18:669–674

    Article  CAS  PubMed  Google Scholar 

  • Baker SS, Wilhem KS, Tomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    CAS  PubMed  Google Scholar 

  • Bao Y, Kost B, Chua N H (2001) Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–57

    Article  CAS  PubMed  Google Scholar 

  • Boyko V, Ferralli J, Ashby J, Schellenbaum P, Heinlein M (2000) Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2:826–32

    Article  CAS  PubMed  Google Scholar 

  • Breviario D, Nick P (2000) Plant tubulins: a melting pot for basic questions and promising applications Transgenic Res 9:383–393

    Google Scholar 

  • Breviario D, Gianì S, Meoni C (1995) Three rice cDNAs clones encoding different beta-tubulin isotypes. Plant Physiol 108:823–824

    Article  CAS  PubMed  Google Scholar 

  • Canaday J (2000) Higher plant cells: gamma-tubulin and microtubule nucleation in the absence of centrosomes. Microsc Res Tech 49:487–95

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JL, Ploense C, Snustad DP, Silflow CD (1992) Preferential expression of an α-tubulin gene of Arabidopsis in pollen. Plant Cell 4:557–571

    Google Scholar 

  • Cheng Z, Snustad DP, Carter JV (2001) Temporal and spatial expression patterns of TUB9, a beta-tubulin gene of Arabidopsis thaliana. Plant Mol Biol 47:389–98

    Article  CAS  PubMed  Google Scholar 

  • Chu B, Wilson TJ, McCune-Zierath C, Snustad DP, Carter JV (1998) Two beta-tubulin genes, TUB1 and TUB8, of Arabidopsis exhibit largely nonoverlapping patterns of expression. Plant Mol Biol 37:785–790

    Article  CAS  PubMed  Google Scholar 

  • Cleveland DW (1988) Autoregulated instability of tubulin mRNAs: a novel eukaryotic regulatory mechanism. Trends Biol Sci 13:339–343

    Article  CAS  Google Scholar 

  • Doyle MC, Han IS (2001) The roles of two TATA boxes and 3′-flanking region of soybean beta-tubulin gene (tubB1) in light-sensitive expression. Mol Cells 12:197–203

    CAS  PubMed  Google Scholar 

  • Ebel C, Gomez LG, Schmit AC, Neuhaus-Url G, Boller T (2001) Differential mRNA degradation of two beta-tubulin isoforms correlates with cytosolic Ca(2+) changes in glucan-elicited soybean cells. Plant Physiol 126:87–96

    Article  CAS  PubMed  Google Scholar 

  • Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert A-M, Schmit AC (2002) The plant Spc98p homologue colocalizes with γ-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115:2423–2431

    CAS  PubMed  Google Scholar 

  • Ezcurra I, Ellestrom M, Wycliffe P, Stalberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709

    Article  CAS  PubMed  Google Scholar 

  • Gay DA, Sisodia SS, Cleveland DW (1989) Autoregulatory control of β-tubulin mRNA stability is linked to translational elongation. Proc Natl Acad Sci USA 86:5763–5767

    CAS  PubMed  Google Scholar 

  • Gianì S, Qin X, Faoro F, Breviario D (1998) In rice, Oryzalin and abscisic acid differentially affect tubulin mRNA and protein levels. Planta 205:334–341

    Article  CAS  PubMed  Google Scholar 

  • Gillespie T, Boevink P, Haupt S, Roberts AG, Toth R, Valentine T, Chapman S, Oparka JK (2002) Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of tobacco mosaic virus. Plant Cell 14:1207–22

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SJ, Kim C, An G (2000) Tissue-preferential expression of a rice α-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol 123:1005–1014

    Article  CAS  PubMed  Google Scholar 

  • Kang MS, Choi YJ, Kim MC, Lim CO, Hwang I, Cho MJ (1994) Isolation and characterization of two β-tubulin cDNA clones from rice. Plant Mol Biol 26:1975–1979

    CAS  PubMed  Google Scholar 

  • Keating TJ, Borisy GG (2000) Immunostructural evidence for the template mechanism of microtubule nucleation. Nat Cell Biol 2:352–357

    Article  CAS  PubMed  Google Scholar 

  • Koga-Ban Y, Niki T, Nagamura Y, Sasaki T, Minobe Y (1995) cDNA sequences of three kinds of β-tubulins from rice. DNA Res 2:21–26

    CAS  Google Scholar 

  • Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP (1992) The small genome of Arabidopsis contains at least six expressed α-tubulin genes. Plant Cell 4:539–547

    Google Scholar 

  • Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    PubMed  Google Scholar 

  • Mendu N, Silflow CD (1993) Elevated levels of tubulin transcripts accompany the GA3-induced elongation of oat internode segments. Plant Cell Physiol 34:973–983

    CAS  Google Scholar 

  • Montoliu L, Rigau J, Puigdomènech P (1989) A tandem of α-tubulin genes preferentially expressed in radicular tissues from Zea mays. Plant Mol Biol 14:1–15

    Google Scholar 

  • Morello L, Bardini M, Sala F, Breviario D (2002) A long leader intron of the Ostub16 rice beta-tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro. Plant J 29:33–44

    Article  CAS  PubMed  Google Scholar 

  • McNally FJ (1996) Modulation of microtubule dynamics during the cell cycle. Curr Opin Cell Biol 8:23–29

    Article  CAS  PubMed  Google Scholar 

  • Nick P (1998) Signaling to the microtubular cytoskeleton in plants. Int Rev Cytol 184:33–80

    CAS  Google Scholar 

  • Olinevich OV, Khokhlova LP, Raudaskoski M (2002) Effect of abscisic acid and cold acclimation on the cytoskeletal and phosphorylated proteins in different cultivars of Triticum aestivum L. Cell Biol Int 24:365–373

    Article  Google Scholar 

  • Qin X, Gianì S, Breviario D (1997) Molecular cloning of three rice α-tubulin isotypes: differential expression in tissues and during flower development. Biochim Biophys Acta 1354:19–23

    Article  CAS  PubMed  Google Scholar 

  • Rose AB (2002) Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA 8:1444–1453

    Article  CAS  PubMed  Google Scholar 

  • Simpson CG, Thow G, Clark GP, Jennings SN, Watters JA, Brown JW (2002) Mutational analysis of a plant branchpoint and polypyrimidine tract required for constitutive splicing of a mini-exon. RNA 8: 47–56

    Article  CAS  PubMed  Google Scholar 

  • Sinibaldi RM, Mettler IJ (1989) Intron splicing and intron-mediated enhanced expression in monocots. Prog Nucleic Acid Res Mol Biol 42:229–255

    Google Scholar 

  • Smertenko A, Blume Y, Viklicky V, Opatrny Z, Draber P (1997) Post-translational modifications and multiple tubulin isoforms in Nicotiana tabacum L. cells. Planta 201:349–358

    Article  CAS  PubMed  Google Scholar 

  • Snustad DP, Haas NA, Kopczack SD, Silflow CD (1992) The small genome of Arabidopsis contains at least nine expressed β-tubulin genes. Plant Cell 4:549–556

    Article  CAS  PubMed  Google Scholar 

  • Stotz HU, Long SR (1999) Expression of the pea (Pisum sativum L.) alpha-tubulin gene TubA1 is correlated with cell division activity. Plant Mol Biol 41:601–614

    Article  CAS  PubMed  Google Scholar 

  • Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417:193–196

    Article  CAS  PubMed  Google Scholar 

  • Tonoike H, Han IS, Jongewaard I, Doyle M, Guiltinan M, Fosket DE (1994) Hypocotyl expression and light downregulation of the soybean tubulin gene, tubB1. Plant J 5:343–35

    CAS  PubMed  Google Scholar 

  • Uribe X, Torres MA, Capellades M, Puigdomènech P, Rigau J (1998) Maize α-tubulin genes are expressed according to specific patterns of cell differentiation. Plant Mol Biol 37:1069–1078

    Article  CAS  PubMed  Google Scholar 

  • Vain P, Mc Mullen M, Finer J (1993) Osmoticum treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Google Scholar 

  • Villemur R, Joyce CM, Haas NA, Goddard RH, Kopczak SD, Hussey PJ, Snustad DP, Silflow CD (1992) α-tubulin gene family of maize (Zea mays L.): evidence for two ancient α- tubulin genes in plants. J Mol Biol 227:81–96

    CAS  PubMed  Google Scholar 

  • Villemur R, Haas NA, Joyce CM, Snustad DP, Silflow CD (1994) Characterization of four new β-tubulin genes and their expression during male flower development in maize (Zea mays L.). Plant Mol Biol 24:295–315

    CAS  PubMed  Google Scholar 

  • Wasteneys GO (2002) Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci 115:1345–1354

    CAS  PubMed  Google Scholar 

  • Wiesler B, Wang QY, Nick P (2002) The stability of cortical microtubules depends on their orientation. Plant J 32:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Washida H, Onodera Y, Harada K, Takaiwa F (2000) Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J 23:415–421

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by contract N. QLK3-2000-00060 from the European Commission. We also acknowledge the support we had from the Italian Ministery of Education and Research (MIUR) within the FIRB programme frameshift (project N. RBNE01TYZF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Breviario.

Additional information

EBI GenBank Accession numbers for Ostua1, Ostua2 and Ostua3 promoter, first exon and first intron sequences are AJ488065, AJ488063 and AJ488064, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiume, E., Christou, P., Gianì, S. et al. Introns are key regulatory elements of rice tubulin expression. Planta 218, 693–703 (2004). https://doi.org/10.1007/s00425-003-1150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1150-0

Keywords

Navigation